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In this work, we propose a novel method for head pose estimation and face recovery, particularly to solve the potential impacts of
noises in signal processing to get an efficient and effective model that is more resilient with annoying effects through adding affine
transformation with the low-rank robust subspace regression. Consequently, the corrupted images can be correctly recovered by
affine transformations to render more best regression outcomes.+ereby, we need to search so as to get optimal parameters which
can be regarded as convex constrained optimization techniques. Afterward, the alternating direction method for multipliers
(ADMM) approach is considered and a new set of updated equations is well established so as to update the optimization
parameters and affine transformations iteratively in a round-robin manner. Additionally, the convergence of these new updating
equations is well scrutinized as well.+us, the experimental simulations reveal that the proposedmethod outperforms the state-of-
the-art works for head pose estimation and face recovery on some public databases.

1. Introduction

Images, processing particularly for the head pose estimation
and image recovery, have been important research potential
topics and can have applications in a variety of areas such as
surveillance systems [1, 2], signal processing [3, 4], image
denoising [5–9] and recovery [10, 11], communications [12],
computational imaging [13, 14], and computer vision
[15–19]. However, analyzing visual data is a difficult task due
to miscellaneous adverse effects such as illuminations,
outliers, and sparse noises. It is thus of importance to de-
velop robust face recovery and head pose estimation algo-
rithms, which are resilient to various annoying effects.

After the inception of the pioneering baselines of robust
principal component analysis (RPCA) by Candes et al. [20],
a myriad of methods has been considered for robust sparse-

low-rank image recovery, e.g., [21, 22]. However, these
methods do not work well when the outliers and heavy
sparse noises are not normally distributed.

To tackle this drawback, Oh et al. [23] proposed a new
partial singular value thresholding (PSVT) method, which
replaced the nuclear norm in RPCA [8, 20] with the partial
sum of singular values to improve the recovery of the low-
rank part. Lu et al. [24] proposed a tensor robust principal
component (T-RPCA) approach to find the clean tuber low-
rank component. However, T-RPCA is not scalable and
robust when the number of tensors becomes large. Currently,
several algorithms, which combined regression with RPCA
[25], were proposed to further enhance the performance. For
instance, Ji et al. [26] addressed a regularized sparse re-
gression via combining RPCA [22, 27] with lasso regression
[28] to mitigate the influence of outliers in the head pose
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estimation. But, the performance of this relaxation method
degrades when the fitting error is grossly increasing. Wang
et al. [29] developed a robust regression method via self-
scaled regularization to boost the performance in the presence
of gross outliers. Huang et al. [30] proposed a low-rank robust
regression (LR-RR) algorithm to clean the outliers and sparse
errors from highly contaminated data. Although LR-RR can
mitigate the impact of sparse errors inside and outside
subspaces, its sensitivity to sparse errors and outliers lying in
the disjoint subspaces jeopardizes its performance in some
severe scenarios. Yin et al. [31] considered a robust multi-
nomial logistic and binary regression to remove the sparse
noise and outliers from the contaminated data. Yang et al.
[32] proposed a matrix regression scheme for face image
representation based on the nuclear norm. Zhang et al.
[33, 34] proposed a low-rank-sparse subspace representation
for robust regression (LRS-RR) method to find the clean low-
rank part by low-rank subspace recovery along with re-
gression to deal with errors or outliers lying in the corrupted
disjoint subspaces. To resolve this, Zeng et al. [35] addressed
labeled-robust regression, but its performance is not yet
promising to denoise the high dimensional images, partic-
ularly in signal processing; to tackle this, Wu et al. [36, 37]
addressed the sparse prior information.

+is work proposes a new robust method for head pose
estimation and image recovery to denoise the potential
impacts of outliers and heavy sparse noises in signal pro-
cessing. To develop a method that is working well with
various annoying effects, the new approach incorporates
affine transformations taken from [38–40] into the robust
regression methods [30, 33] with the robust regression for
more faithful low-rank-sparse image representation. Con-
sequently, the corrupted high dimensional images can be
recovered correctly by affine transformations to achieve
more promising regression outcomes in statistical signal
processing. +e newly developed algorithm is first cast as a
convex optimization programming, in which the affine
transformations, low-rank subspace recovery, and regres-
sion are carried out simultaneously. Afterward, the alter-
nating direction method for multiplier (ADMM) method is
applied and a new set of equations is established to update
the optimization variables and affine transformations iter-
atively in a round-robinmanner. Moreover, the convergence
of the entire newly developed equations is scrutinized as
well. Conducted simulation results reveal that the proposed
method excels the state-of-the-art works for head pose es-
timation and face recovery on some public datasets. +e
main contributions of this paper include the following:

(1) +e affine transformations are incorporated into the
low-rank-sparse decomposition to correct the illu-
minated and highly distorted or misaligned images
to attain more precise low-rank image
decomposition

(2) +e ADMMmethod is proposed to solve the convex
constrained optimization problems and a new set of
updating equations is developed to iteratively update
the optimization parameters and affine
transformations

(3) +e convergence of the derived iterative equations
that considers more updating parameters is
investigated

(4) +e proposed method outperforms to the baselines

+is work is organized as follows. Section 2 gives an
overview of the related works. Section 3 addresses the
formulation of the new problem. Section 4 depicts the new
set of updating equations to solve the formulated convex
optimization problem and Section 5 analyzes its conver-
gence characteristics. Experimental simulation results are
provided in Section 6 to verify the proposed method. Section
7 draws some concluding remarks to summarize the paper.

2. Related Works

A number of robust methods have been reported for image
recovery [41–45]. For instance, Wei et al. [14, 43, 45]
addressed the least trimmed squares to alleviate the gross
errors in the regression to explicitly search a data subset that
reduces the square of the errors. +e discriminatory least
square regression [46] and the worst-case linear discrimi-
nant analysis [47] were proposed to solve the least square
loss function that influences the correlation between the
explanatory and response variables. +ese methods, how-
ever, are not that robust for big data. Bunea et al. [48]
scrutinized a rank selection criterion to select the best rank
estimator of the coefficient regression matrix in the multi-
variate regression approach. To deal with linearly structured
matrices, Zachariah et al. [49, 50] addressed an iterative
algorithm via least square estimation for low-rank matrix
reconstruction, but it required the prior knowledge of the
matrix structure. Chen et al. [51] proposed an iterative
reweighted least squared method for sparsity recovery,
which incorporated the structure of sparsity along with an
orthogonal basis and the total variation. However, it requires
conducting matrix inversion at each iteration, leading to
high computational complexity. Instead of using the
handcrafted least square regressions as in [13, 52–55], some
more recent methods [56–61] have improved the visual
quality in face reconstruction via the low-rank
approximation.

Head pose estimation has also received a considerable
amount of research attention. For instance, linear regression
methods were considered in [62, 63] for head pose esti-
mation. +ese methods, however, are sensitive to occlusions
and uncontrolled illuminations. Lathuiliere et al. [64] pro-
posed a deep mixture regression approach to replace the
supervised manifold learning in [65, 66] to perform head
pose estimation. Recently, Sun et al. [61, 67, 68] proposed a
probabilistic method for head pose estimation by directly
mapping the feature vectors onto the yaw angles. Diaz-Chito
et al. [69] addressed an algorithm to narrow down the gap
between the head yaw angles and the regression by com-
bining manifold embedding methods with linear regression.
Meyer et al. [70] considered a three-dimensional head pose
estimation method to handle large pose angles and partial
occlusions. However, it cannot prune out outliers from
disjoint subspaces in head pose estimation.
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3. Problem Formulation

Given n images, I0i  ∈ Rw×h, i � 1, . . . , n, where w and h

denote respectively the weight and height of the highly il-
luminated and corrupted images, all of which consists the
same objects. In many dilemmas, these images are highly
correlated and corrupted by occlusions and outliers. We can
stack these images into a matrix: M � [vec(I01)
|vec(I02)| . . .|vec(I0n)] ∈ Rdm×n, where vec(·) denotes the
vector stacking operator. In light of the fact that the sub-
spaces may not be independent from each other or the data
are illuminated and contaminated by large illuminations and
noises and outliers, we decompose the original data matrix
into a low-rank component and sparse errors, i.e.,M � AC +

E [71–73], where A ∈ Rdm×n is the low-rank component,
C ∈ Rn×n is a reconstruction coefficient matrix used to
represent M, and E ∈ Rdm×n denotes a sparse error matrix
incurred by some adverse effects.

