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We consider the scarce capacity allocation problem in two parallel machines with inclusive processing set restrictions. Our focus is
to design an auction mechanism to allocate the production capacity among several selfish customers effectively and efficiently. In
our iterative ascending auction mechanism, we need to design jointly two things: who wins what and who pays what. First, we
propose an adaptive ascending pricing policy to ensure that bidding by truthful processing requirements and keeping on bidding
until the ask prices reach his real revenue is a dominant strategy for each customer. Second, we establish a facility owner’s profit
maximization model to determine the capacity allocation in two parallel machines with inclusive processing set restrictions; it is
an NP hard problem; we also develop a heuristic based on the Lagrangian relaxation technology to obtain the suboptimal
solutions. Our computational analysis shows that the auction mechanism can achieve more than 87% of the global system value.

1. Introduction

In current customer-oriented market, the decentralized
operating mode has become very popular in the
manufacturing industries. .is mode can provide services
such as product design, manufacturing, and testing for
small and medium-sized enterprises by the establishment
of a service platform, which is a good solution to the
problem of the insufficient funds and talents for small- and
medium-sized enterprises, such as the United Microelec-
tronics Corporation (UMC) which uses the online cus-
tomer information portal MyUMC to provide transparent
processing pricing, processing policies, and real-time
processing capacity information to customers and allows
the selfish customers to make decentralized decisions on
booking processing capacity. However, due to the cus-
tomers’ selfish behaviours, the efficiency of the overall
system would be reduced to some extent. .erefore, it is
important to design an appropriate mechanism to guide
individual competition results towards global optimization
for the scarce capacity allocation problem in the decen-
tralized operating mode.

To the best of our knowledge, the auction-based method
was a suitable approach to solve the production capacity
allocation problem, and it has been applied in a single
machine and job shop environment [1, 2]. In practice, there
existed a scenario that the facility owner possesses parallel
machines and they may have the same speed but differ in
their functionality, which could be called inclusive pro-
cessing set (IPS) restrictions. Our study is focused on this
case.

.ere are many applications for capacity allocation
problem with IPS restriction. A classical application is
assigning several cloud computing tasks with different
memory requirements to processors with the same speed but
different memory capacities. Each task can be processed by a
processor with a memory capacity no less than its memory
requirement. Another application exists in testing enter-
prises. Assuming there are several customers, each with a set
of workpieces that needs to be tested, the testing enterprise
has two pieces of equipment with the same speed but they
differ in test accuracy. High precision testing equipment can
provide high and low precision testing services, but low
precision testing equipment can only provide low precision
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testing services. Here, the testing organization can be de-
scribed as the “facility owner,” the testing equipment can be
described as the “machine,” the set of workpieces can be
described as the “order,” and the problem that the facility
owner needs to do is allocating the parallel machine capacity
to several competing customers, so as to optimize one or
more objectives.

In this study, we propose an iterative ascending auction
mechanism to solve the capacity allocation problem in two
parallel machines with IPS restrictions. .e main research
work is as follows. First, we design the auction mechanism
that the selfish customers can use private information to
make effective decisions without knowing the information
and strategies of other customers. .e pricing policy can
make the customers bid by their truthful processing re-
quirements and keep on bidding until the ask prices reach
their real revenue. In this way, the customers’ local decisions
can prompt the facility owner to make decisions that pro-
mote the achievement of the collective goal. Second, the
winner determination problem is a bid selecting and
scheduling problem in two parallel machines with IPS re-
strictions, and it is NP hard; we develop a heuristic using the
Lagrangian relaxation technique to obtain approximate
optimal solutions for the large-sized instances in a rea-
sonable time.

.e remaining part of the paper is structured as follows.
Section 2 reviews the related work. .en, in Section 3, a
detailed description of our problem setting is described. In
Section 4, a global optimization problem is studied for
mainly benchmarking purposes. In Section 5, an auction
mechanism is proposed for the capacity allocation in two
parallel machines with IPS restrictions. .e pricing and
winner determination problems, as the main components of
our auction mechanism, are discussed in Sections 5.2 and
5.3, respectively. In Section 6, a computational analysis of the
performance for the auction mechanism is presented. Fi-
nally, Section 7 provides concluding remarks.

2. Literature Review

In this section, we provide a brief review of the relevant
literature in the fields of decentralized scheduling, auctions
for resource allocation problems, and parallel machine
scheduling with IPS restrictions.

2.1. Decentralized Scheduling. In a decentralized scheduling
problem, the facility owner and several customers make
decisions rationally for their own interest, and their selfish
behaviours result in a situation that can be characterized as
system equilibrium. However, such a system equilibrium
may lead to suboptimal system performance from a global
perspective. .e literature on this subject mainly has the
following two perspectives: (a) assuming all information is
public, characterize and analyse the quality of the resulting
system equilibria from the perspective of the global system
performance, which can be quantitatively characterized by
the price of anarchy (POA) [3–8]; (b) assuming the private
information is not public, design and analyse mechanisms to

guide individual competition results towards global opti-
mization. Our study is belonging to the second case.

