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In this research, we discuss a new lifespan model that extends the Frèchet (F) distribution by utilizing the sine-generated family of
distributions, known as the sine Frèchet (SF) model. 'e sine Frèchet distribution, which contains two parameters, scale and
shape, aims to give an SF model for data fitting. 'e sine Frèchet model is more adaptable than well-known models such as the
Frèchet and inverse exponential models. 'e sine Frèchet distribution is used extensively in medicine, physics, and nanophysics.
'e SF model’s statistical properties were computed, including the quantile function, moments, moment generating function
(MGF), and order statistics. To estimate the model parameters for the SF distribution, the maximum likelihood (ML) estimation
technique is applied. As a result of the simulation, the performance of the estimations may be compared. We use it to examine a
current dataset of interest: COVID-19 death cases observed in the Kingdom of Saudi Arabia (KSA) from 14 April to 22 June 2020.
In the future, the SF model could be useful for analyzing data on COVID-19 cases in a variety of nations for possible comparison
studies. Finally, the numerical results are examined in order to assess the flexibility of the new model.

1. Introduction

Diverse academics have recently become interested in the
families of distributions that have been produced [1]: the
beta-G [2], Kumaraswamy-G [3], the suggested sine-gen-
erated (S-G) family [4], modified odd Weibull-G [5], new
Kumaraswamy-G [6], xgamma G [7], the truncated Frèchet-
G [8], truncated Cauchy power-G and the truncated Wei-
bull-G in [9], odd generalized gamma in [10], oddWeibull-G
in [11], exponentiated M-G in [12], odd Chen-Leone-G [13],
Topp-Leone odd Fréchet-G [14], odd Burr-G [15], box Cox
gamma-G [16], Burr X family [17], Marshall–Olkin expo-
nentiated generalized-G [18], and recently, DUS transfor-
mation in [19] and KM-G family [20].

As a result, S-G has both a distribution function (CDF)
and density function (PDF):

F(x; ξ) � sin
π
2

G(x; ξ)􏼔 􏼕, x ∈ R, (1)

f(x; ξ) �
π
2

g(x; ξ)cos
π
2

G(x; ξ)􏼔 􏼕 , x ∈ R, (2)

where g(x; ξ) is considered a PDF of baseline distribution.
'e Frèchet (F) model is an important model which can

be used to analyze the life time data with some monotone
failure rates. 'e PDF and CDF of the F distribution are

g(x; μ, δ) �
δμδ

x
δ+1e

− (μ/x)δ
, x, μ, δ > 0, (3)

G(x; α, β) � e
− (μ/x)δ

, x, μ, δ > 0. (4)

'is work tries to improve the flexibility of the F model
by employing the S-G family. 'e new model has several
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PDF shapes, including decreasing, right skewness, and
unimodal shapes. 'e hazard rate function (HRF) can also
be declining and J-shaped. 'ese findings are depicted in
Figures 1 and 2. Based on the S-G family of distributions, a
unique two-parameter distribution is introduced and ana-
lyzed. 'e model that has been presented is known as the SF
model. 'e SF model is more adaptable and applicable than
the F model.

'is article is organized as follows: in Section 2, a
proposal is made for the SF distribution to be built. ML
estimators are investigated in Sections 3 and 4, and simu-
lation results of SF parameters are examined in Section 5.
Using COVID-19 death data, Section 5 proposes a model
that may be applied to real-world data. Section 6 deals with
some basic properties of the SF model and the article ends
with conclusions.

2. Construction of the SF Model

Here, the CDF, PDF, survival function, and HRF of the
random variable (rv) X are calculated:

F(x) � sin
π
2

e
− (μ/x)δ

􏼔 􏼕 , x> 0, μ, δ > 0,

f(x) �
πδμδ

2x
δ+1e

− (μ/x)δcos
π
2

e
− (x/μ)δ

􏼔 􏼕, x> 0, μ, δ > 0,

R(x) � 1 − sin
π
2

e
− (μ/x)δ

􏼔 􏼕 ,

(5)

h(x) �
πδμδ/2x

δ+1
􏼐 􏼑e

− (μ/x)δcos (π/2)e
− (μ/x)δ

􏼔 􏼕

1 − sin π/2e
− (μ/x)δ

􏼔 􏼕
, (6)

where μ is a scale parameter and δ is the shape parameter.
Figures 1 and 2 show the plots of PDF and HRF for

various parameter values. 'is model can have decreasing
PDF, right-skewed, and unimodal HRF and decreasing PDF,
right-skewed, and unimodal HRF.

3. Statistical Characteristics

Here, we will look at some of the statistical characteristics of
the SF distribution.