In reality, I0i  are generally not well corrected and
aligned, which makes the issue of the low-rank and sparse
separation to be imprecise. To mitigate the issue of the
misalignment, inspired by [74, 75], we apply affine trans-
formations τi to I0i  to get the transformed images
Ii � I0i oτi, where the operator o indicates the transformation
applied to the potentially misaligned input images. After
taking the affine transformation on M, we can obtain
Moτ � [vec(I1)|vec(I2)| . . .|vec(In)] ∈ Rdm×n, where
Ii � I0i oτi is an aligned version of the ith image after the
transformation. +e aligned images can be treated as

samples taken from a union of low-dimensional subspaces,
which exhibits a low-rank subpace structure as the rank of
the transformed images is as small as possible, up to some
outliers and heavy sparse errors. To improve the issue of the
nonlinearity inMoτ , we can further represent that the change
produced by these affine transformations τ is small and an
initial affine transformation of τ is known, then we can
further linearize it by using the first-order Taylor approxi-
mation as Mo(τ+Δτ) ≈ Moτ + 

n
i�1 JiΔτvivT

i , where Moτ ∈
Rdm×n is the transformed image, Δτ ∈ Rp×n, where p in-
dicates the number of parameters, Ji � zvec
(Iioτi)/zτi ∈ R

dm×p denotes the Jacobian of the ith image
with respect to τi, and vi denotes the standard basis for Rn.

+e main goal is to learn a regression model, denoted as
the regression matrix F ∈ R(dm)×(dm+1), which maps Moτ to
the regression output Y ∈ R(dy)×n by minimizing the fitting
error ‖W(Y − Fβ)‖2F [30, 33], where W ∈ Rdy×dy is the di-
agonal regression matrix that adjusts the regression output
dimension and β � [AC; 1T] ∈ R(dm+1)×n denotes the aug-
mented noise-free data matrix with the extra dimension
accounting for the regression bias and dm denoting the
dimensional samples. +e main objective of this work is to
reduce the reconstruction error through extracting the low-
rank component from complex highly correlated data in
statistical signal processing. +e overall problem can thus be
posted as the following indicating the constrained convex
optimization problem:

minA,F,β,E,C,Q,Δτ
c

2
‖U‖

2
F +‖A‖∗ +‖C‖∗ + λ1‖Q‖1 + λ2‖E‖1

s.tMoτ + 

n

i�1
JiΔτviv

T
i � AC + E, β � AC; 1T

 ,C � Q,Q≽ 0

, (1)

where U � W(Y − Fβ), 1n ∈ R
n indicates a vector of di-

mension n with all one entries, ‖A‖∗ � 
min(dm,n)
i�1 σi(A) is the

nuclear norm of A, in which σi(A) indicates the singular
values of A, ‖U‖2F � Trace(UTU), λ1, λ2, and c are the
regularization parameters, 〈X,Y〉 � Trace(XTY), and
‖Q‖1 � max1≤j≤n 

n
i�1 |Qij|.

+e second term ‖A‖∗ in (1) represents the low-rank
component of A. +e second and the third terms, ‖C‖∗ and
‖Q‖1, are to constrain the low-rank and sparse represen-
tation, respectively. +e last term ‖E‖1 constrains and reg-
ularizes the outliers and heavy sparse noises modelled by E

to be sparse. In the constraints of (1), the affine transfor-
mations are used to alleviate the impact of outliers and heavy
sparse noises, and Q is constrained to be positive semi-
definite to bound the regression errors.

4. Proposed Method

To get the optimal solution of the convex constrained op-
timization problem in (1), take into consideration the
augmented Lagrangian function given by

L(F, β,A,C,E,Q,Δτ) �
c

2
‖U‖

2
F +‖A‖∗ +‖C‖∗ + λ1‖Q‖1 + λ2‖E‖1

+〈Z1,Moτ + 
n

i�1
JiΔτviv

T
i − AC − E〉 +

μ1
2

Moτ + 
n

i�1
JiΔτviv

T
i − AC − E

���������

���������

2

F

+〈Z2, β − AC; 1T
 〉 +

μ2
2

β − AC; 1T
 

�����

�����
2

F
+〈Z3,C − Q〉 +

μ3
2

‖C − Q‖
2
F,

(2)
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where Z1 ∈ R
dm×n, Z2 ∈ R