When the private information is not public, it is nec-
essary to provide a mechanism that all customers commit
their truthful information, because the facility owner re-
quires the customers’ private information for a global op-
timal decision. .is research field is known as mechanism
design, which began with the work of Leonid Hurwicz [9].
.e mechanism design problem can be regarded as the
process of solving the optimization problem of incomplete
expression. In this case, the designer should first induce this
expression and then solve the optimization problem [10].
.ere are two methods to induce the truthful information
from agents: one class of mechanisms called direct revelation
mechanisms (DRMs), which directly obtain truthful infor-
mation by letting agents report their true types; the second
called indirect mechanisms, the basic idea is to provide each
agent with a choice of action and then assign a result to each
action group; the strategy chosen by each agent will indi-
rectly reflect their true type. Auctions are common examples
of indirect mechanisms, and they provide several advantages
over DRMs for the machine capacity allocation problems,
such as the universal and anonymous auctions [11]. In the
following subsection, we will specifically introduce the ap-
plication of the auction mechanisms.

2.2. Auctions for Resource Allocation Problems. Auctions are
market-based methods with an explicit set of rules deter-
mining prices and allocation of resource according to bids
from the market participants [12]. .e common auction
formats include the Dutch auction, the English auction, the
first price sealed bid auction, and the second price sealed bid
auction (or Groves-Clarke-Vickery mechanism). .ese
auction formats have been used to sell a wide range of
objects, assets, and commodities [13]. With the development
of auction theory, many new auctions formats have been
designed for resource allocation problems in field of tele-
communication system, traffic system, electric system, and
so on. In telecommunication system, Cramton [14] pre-
sented a new combinatorial clock auction for governments
to assign and price licenses for wireless communications.
Cramton and Ockenfels [15] analysed and discussed the
simultaneous ascending multiband auction for spectrum. In
electric markets, Tang and Jain [16] designed auction
mechanisms for the aggregators to procure stochastic re-
sources. In traffic systems, Rassenti et al. [17] proposed a
combinatorial auction mechanism for the allocation of
airport time slots. Yang et al. [18] proposed an auction-based
unified approach for prebooking urban logistics facilities.

A few papers also propose auction mechanisms for
machine capacity allocation problems. For example, Kuta-
noglu and Wu [19] proposed a general auction mechanism
for the job shop scheduling problem which uses the notion
of multi-item combinatorial auction. .ey also concluded
that there are strong links between Lagrangian-based de-
composition and combinatorial auction. Wellman et al. [1]
first developed a broad framework for using markets to solve
decentralized scheduling problems. .ey presented an
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ascending auction mechanism for capacity allocation
problem in a single machine environment with multiple
customers each having an order. .ey also proved that the
equilibrium prices may not exist when using time slots as
market goods. Dewan and Joshi [2] considered the dis-
tributed scheduling problem with the objective of mini-
mizing earliness-tardiness penalties in a job shop
environment. .ey presented an auction mechanism to
schedule orders and proposed the iterative price adjustment
method to reduce resource contention for the job. Hall and
Liu [11] designed an auction mechanism to allocate the
limited single machine production capacity among several
competing customers, each having an order. .eir market
goods were time blocks and then proved that the equilibrium
solution always exists but is not unique. Karabat and Yalcn
[20] considered the pricing and production capacity allo-
cation problem in the single machine environment and
proposed an auction mechanism that uses the finished
products as market goods for the private information case.
.ey also developed alternative pricing strategies and
conducted research towards the impact of the proposed
auctionmechanism on allocation efficiency. From the above,
we see that all these studies present auction mechanisms for
the capacity allocation problems in a single machine or job
shop environment. In this paper, we aim to design an
auction mechanism for the capacity allocation problem in
two parallel machines with IPS restrictions.

2.3. Parallel Machine Scheduling with IPS Restrictions.
.ere are many studies in the literature on parallel machine
scheduling with IPS restrictions. Most of those focus on the
development of the approximation algorithm (Polynomial
Time Approximation Scheme, PTAS). For example, Kafura
and Shen [21] considered a computing system model with
several independent but identical processors, each with a
limited amount of private memory. .ey proposed a largest
memory time first (LMTF) algorithm to minimize the total
completion time. Hwang et al. [22] considered the parallel
machines scheduling problem in which the process service
requests from various customers who are entitled to many
different grades of service levels. .ey proposed a lowest
grade and longest processing time (LG-LPT) algorithm for
the problem. Ou et al. [23] developed a polynomial time
approximation algorithm based on the LG-LPTalgorithm. Li
andWang [24] extended the research problem of Kafura and
Shen [21]; they studied the parallel machine scheduling
problem with both release time and IPS constraints and
developed a polynomial time approximation algorithm; Li
et al. [25] considered parallel machine scheduling problems
with batch processing and IPS restrictions and developed the
polynomial time approximation algorithms for the same and
different release times, respectively.