3.1. Moments

Theorem 1. Let X can be a rv. When using the SF model, its
rth moment

μr
′ � 􏽘
∞

i�0

μr− δϖΓ(1 − (r/δ))

δ(2i + 1)
1− r/δ . (7)

Proof. Let X be a rv with PDF (6). 'e rth moment of the SF
distribution is calculated as

μr
′ � 􏽚
∞

0
x

r
f(x)dx

�
πδμδ

2
􏽚
∞

0
x

r− δ− 1
e

− (μ/x)δcos
π
2

e
− (μ/x)δ

􏼔 􏼕dx.

(8)

By inserting the expansion cos[G(x)] � 􏽐
∞
i�0((− 1)i/

(2i)!) G(x)2i, n to the previous equation,
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Figure 1: 'e PDF version of the SF model.
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Figure 2: 'e HRF version of the SF model.
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μr
′ � 􏽘
∞

i�0

δμδ(− 1)
i

(2i)!

π
2

􏼒 􏼓
2i+1

􏽚
∞

0
x

r− δ− 1
e

− (2i+1)(μ/x)δdx. (9)

'e last equation can be rewritten as

μr
′ � 􏽘

∞

i�0
ϖ􏽚
∞

0
x

r− δ− 1
e

− (2i+1)(μ/x)δdx, (10)

where ϖ � 􏽐
∞
i�0(δμ

δ(− 1)i/(2i)!)(π/2)2i+1.
Let y � (μ/x)δ, then

μr
′ � 􏽘

∞
i�0
μr− δ

δ
ϖ􏽚
∞

0
y

− r/δ
e

− (2i+1)ydy. (11)

'en,

μr
′ � 􏽘

∞

i�0

μr− δϖΓ(1 − (r/δ))

δ(2i + 1)
1− (r/δ)

. (12)

'e MGF of X is

MX(t) � 􏽘
∞

r�0

t
r

r!
μr
′ � 􏽘
∞

r,i�0

t
rμr− δϖΓ(1 − (r/δ))

r!δ(2i + 1)
1− (r/δ)

. (13)

□

3.2. Quantile Function. If X∼ SF, then the quantile function
of SF is

Q(u) � μ ln
π

2Arcsin(u)
􏼠 􏼡􏼢 􏼣

− 1
δ

,
(14)

and by substituing u� 0.5, we obtain the median (M) as

M � μ[ln(3)]
− 1/δ

. (15)

3.3. Order Statistics. Let X1, X2, . . . , Xn be r sample from
the SF model with order statistics X(1), X(2), . . . , X(n). 'e
PDF of X(k) of order statistics is

fX(k)
(x) �

n!

(k − 1)!(n − k)!
F

k− 1
(x)f(x)(1 − F(x))

n− k
.

(16)

'e PDF of X(k) can be expressed as

fX(k)
(x) �

n!δμδΞ
x
δ+1

(k − 1)!(n − k)!
(sin[Ξ])k− 1cos[Ξ](1 − sin[Ξ])n− k

,

(17)

where (π/2)e− (μ/x)δ � Ξ . We can obtain the PDF of the
lowest and largest order statistics at k � 1 and k � n,
respectively,

fX(1)
(x) �

nδμδΞ
x
δ+1 cos[Ξ](1 − sin[Ξ])n− 1

, (18)

fX(n)
(x) �

nδμδΞ
x
δ+1 (sin[Ξ])n− 1cos[Ξ]. (19)

4. ML Estimation

Let x1, x2, . . . , xn be the observed values from the SF model
with parameters ε � (μ, δ). 'e total likelihood function
corresponding to (6) is

ln L � nln
πδ
2

+ δnlnμ − (δ + 1) 􏽘
n

i�1
ln xi( 􏼁 − 􏽘

n

i�1

μ
xi

􏼠 􏼡

δ

+ 􏽘

n

i�1
ln cos

π
2

e
− μ/xi( )

δ

􏼔 􏼕􏼒 􏼓.

(20)

'e ML equations of the SF model are

z ln L

zδ
�

n

δ
+ n ln μ − 􏽘

n

i�1

μ
xi

􏼠 􏼡

δ

− 􏽘
n

i�1

μ
xi

􏼠 􏼡

δ

ln
μ
xi

􏼠 􏼡 +
π
2

􏽘

n

i�1

μ
xi

􏼠 􏼡

δ

ln
μ
xi

􏼠 􏼡e
− μ/xi( )

δ

tan
π
2

e
− μ/xi( )

δ

􏼔 􏼕􏼒 􏼓, (21)

z ln L

zμ
�

nδ
μ

−
δ
μ

􏽘

n

i�1

μ
xi

􏼠 􏼡

δ

+
δπ
2μ

􏽘

n

i�1

μ
xi

􏼠 􏼡

δ

e
− μ/xi( )

δ

tan
π
2

e
− μ/xi( )

δ

􏼔 􏼕􏼒 􏼓. (22)

'en, the ML estimators of the parameters ε are cal-
culated by substituting Uε � 0 and solving it.