(dm+1)×n, and Z3 ∈ R
n×n are the

Lagrangian multipliers, and μ1, μ2, and μ3 are the penalty
parameters. Considering the linearized alternating direction

method with an adaptive penalty (LADMAP) [33, 76], (2)
can be rewritten as

L F, β,A,C,E,Q,Δτ(  �
c

2
‖U‖

2
F +‖A‖∗ +‖C‖∗ + λ2‖E‖1

+ λ1‖Q‖1 +
μ1
2

Moτ + 
n

i�1
JiΔτviv

T
i − AC − E +

Z1

μ1

���������

���������

2

F

+
μ2
2

β − AC; 1T
  +

Z2

μ2

��������

��������

2

F

+
μ3
2

C − Q +
Z3

μ3

��������

��������

2

F

.

(3)

Solving (3) directly is its computational load and
complexity is very expensive, thereby we consider to iter-
atively updating the optimization parameters and affine
transformations via ADMM [77], which decomposes the
minimization into several subproblems. To make the
mathematical formulation easy, we additionally assumeW �

I in the following derivations.
Firstly, we need to get the optimal updates of F, we fix A,

E, Δτ, β, C, and Q as constants in (3), and F(k+1) can be
determined by

F(k+1)
� argmin

F
L F, β(k)

,A(k)
,E(k)

,C(k)
,Q(k)

,Δτ(k) ,

(4)

where k is the iteration index and ignoring all the irrelevant
terms of F in (4), equation (4) can be reexpressed as

F(k+1)
� argmin

F

c

2
W Y − Fβ(k)

 
�����

�����
2

F
, (5)

this is exactly the same as a standard least square regression.
Consequently, we can obtain

F(k+1)
� β(k) β(k)

 
T

+ cI dm+1( ) 
− 1
Y β(k)

 
T
, (6)

where Idm+1 is a (dm + 1) × (dm + 1) identity matrix.
Secondly, to find the update of β, we fixA, E, F,C,Q, and
Δτ and decide β(k+1) by

β(k+1)
� argmin

β
LF(k+1)

, β,A(k)
,E(k)

,C(k)
,Q(k)

,Δτ(k)
. (7)

Ignoring all of the irrelevant terms of β in (7), we can get

β(k+1)
� argmin

β

c

2
U(k)

�����

�����
2

F
+
μ(k)
2
2

β − A(k)C(k)
; 1T

  +
Z(k)
2

μ(k)
2

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭, (8)

where U(k) � W(Y − F(k)β(k)). +ereby, β(k+1) can be de-
termined by

β(k+1)
� c F k( 

TWTWF(k) + μ(k)
2 Idm+1

 
− 1

c F(k)
 

T
WTWY − Z(k)

2 + μ(k)
2 A(k)C(k)

; 1T
  .

(9)

Similarly, to update A, we fix E, F, β, Q, C, and Δτ and
decide A(k+1) by

A(k+1)
� argmin

A
L F(k+1)

, β(k+1)
,A,E(k)

,C(k)
,Q(k)

,Δτ(k)
 . (10)

By ignoring all of the irrelevant terms of A, (10) can be
simplified as

A(k+1)
� argmin

A

‖A‖∗ +
μ(k)
1
2

Moτ + 
n

i�1
JiΔτ

(k)viv
T
i − AC(k)

− E(k)
+
Z(k)
1

μ(k)
1

���������

���������

2

F

+
μ2
2

β(k+1)
− AC(k)

; 1T
  +

Z(k)
2

μ(k)
2

���������

���������

2

F

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)
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Considering the linear augmented direction method and
the singular value threshold operator [72, 78–80], we can
obtain an update of A(k+1) given by

A(k+1)
� Ω1/κA A(k)

−
P(k)
A
κA

 , (12)

where Ω is the singular value thresholding operator [79],
P(k)
A � (μ(k)

1 +μ(k)
2 )(A(k))TC(k) − μ(k)

1 (Moτ + i � 1nJiΔτ(k)

vivT
i − E(k)) − (Z(k)

1 ) − (μ(k)
2 β(k) + Z(k)

2 )(C(k))T, κA � (μ(k)
1

+μ(k)
2 )τA/2, and τA > σ(CTC) is the proximal parameter, in

which σ(CTC) denotes the spectral radius of CTC.
To obtain an update of E, by keeping A, F, β, Q, C, and
Δτ as constants, then E(k+1) is can be determined by

E(k+1)
� argmin

E
L F(k+1)

, β(k+1)
,A(k+1)

,E,C(k)
,Q(k)

,Δτ(k) .