In this study, the winner determination problem has the
following differences from the above researches. First, our
winner determination problem features two concepts, the

bid selection and two parallel machines’ scheduling with IPS
restrictions. Second, our winner determination problem
aims to maximize the profit, whereas the above studies all
adopt the traditional objective functions. In addition, the
efficiency of the auction mechanism is very important, so we
develop a fast heuristic to solve the winner determination
problem in reasonable time.

3. Preliminaries

We formally describe the problem under study as follows:
We have a set N of n competing customer orders interested
in using the facility owner’s production capacity. .e facility
owner possesses two parallel machines M1 and M2 which
differ in their functionality but not in their processing
speeds. We assume that M2 can process all those orders that
M1 can process. .e planning horizon spans a time period
t � 1, 2, . . . , T, and the facility owner sets per unit reserve
values v1 and v2 for machines M1 and M2, respectively.

Associated with each customer order i is a processing
time pi, a deadline di, a revenue ui, and a machine index
ai � 1 or 2. We assume that pi, di, and ui are integer valued.
Let N1 � i|ai � 1, i ∈ N􏼈 􏼉, and N2 � N/N1. .us, M1 can
process those customer orders in N1, and M2 can process
those customer orders in N.

In the decentralized decision-making environment, both
the facility owner and the customers hold information
privately. .e facility owner’s objective is to maximize its
profit from selling the capacity to customers and holding any
unallocated capacity at their reserve values; each customer’s
objective is to maximize its profit from getting its revenue
through purchasing the facility owner production capacity
to produce order.

4. Global Optimization Problem

In this section, we assume the information of the customer
orders’ processing requirements and revenues is public.
First, we model the global optimization problem. .en we
identify some properties of the optimal solution that can
help us to develop heuristics for the winner determination
problem.

.e objective of the global optimization problem is to
maximize the system profit. Without loss of generality, we
assume that the customer orders are numbered in nonde-
creasing sequence of the deadlines, and the shortest pro-
cessing times break the ties. Set three binary decision
variables x1

it, x2
it, and yit, where x1

it � 1 denotes that customer
order i ∈ N1 is accepted and completed at time t onmachine
M1; otherwise x1

it � 0; x2
it � 1 denotes that customer order

i ∈ N1 is accepted and completed at time t on machine M2;
otherwise x2

it � 0; yit � 1 denotes that customer order i ∈ N2
is accepted and completed at time t on machine M2; oth-
erwise yit � 0. We formulate the global optimization
problem as the following integer linear programmingmodel:
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􏽘
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1
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􏽘

T

t�1
tx

2
it ≤di, ∀i ∈ N1, (7)

􏽘

T

t�1
tyjt ≤dj, ∀j ∈ N2. (8)

In the above model GOP, Constraints (2) and (3) state
that the accepted customer orders should be processed
exactly once. Constraints (4) and (5) state that, in each time
slot, at most one customer order can be processed on
machines M1 and M2, respectively. Constraints (6), (7), and
(8) make sure that the accepted customer orders are com-
pleted before their deadlines.

Now, we present some optimal properties of the solution
for the global optimization problem.

Lemma 1. For the global optimization problem, there is an
optimal schedule in which the accepted customer orders are
processed in the earliest due date (EDD) order on both
machines.

Proof. Assuming that π∗ is an optimal solution for the global
optimization problem, in π∗, there are two adjacent cus-
tomer orders i and j, and j is processed after i, and di >dj.
Let t be the start time of i. Perform a neighbor-pair exchange
on order i and order j, and get a new solution π′.

In π∗, the completion times of i and j are t + pi ≤ di and
t + pi + pj ≤dj, respectively. In π′, the completion times of i

and j are t + pi + pj and t + pj, respectively. As we know,
di >dj, so t + pi + pj ≤dj < di, t + pj <dj. Customer orders i

and j can also be completed before their deadlines; the new

solution π′ is also an optimal solution. .erefore, we reach
the conclusion. □

Lemma 1. It tells us that no matter which set the accepted
customer orders come from, they should be scheduled
according to the EDD rule on each machine.

Lemma 2. For the global optimization problem, there is an
optimal schedule in which if at least one order of Si is pro-
cessed on one of the machines, then customer order i is also
accepted for processing, where Si � k|pk >pi, dk ≤ di, uk ≤􏼈

ui and ak ≥ ai}, i ∈ N.

Proof. Assume that π∗ is an optimal solution for the global
optimization problem, and customer order i is not in π∗, but
customer order k in the set Si is accepted and completed at
time t in π∗, where Si � k|pk >pi, dk ≤di, uk ≤ uiandak ≥􏼈

ai}, i ∈ N and t≤ dk. Knowing that ak ≥ ai, the machine that
can process k can also process i, so we can replace k by i.
Denote the new solution as π′.