5. Numerical Results

'e ML technique for estimating parameters is evaluated,
and the modest numerical results are obtained. Mathematica
9 is used to do Monte Carlo simulations on an SF. 'e
simulation points are arranged as follows:

(i) We generate random samples from SF distribution
by using

xq � μ ln
π

2Arcsin(u)
􏼠 􏼡􏼢 􏼣

− 1/δ

. (23)

(ii) Each sample size of n� 100, 200, 300, and 500 was
replicated 3000 times in order to obtain the data.

(iii) According to Tables 1–5, a variety of values are
picked for the parameters.

(iv) Formulas used for investigating root mean square
error (RMSE), lower bound (Z1), upper bound (Z2),
and average length (Z3) of 90% and 95% are
calculated.
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Table 1: Numerical results for the SF model at (δ � 0.5, μ � 0.5).

n MLE RMSE
90% 95%

Z1 Z2 Z3 Z1 Z2 Z3

100 0.7453 0.2597 0.0436 1.4470 1.4034 − 0.0908 1.5814 1.6722
1.0047 1.0359 − 0.4077 2.4171 2.8248 − 0.6782 2.6875 3.3657

200 0.5344 0.0217 0.2899 0.7790 0.4891 0.2431 0.8258 0.5828
0.5921 0.0994 0.1274 1.0568 0.9295 0.0384 1.1458 1.1074

300 0.4965 0.0111 0.3265 0.6664 0.3399 0.2940 0.6990 0.4050
0.5181 0.0328 0.2002 0.8360 0.6357 0.1394 0.8968 0.7574

500 0.5364 0.0078 0.3889 0.6840 0.2951 0.3606 0.7122 0.3516
0.5727 0.0316 0.2962 0.8493 0.5531 0.2432 0.9023 0.6591

Table 2: Numerical results for the SF model at (δ � 0.7, μ � 0.5).

n MLE RMSE
90% 95%

Z1 Z2 Z3 Z1 Z2 Z3

100 0.8246 0.1700 0.1571 1.4922 1.3351 0.0292 1.6200 1.5908
0.7097 0.3171 − 0.1866 1.6061 1.7927 − 0.3583 1.7777 2.1360

200 0.7512 0.0433 0.3634 1.1391 0.7757 0.2892 1.2133 0.9242
0.5275 0.0452 0.0677 0.9873 0.9196 − 0.0203 1.0754 1.0957

300 0.7524 0.0432 0.4306 1.0742 0.6436 0.3690 1.1359 0.7669
0.5272 0.0451 0.1541 0.9404 0.7862 0.0789 1.0156 0.9368

500 0.7109 0.0248 0.4864 0.9354 0.4490 0.4434 0.9784 0.5350
0.5232 0.0417 0.2398 0.8065 0.5667 0.1856 0.8608 0.6752

Table 3: Numerical results for the SF model at (δ � 1.2, μ � 0.5).

n MLE RMSE
90% 95%

Z1 Z2 Z3 Z1 Z2 Z3

100 1.2990 0.0637 0.9283 1.6698 0.7415 0.8573 1.7408 0.8835
0.5211 0.0083 0.3742 0.6680 0.2938 0.3461 0.6961 0.3501

200 1.2499 0.0241 1.0026 1.4973 0.4947 0.9552 1.5447 0.5894
0.5145 0.0046 0.4114 0.6176 0.2062 0.3917 0.6373 0.2456

300 1.2220 0.0116 1.0533 1.3907 0.3374 1.0210 1.4230 0.4020
0.5046 0.0015 0.4329 0.5763 0.1434 0.4192 0.5901 0.1709

500 1.2012 0.0034 1.0968 1.3056 0.2088 1.0768 1.3256 0.2488
0.4999 0.0006 0.4547 0.5450 0.0902 0.4461 0.5536 0.1075

Table 4: Numerical results for the SF model at (δ � 1.8, μ � 0.5).

n MLE RMSE
90% 95%

Z1 Z2 Z3 Z1 Z2 Z3

100 1.9317 0.1452 1.3035 2.5598 1.2563 1.1833 2.6801 1.4969
0.5283 0.0077 0.3903 0.6663 0.2760 0.3638 0.6927 0.3289

200 1.8633 0.1183 1.4420 2.2846 0.8426 1.3613 2.3652 1.0039
0.5135 0.0062 0.4184 0.6087 0.1903 0.4001 0.6269 0.2268