(13)

Again, by ignoring all of the irrelevant terms of E, (13)
can be simplified as

E(k+1)
� argmin

E
λ2‖E‖1 +

μ(k)
1
2

Moτ + 
n

i�1
JiΔτ

(k)viv
T
i − A(k+1)C(k)

− E +
Z(k)
1

μ(k)
1

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭. (14)

By employing the linearized alternating direction
method, E(k+1) is updated by

E(k+1)
� Γλ1/μ1 Moτ + 

n

i�1
JiΔτ

(k)viv
T
i − A(k+1)C(k)

+
Z(k)
1

μ(k)
1

⎛⎝ ⎞⎠,

(15)

where Γλ1/μ1(Θ) � sgn(Θ)max(|Θ| − λ1/μ1, 0) is the soft
shrinkage thresholding operator [78, 79], in which sgn(Θ)

denotes the sign function.

Next, to get an update of C, we again keep A, E, F, β, Q,
and Δτ as constants and C(k+1) can then be determined by

C(k+1)
� argmin

C
L F(k+1)

, β(k+1)
,A(k+1)

,E(k+1)
,C,Q(k)

,Δτ(k) .

(16)

By ignoring all of the irrelevant terms of C, (16) can be
simplified as

C(k+1)
� argmin

C

‖C‖∗ +
μ(k)
1
2

Moτ + 
n

i�1
JiΔτ

(k)viv
T
i − A(k+1)C − E(k+1)

+
Z(k)
1

μ(k)
1

���������

���������

2

F

+
μ(k)
2
2

β(k+1)
− A(k+1)C; 1T

  +
Z(k)
2

μ(k)
2

���������

���������

2

F

+
μ(k)
3
2

C − Q(k)
+
Z(k)
3

μ(k)
3

���������

���������

2

F

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (17)

To solve this subproblem, we can apply a linearized
augmented Lagrangian multiplier with the singular value
threshold operator and update C(k+1) by

C(k+1)
� Ω2/κc

C(k)
−
P(k)
C
κC

 , (18)

where κC � (μ(k)
1 + μ(k)

2 + μ(k)
3 )τC/2 with τC > σ(AAT) and

P(k)
C � A(k)

(μ(k)
1 + μ(k)

2 )A(k)
− μ(k)

1 (Moτ + 
n

i�1
JiΔτ

(k)viv
T
i −

E(k)
) − Z(k)

1 − (μ(k)
2 β(k)

+ Z(k)
2 ) + μ(k)

3 (C(k)
− Q(k)

) + Z(k)
3 .

To get an update of Q, we keep A, E, F, β, C, and Δτ as
constants and determine Q(k+1) by

Q(k+1)
� argmin

Q
L F(k+1)

, β(k+1)
,A(k+1)

,E(k+1)
,C(k+1)

,Q,Δτ(k)
 .

(19)

By removing all of the irrelevant terms of Q, (19) is
reduced to

Q(k+1)
� argmin

Q
λ1‖Q‖1 +

μ(k)
3
2

C(k)
− Q +

Z(k)
3

μ(k)
3

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭.

(20)

Similarly, employing the soft threshold operator and the
augmented Lagrangian multiplier, we can update Q(k+1) by
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Q(k+1)
� Γλ2/μ3 C(k+1)

+
Z(k)
3

μ(k)
3

⎛⎝ ⎞⎠. (21)
To update the affine transformations, by keeping all

other variables as constants, we can get

Δτ(k+1)
� argmin
Δτ

μ(k)
1
2

Moτ + 
n

i�1
JiΔτviv

T
i − A(k+1)C(k+1)

− E(k+1)
+
Z(k)
1

μ(k)
1

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭, (22)

Solving (22) with the threshold operators [74], we can get
an update of Δτ(k+1) as

Δτ(k+1)
� 

n

i�1
J+
i A(k+1)C(k+1)

+ E(k+1)
− Moτ −

Z(k)
1

μ(k)
1

⎛⎝ ⎞⎠viv
T
i ,

(23)

where J+
i denotes the Moore–Penrose pseudoinverse of Ji

[81], in which Ji denotes the Jacobian of the ith image with
respect to τi as defined in Section 3.