In the new solution π′, the completion time of i is t, we
see that dk ≤di, so t≤ di, and customer order i can also be
processed by its deadline in π′. As known pk >pi and uk ≤ ui,
so the profit of π′ is larger than that of π∗, a contradiction
arises. .erefore, we reach the conclusion. □
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Lemma 2. It is implied that if a solution only includes
customer order k but not i, then it is not optimal.

5. Private Information Problem

In this section, we consider the capacity allocation problem,
in which the customers keep all the information private,
except for the processing times and deadlines. We propose
an iterative ascending auction mechanism to solve the
private information case. In the following, we will elaborate
our auction mechanism from auction protocol, pricing
problem, and winner determination problem.

5.1. Auction Protocol. In our iterative ascending auction
mechanism, the auctioneer is the facility owner who owns
two parallel machines that have the same processing speed
but differ in their functionality. .e bidders are the cus-
tomers; each of them has an order to process. .e market
goods are time blocks; each customer can bid for one single
time block at once.

In the first round, the facility owner sets the initial ask
price αi for customers, and (a) each customer sends a bid for
processing order so as tomaximize his own profit; the bids of
the customers are defined as Bi � [pi, di, ai, αi], where pi and
di are the order’s processing time and deadline. Once the
processing time and deadlines of the customer orders are
confirmed in the first round, it cannot be changed. (b) .en
the facility owner collects all bids and determines which bids
to accept in order to maximize his own profit and updates
the ask price αi for each customer.

Step (a) and (b) will be iterated; as the ask prices continue
to rise gradually, customers gradually withdraw from
competition. Once any customer withdraws from the
competition, he shall not return to participate in the auction
again. If none of the customers submits a new bid, then the
auction is terminated.

.e design of an optimal auction mechanism (i.e.,
pricing policy and winner determination algorithm) should
fulfil the following properties:

(1) Individual rationality means that if a customer
participates in the auction mechanism, his profit is at
least as high as the profit that he is not participating.

(2) Incentive compatibility means that bidding by the
truthful order information is a dominant strategy for
each customer.

(3) Global optimization means the winner determina-
tion problem should be a global optimization
problem when all the customers bid by their true
values.

(4) Computational efficiency means the auction should
reach closure in reasonable time and at reasonable
computational expense.

Nisan et al. [26] analyse that the second price sealed
auction satisfies the above properties (1) and (2) in com-
binatorial auctions. However, a sealed auction is less efficient
and profitable than an ascending auction in production
scheduling problems (Hall and Liu 2015). What is more, in

the private value model, an ascending auction is equivalent
to a second price sealed auction. .at is because, when the
value of market goods for each customer is independent of
the others, each customer’s dominant strategy is to keep in
bidding until the ask price reaches his value, regardless of
whether he can observe the process of the auction. At last,
the winner will be the one who has the highest value. So the
ascending auction mechanism can also be designed to satisfy
properties (1) and (2) in our production capacity allocation
problem.

In our problem, the winner determination problem is
NP hard, so the above properties (3) and (4) are incom-
patible. When the problem size is small, the optimal solution
can be obtained in a limited time. However, when the
problem size is large, the optimal solution cannot be ob-
tained in a reasonable time. .erefore, we use approximate
optimal solution in exchange for high computational
efficiency.

For our auction mechanism, the purpose of the pricing
problem is to encourage all the customers to reveal truthful
processing requirements, such as machine indexes, pro-
cessing times, and deadlines, and make the customers’
profits nonnegative; the winner determination problem is
NP hard; we aim to develop a fast heuristic to ensure that the
auction reaches closure in reasonable time and at reasonable
computational expense.

5.2. Pricing Problem. We define the ask price in round k − 1
for each customer i (i ∈ N) as αk

i . It consists of two parts: (a)
current price βk−1

i , which reflects the current capacity
scarcity under the generated schedule in round k − 1, and (b)
price increment ck

i , which reflects the expected impact on
capacity scarcity caused by potential bids.

First, we define the current price βk
i in round k for

customer i, based on the generated schedule in round k − 1:

(1) If no time slots before di are allocated in round k − 1
on both machines, the βk

i � v1 + v2/2.