300 1.7828 0.0313 1.5026 2.0629 0.5603 1.4490 2.1165 0.6675
0.4992 0.0018 0.4332 0.5651 0.1319 0.4206 0.5778 0.1572

500 1.8049 0.0073 1.6259 1.9838 0.3578 1.5917 2.0181 0.4264
0.5003 0.0004 0.4587 0.5419 0.0832 0.4507 0.5498 0.0991
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Table 5: Numerical results for the SF model at (δ � 2.5, μ � 0.5).

n MLE RMSE
90% 95%

Z1 Z2 Z3 Z1 Z2 Z3

100 2.7838 0.5311 1.7572 3.8104 2.0533 1.5606 4.0070 2.4465
0.5301 0.0069 0.3988 0.6614 0.2626 0.3737 0.6866 0.3129

200 2.6603 0.3059 1.9912 3.3293 1.3382 1.8631 3.4575 1.5944
0.5127 0.0043 0.4234 0.6021 0.1787 0.4063 0.6192 0.2129

300 2.5696 0.0795 2.1173 3.0220 0.9047 2.0306 3.1086 1.0780
0.5092 0.0016 0.4460 0.5725 0.1265 0.4339 0.5846 0.1507

500 2.4760 0.0301 2.2034 2.7486 0.5451 2.1513 2.8008 0.6495
0.4916 0.0005 0.4528 0.5304 0.0777 0.4453 0.5379 0.0925

Table 6: Some descriptive statistics for the data set.

n Min Max Mean Median Mode Variance Skewness Kurtosis
96 1 97 23.667 14 11 583.639 1.777 2.372

Table 7: 'e ML estimates and SEs for the data set.

Model ML estimates and SEs
SF (δ, μ) 0.915 (0.075) 13.452 (1.473)
F (δ, μ) 1.168 (0.094 8.679 (0.942
IE (μ) 9.247 (1.105)

Table 8: 'e values of L1, L2, L3, L4, L5, and L6 the data set.

Model
Goodness-of-fit criteria

L1 L2 L4 L5 L3 L6
SF 534.841 538.841 538.531 540.627 539.02 0.132
F 543.894 547.894 547.584 549.68 548.073 0.1369
IE 547.221 549.221 549.066 550.114 549.279 0.1752
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Figure 3: Estimated PDF for the data set.
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6. Applications to Real Data

In this section, an actual data set is studied to demonstrate
the benefits of the SF model over other known models such
as the F and inverse exponential (IE) models.

We propose several information criteria (IC) to compare
the competitive models, such as the minus of log-likelihood
function (L1), Akaike IC (L2), the right Akaike IC (L3),
Bayesian IC (L4), Hannan-Quinn IC (L5), and Kolmogor-
ov–Smirnov IC (L6).

'e data set proposes a specific application using a real-
world data set to gauge interest in the SF model. 'e data
evaluated were the daily fatality confirmed cases of COVID-
19 in Saudi Arabia from 14 April to 22 June 2020. 'e data
set was collected electronically from the following website:
https://covid19.moh.gov.sa (6, 4, 4, 5, 5, 6, 6, 5, 7, 6, 9, 3, 5, 8,
5, 5, 7, 8, 7, 9, 9, 10, 10, 10, 7, 9, 9, 9, 10, 9, 10, 10, 8, 9, 10, 12,
13, 15, 11, 9, 12, 14, 16, 17, 22, 23, 22, 24, 30, 32, 31, 34, 36, 34,
37, 36, 38, 36, 39, 40, 39, 41, 39, 48, 45, 46, 37, 40, 39). Many
studies investigated biomedical data sets, including those in
[21–24].

Some descriptive statistics of the data are provided in
Table 6. 'e ML estimates of all competitive models and
their SEs are mentioned in Table 7. Values of measures of
goodness of fit are provided in Table 8.

We find that the SF model provides a better fit than the
other competitive models. It has the lowest value of L1, L2,
L3, L4, L5, and L6 values among those considered here.
Moreover, the plots of the estimated PDF of the data set for
all competitive models are shown in Figure 3.

7. Conclusion

In this study, we introduced the SF distribution, a unique
two-parameter model. In medicine, physics, and nano-
physics, the sine Frèchet distribution is widely employed.
'e statistical features of the SF model, such as the quantile
function, moments, moment generating function (MGF),
and order statistics, were computed. 'e ML estimation
approach is used to evaluate the estimate of the SF pa-
rameters. 'e simulation results are calculated to show the
accuracy of the estimates. 'e modeling for COVID-19 in
KSA from 14 April to 22 June 2020 real data set is used to
explain the significance of the SFmodel in comparison to the
other competitive models. Some basic SF model properties
are proposed.

Data Availability

'e numerical data set used to conduct the study is available
from the corresponding author upon request.
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