(2) If the time slots before di are allocated to orders
1, 2, . . . , ni􏼈 􏼉 with prices αk−1

1 , αk−1
2 , . . . , αk−1

ni
in round

k − 1 on both machines, then βk
i is equal to the

weighted average of the bid prices of all allocated
time slots and the total reserved value of all unal-
located time slots. It is clear that the last orders on
both machines may be partially processed in [0, di].
To simplify the expression of βk

i , let pk−1
j be the length

of the time slots within [0, di] that were allocated to
order j on machine ai in round k − 1. If order j is the
last order on one of the machines before di, then,
pk−1

j � pj − max 0, Ck−1
j − dj􏽮 􏽯; else pk−1

j � pj, where
Ck−1

j is the completion time of the order j. Let Ik−1
i be

the idle times before di on the twomachines at round
k − 1. .en βk

i is equal to a weighted average price:

βk
i �

2􏽐
ni

h�1α
k−1
h p

k−1
h + I

k−1
i v1 + v2( 􏼁

2di

. (9)
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.en, we define the price increment ck
i in round k for

customer i; it is based on (a) the flexibility of order pro-
cessing related to its deadline and machine index, if the
flexibility of order processing impact on resource scarcity is
greater and, consequently, the price increment increases; (b)
the number of bids received by this time block that contains
each individual time slot. .e definition is as follows:

(1) If no time slots before di are allocated in round k − 1,
then

c
k
i � ρ

piai

di

. (10)

(2) If the time slots before di are allocated in round k − 1,
then

c
k
i � ρ

piai

di

+
􏽐

di

t�1D
k−1
t

Ndi

⎛⎝ ⎞⎠. (11)

ρ are predetermined constants, called price adjustment
factors; ai, pi, and di are order i′ s machine index, processing
time, and deadline; Dk−1

t is the number of bids that contain
time slot t in round k − 1.

.e purpose of the pricing problem is to encourage the
customers to reveal truthful machine indexes, processing
times, and deadlines. We assume that the customer would
not pretend that he has a smaller machine index and pro-
cessing time and a greater deadline. See, for example, a
customer j having an order with a machine index aj � 2, a
processing time pj � 5, and a deadline dj � 10. It is obvious
that he would not pretend pj < 5, or dj > 10. If he pretends
aj � 1, his order may be assigned to machine M1 or M2;
however, machine M1 cannot process a high index order, so
it is impossible for him to bid by a false smaller machine
index. So, in our pricing problem, we only need to ensure
that the customer would not bid by a false larger machine
index and processing time and a shorter deadline. From the

above definition of price, we can see that the initial ask price
for customer i (i ∈ N) is αi � (v1 + v2)/2 + ρpiai/di; it is
positively correlated with machine index and processing
time and negatively correlated with deadline, so each cus-
tomer will not bid by a larger machine index and processing
time or a shorter deadline.

5.3. Winner Determination Problem. In this section, we
formulate our winner determination problem as the facility
owner’s profit maximization problem by selecting the cus-
tomer bids and scheduling the accepted bids to the two
machines synchronously. .is subsection is structured as
follows: first, we formulate the winner determination
problem, and the Lagrangian relaxation method is used to
determine the subset of the accepted bids; then we use a
heuristic to construct a feasible schedule with these accepted
bids.

5.3.1. Lagrangian Relaxation of the Winner Determination
Problem. .e integer linear programming model of the
winner determination problem is described as follows:

(WDP)max 􏽘
i∈N1

􏽘

T

t�pi

αi − v1pi( 􏼁x
1
it + 􏽘

i∈N1

􏽘

T

t�pi

αi − v2pi( 􏼁x
2
it

+ 􏽘
j∈N2

􏽘

T

t�pj

αj − v2pj􏼐 􏼑yjt + v1 + v2( 􏼁T

s.t. (1), (2), (3), (4), (5), (6), (7).

(12)

Relax the constraints (3) and (4), set λ �

λ11 λ21
λ12 λ22
. . . . . .

λ1T λ2T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ to

be a vector of corresponding nonpositive multipliers, and get
the following Lagrangian problem (LR):
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􏽘
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􏽘
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zjs − 1⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

+ 􏽘
T

t�1
λ2t 􏽘

i∈N1

􏽘

min t+pi−1,T{ }

s�max pi,t{ }

yis − 1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

s.t (1), (2), (5), (6) and (7) .

(13)

LR can be rewritten as
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(LR) L(λ) � max 􏽘
i∈N1

􏽘

T

t�pi

αi − v1pi + 􏽘
t

s�max 1,t−pi+1{ }

λ1s
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠xit

+ 􏽘
i∈N1

􏽘

T

t�pi

αi − v2pi + 􏽘
t

s�max 1,t−pi+1{ }

λ2s
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠yit

+ 􏽘
j∈N2

􏽘

T

t�pj

αj − v2pj + 􏽘
t

s�max 1,t−pj+1􏼈 􏼉

λ1s
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠zjt

+ v1 + v2( 􏼁T − 􏽘

T

t�1
λ1t − 􏽘

T

t�1
λ2t

s.t (1), (2), (5), (6) and(7).

(14)

Note that L(λ) can be decomposed into

L(λ) � 􏽘
i∈N1

L
1
i (λ) + 􏽘

i∈N2

L
2
i (λ)

+ v1 + v2( 􏼁T − 􏽘
T

t�1
λ1t − 􏽘

T

t�1
λ2t

⎛⎝ ⎞⎠.

(15)

Here,

L
1
i (λ) � max 􏽘

T

t�pi

αi − v1pi + 􏽘

t

s�max 1,t−pi+1{ }

λ1s
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠xit

+ αi − v2pi + 􏽘
t

s�max 1,t−pi+1{ }

λ2s
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠yit

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

s.t 􏽘
T

t�pi

xit + 􏽘
T

t�pi

yit ≤ 1, 􏽘
T

t�1
txit ≤di, 􏽘

T

t�1
tyit ≤ di,

L
2
i (λ) � max 􏽘

T

t′�pi

αi − v2pi + 􏽘

t

s�max 1,t−pi+1{ }

λ1s
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠zit′ ,

s.t 􏽘
T

t′�pi

zit′ ≤ 1, 􏽘
T

t�1
tzit ≤di.

(16)

L1
i (λ) and L2

i (λ) are two subproblems of bid i; it is easy to
see that

L
1
i (λ) � max 0, max

pi≤t≤di

αi − v1pi + 􏽘
t

s�max 1,t−pi+1{ }

λ1s
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

αi − v2pi + 􏽘
t

s�max 1,t−pi+1{ }

λ2s
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

L
2
i (λ) � max 0, max

pi≤t≤di

αi − v2pi + 􏽘
t

s�max 1,t−pi+1{ }

λ1s
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(17)

.e Lagrangian dual of (LR) is defined as follows:

(D) LD � min
λ≤0

L(λ). (18)

.en, the subgradient method is used to determine λ so
as to find optimal or near-optimal solutions for LD. .e
subgradient method is presented as follows.

(1) Subgradient Algorithm.

Step 1: set K and σ. Let k � 0; set λ0 and μ0.
Step 2: calculate the original problem’s feasible solu-
tion, and record its objective value as Z.
Step 3: calculate the Lagrangian problem Lk(λk), and
record its solution xk, yk, and zk.
Step 4: let λk+1

1 � λk
1 + βk

1G1(xk, yk, zk)/‖G1(xk, yk, zk)‖,
where G1(xk, yk, zk) is the subgradient at point
(xk, yk, zk) and

G1 x
k
, y

k
, z

k
􏼐 􏼑 � 􏽘

i∈N1

􏽘

min t+pi−1,T{ }

s�max pi,t{ }

xis

+ 􏽘
j∈N2

􏽘

min t+pj−1,T􏼈 􏼉

s′�max pj,t􏼈 􏼉

zjs′ − 1.

(19)

Set μk
1 � σμk−1

1 , and βk
1 is the step size, βk

1 �

μk
1(Z − Lk(uk))/‖G1(xk, yk, zk)‖.

Let λk+1
2 � λk

2 + βk
2G2(xk, yk, zk)/‖G2(xk, yk, zk)‖,

where G2(xk, yk, zk) is the subgradient at point
(xk, yk, zk) and

G2 x
k
, y

k
, z

k
􏼐 􏼑 � 􏽘

i∈N1

􏽘

min t+pi−1,T{ }

s�max pi,t{ }

yis − 1. (20)
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Set μk
2 � σμk−1

2 and βk
2 � μk

2(Z − Lk(uk))/‖G2(xk, yk,

zk)‖.
Step 5: if k<K, let k←k + 1; go to Step 3; otherwise,
stop.

Li and Sun [27] demonstrated that, when using the above
expression to calculate the step size, the subgradient algo-
rithm will be convergent and it can converge to an optimal
solution for the dual problem with suitable parameters. In
the subgradient algorithm, the parameters need to be pre-
determined experimentally. .e iterations K should ensure
sufficient convergence of the algorithm; the step adjustment
factors μk

1 and μk
2 character the relationship between the

quality of solutions and the step size of iterations; if the
values are too large, convergence oscillation will occur; if the
values are too small, convergence speed will decrease. Set the

initial parameter μ0 � (1, 1), λ0 �
−1, −1, . . . , −1
−1, −1, . . . , −1􏼠 􏼡

T

. By

the algorithm, we can obtain an upper bound LK(λK) for the
winner determination problem, while vectors xK, yK, and zK

indicate which bids are accepted for processing. Using the
upper bound LK(λK), we can evaluate the performance of
the following heuristic.

5.3.2. Heuristic of the Winner Determination Problem.
From the subgradient algorithm, we get a preliminary result
of bids acceptance; however, the result may not be a festival
solution for the winner determination problem, so we design
a heuristic to construct a feasible schedule. .e heuristic is
mainly based on the Lagrangian relaxation technique, and it
is described as follows.

(1) Heuristic.

Step 1: let N′ denote the subset of accepted bids in N by
the subgradient algorithm; let N″ � N/N′. Index the
bids of N′ in nondecreasing order of their due dates
and break ties according to the shortest processing
time.

Step 2: for bid j � 1, 2, . . . , |N′|, perform Steps 2-1 to 2-
2.

2-1: if aj � 1, perform Steps 2-1-1 to 2-1-2.
2-1-1: if bid j can be completed before its deadline on
M1, then assign it to M1, next j.
2-1-2: if bid j cannot be completed before its deadline
on M1, then discard bid j and let N″ � N″∪ j􏼈 􏼉, next
j.
2-2: if aj � 2, perform Steps 2-2-1 to 2-2-3.
2-2-1: if bid j can be completed before its deadline on
M1 and M2, then assign it to one machine on which
bid j is finished as close to its due date as possible, next
j.
2-2-2: if bid j can be completed before its deadline on
M1 or M2, then assign it to the machine on which bid
j is finished on time, next j.
2-2-3: if bid j cannot be completed before its deadline
on M1 or M2, then discard bid j and let
N″ � N″∪ j􏼈 􏼉, next j.

Step 3: select successively one bid l with
bl/pl � max bk/pk|k ∈ N″􏼈 􏼉. Calculate Sl � k|pk >pl,􏼈

dk ≤ dl, uk ≤ ul and ak ≥ al, k ∈ N′}; if Sl ≠∅, then per-
form Steps 3-1 to 3-2; else let N″ � N″/l.

3-1: insert bid l in all the positions on M1 and record
their objective values. Let N″ � N″/ l{ } and if the
maximum objective value among the generated
schedules is larger than the current schedule, then take
the generated schedule as the current schedule.
3-2: insert bid l in all the positions on M1 or M2; refer
to Step 3-1.

Step 4: if N″ ≠∅, go to Step 3; else, stop the heuristic.

In the heuristic of the winner determination problem, we
construct a feasible solution in Step 2. In order to make the
solution converge to an optimal solution for the winner
determination problem, we continuously improve the so-
lution by applying greedily some searching techniques: First,
we use Lemma 2 to check whether the bids are likely to be
inserted into the machines..en we add the unaccepted bids
to the parallel machines greedily. .e computing cost of the
winner determination problem is dominated by the solution
of the Lagrangian dual problem, so the running time of this
problem is O(nT).

6. Computational Experiments

In this section, we conducted computational experiments to
analyse the computational efficiency and effectiveness of the
ascending auction mechanism. All experiments were run on
an Intel 2.9GHz octa-core processor with 32G RAM. In the
following, we present the experimental schemes and the
discussion of the results.

6.1.DataGeneration. To test the performance of the auction
mechanism extensively, we randomly generate instances of
the problem by varying the problem size and parameters that
may affect the analysis of the auction mechanism. First, we
select n ∈ 25, 50, 100{ } and randomly generate the process-
ing time pi (i ∈ N) from the integer uniform distribution in
the interval [1, 100]. Let the total processing time
P � 􏽐i∈Npi, for each instance with P, the facility owner’s
capacity T � 􏼄ηP/2􏼅, where η ∈ 0.5, 0.7, 0.9{ }, and the re-
serve values v1 and v2 are randomly generated from the
integer uniform distribution in the interval [1, 10], re-
spectively. For each customer order i, we randomly generate
its deadline di from the integer uniform distribution in the
interval [max pi,ωT􏼈 􏼉, T], where ω ∈ [0.2, 0.5, 0.8], revenue
ui from the integer uniform distribution in the interval
[pi max v1, v2􏼈 􏼉, 1000], and machine index ai from 1, 2{ }.
.en, for the pricing problem in Subsection 5.2, we define
the price adjustment factors ρ ∈ 0.5, 1.0, 2.0{ }. For each 3 ×

3 × 3 × 3 � 81 possible combinations of parameters, we
randomly generate 10 problem instances, for a total of 810.

6.2. Analysis of Heuristic of the Winner Determination
Problem. To ensure the auction reach closure in reasonable
time and at reasonable computational expense, we use a
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heuristic solving the winner determination problem in ex-
change for high computational efficiency. In this subsection,
we evaluate the performance of this heuristic. First, we use
the Lagrangian relaxation technique (Subsection 5.3.1) to
establish an upper bound on the facility owner’s maximum
profit, which is denoted as UBf . Let OPTf and Hf denote the
optimal solution value and the heuristic solution, respec-
tively. For the small-sized instances with n � 25, we compare
the heuristic solution value to the optimal solution value,
where R � Hf /OPTf ; for the large-sized instances with
n � 50, 100, we compare the heuristic solution value to the
upper bound, where R � Hf /UBf .

.e computational results are summarized in Table 1.
First, the overall mean values of R for the cases n � 25, 50,
and 100 are 96.00%, 91.65%, and 89.06%, respectively. .e
heuristic of the winner determination problem performs
well across different problem sizes and parameters. Second,
we notice that the mean value of R for the large-sized
problem is significantly smaller than that of the small-sized
problem. .is is because the value of R for the large-sized
problems is underestimated due to the gaps between the
optimal solutions and the upper bounds. .ird, when the
value of the facility owner’s capacity parameter η is bigger,
different values of the customer order’s deadline parameter

Table 1: .e performance of heuristic of the winner determination problem.

η ω
R (%)

n� 25 n� 50 n� 100

0.5
0.2 97.48 94.46 90.12
0.5 95.58 92.29 89.53
0.8 96.53 91.73 87.38

0.7
0.2 95.34 89.67 87.69
0.5 96.53 92.48 89.73
0.8 94.82 90.53 90.45

0.9
0.2 93.91 88.42 90.10
0.5 96.12 93.58 89.24
0.8 97.73 91.67 87.30

Average 96.00 91.65 89.06

Table 2: .e performance of the auction mechanism with n � 25, 50.

η ω ρ
POA (%) Round

n� 25 n� 50 n� 100 n� 25 n� 50 n� 100

0.5

0.2
0.5 94.09 89.40 85.13 15.0 24.5 45.7
1.0 93.03 87.14 85.92 12.0 20.2 28.3
2.0 93.02 85.18 83.59 10.3 19.6 24.9

0.5
0.5 91.68 87.60 83.63 14.0 21.6 39.9
1.0 92.18 88.08 84.51 12.0 19.3 26.8
2.0 90.78 86.28 81.29 11.3 19.4 21.9

0.8
0.5 85.46 85.10 84.33 17.6 30.7 41.3
1.0 92.49 84.35 83.58 18.3 26.4 32.6
2.0 93.22 82.70 80.49 10.0 19.8 28.5

0.7

0.2
0.5 92.94 89.36 82.60 15.7 20.5 35.9
1.0 94.86 90.05 83.78 13.3 20.2 27.5
2.0 93.85 87.11 82.79 11.7 19.0 25.4

0.5
0.5 90.58 86.19 83.55 18.8 30.1 39.3
1.0 93.62 87.21 83.69 16.7 26.4 30.5
2.0 93.24 84.62 82.22 14.6 24.0 31.6

0.8
0.5 93.45 83.22 79.88 23.0 31.1 44.6
1.0 93.34 85.58 81.36 21.7 31.8 39.5
2.0 96.35 88.31 84.91 15.3 24.4 30.6

0.9

0.2
0.5 94.76 91.14 86.28 18.7 33.9 42.7
1.0 96.52 86.47 85.81 15.0 24.8 37.8
2.0 98.79 85.19 83.36 14.7 25.0 29.1

0.5
0.5 96.61 87.06 85.67 18.3 30.8 38.4
1.0 97.67 83.59 82.02 15.7 23.4 32.3
2.0 98.47 89.04 80.07 16.7 25.4 28.2

0.8
0.5 92.96 83.17 82.55 34.7 40.3 48.5
1.0 93.26 82.32 81.84 28.0 35.6 39.9
2.0 95.89 85.08 81.67 22.7 31.8 37.5

Average 93.82 86.24 83.20 16.9 25.9 34.4
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ω will have a more significant impact on the performance of
the heuristic. .is may indicate that the performance of the
heuristic is mainly determined by the scarcity of resource.
From the above, we can conclude that the heuristic of the
winner determination problem is effective in finding good
solutions rapidly.

6.3. Analysis of the Auction Mechanism. To evaluate the
performance of the auction mechanism, we define the POA
in our study as the percentage deviation of the system value
of the auction outcome from that of the global system
optimum. For the large-sized instances, it is impossible to get
the global optimal solution in a reasonable time with
CPLEX, so we use an upper bound instead of the global
optimal solution.

.e computational results with different parameters are
summarized in Table 2. First, the mean values of POA for the
case where n � 25, 50, and 100 are 93.82%, 86.24%, and
83.2%, respectively. As the number of customers decreases,
the auction performs better. Second, as η increases from 0.5
to 0.9, ω decreases from 0.8 to 0.2, and the auction mech-
anism performs better. .is shows that the fewer the con-
flicts in resource requirements are, the better the auction
performs..ird, the mean number of rounds for the auction
to reach closure is 25.7. When the number of customers is
larger, and the price adjustment factor ρ is smaller, the
auction needs more rounds to reach closure. However, the
auction does not perform better when the number of rounds
is increased. .is may result from the combinatorial opti-
mization characteristics of the machine capacity’s allocation
problem.

7. Conclusion

In this study, we present an iterative ascending auction
mechanism for the scare production capacity allocation
problem in two parallel machines with IPS restrictions. In
our auction, the customers do not have to make decisions
with all the information; they only need to decide whether to
bid or not. .e ask prices are updated adaptively by the
facility owner which can make the customers bid by truthful
processing requirements and keep on bidding until the ask
price reaches their real revenues. .e winner determination
problem integrates the capacity allocation and scheduling
decisions in two parallel machines with IPS restrictions. .e
proposed heuristic of winner determination problem is
efficient in finding good solutions. .is ensures our auction
reaches closure in a reasonable time. Overall, our auction
mechanism is an effective method to allocation the capacity
in two parallel machines with IPS restrictions.
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