Finally, following the same steps as above, the La-
grangian multipliers Z1 ,Z2, and Z3 are updated by

Z(k+1)
1 � Z(k)

1 + μ(k)
1 Moτ + 

n

i�1
JiΔτ

(k+1)viv
T
i − A(k+1)C(k+1)

− E(k+1)
 . (24)

Z(k+1)
2 � Z(k)

2 + μ(k)
2 β(k+1)

− A(k+1)C(k+1)
; 1T

  . (25)

Z(k+1)
3 � Z(k)

3 + μ(k)
3 C(k+1)

− Q(k+1) . (26)

Likewise, the regularization parameters μ1, μ2, and μ3 are
updated respectively by

μ(k+1)
1 � min μmax, ρμ

(k)
1 . (27)

μ(k+1)
2 � min μmax, ρμ

(k)
2 . (28)

μ(k+1)
3 � min μmax, ρμ

(k)
3 , (29)

where ρ and μmax are appropriately chosen parameters
adjusting the convergence speed of the new approach.

+e overall updating equations of our proposed ap-
proach can be summarized as follows. First, the regression
matrix F and the regression coefficients β are updated by (6)
and (9), respectively. Next, A, E, C, Q, and the affine
transformation, Δτ, are updated by (12), (15), (18), (21), and
(23), respectively. Finally, the Lagrangian multipliers Z1, Z2,
and Z3 and the regularization parameters μ1, μ2, and μ3 are
updated by (24) and (29). +e above updating equations
proceed in a round-robin manner until convergence. For an
easy understanding of the manuscript, the summarized al-
gorithm of this work is given in Algorithm 1.

5. Convergence Analysis

In this section, we consider the convergence behavior of the
updating equations, by addressing two theorems related to
the convergence of ADMM. We first consider the following
two propositions:

Proposition 1. If μk  is nondecreasing and upper bounded
by τA > σ(CCT) and τC > σ(AAT)

����, the subgradients are then
defined as

(a) − μkτA(A(k+1) − A(k)) − α∗(Z(k+1)
1 ) ∈zf(A(k+1))

(b) − μkηE(E(k+1) − E(k)) − Ψ∗(Z(k+1)
2 ) ∈zg(E(k+1))

(c) − μkτC(C(k+1) − C(k)) − ω∗(Z(k+1)
3 ) ∈zh(C(k+1))

(d) − μkηQ(Q(k+1) − Q(k)) − φ∗(Z(k+1)
3 ) ∈zp(Q(k+1))

(e) − μkηΔτ(Δτ(k+1) − Δτ(k)) − δ∗(Z(k+1)
3 ) ∈zq(Δτ(k+1)),

Here, zf, zg, zh, zp, and zq are the subgradients of A, E,
C, Q, and Δτ respectively, and α∗, Ψ∗, ω∗, φ∗, and δ∗ are the
adjoints of the linear identity mapping operators corre-
sponding to A, E, C, Q, and Δτ, respectively.

<e proof is similar to [76].

Proposition 2. If μk  is nondecreasing and upper bounded
by τA > σ(CCT) and τC > σ(AAT), then A∗,E∗,Z∗1 ,Z∗2  and
C∗,Q∗,Δτ∗,Z∗3  are any Karush–Kuhn–Tucker (KKT) point
of problem (1). Also,

(a) τA‖A(k) − A∗‖2 − ‖α(A(k)) − A∗‖2 +ηE‖E(k) − E∗‖2 −

‖Ψ(E(k)) − E∗‖2 +μ− 2
k ‖Z(k)

1 − Z∗1 ‖2 +μ− 2
k ‖Z(k)

2 − Z∗2 ‖2 is
nonincreasing.

(b) ‖A(k+1) − A(k)‖⟶ 0, ‖E(k+1) − E(k)‖⟶ 0, ‖Z(k+1)
1

− Z(k)
1 ‖⟶ 0, ‖Z(k+1)

2 − Z(k)
2 ‖⟶ 0.

(c) τC‖C(k)
− C∗‖2 − ‖ω(C(k)

) − C∗‖2 +ηQ‖Q(k)
− Q∗‖2

− ‖φ(Q(k)
) − Q∗‖2 +ηΔτ‖Δτ

(k)
− Δτ∗‖2 − ‖δ(Δτ(k)

) −

Δτ∗‖2 +μ− 2
k ‖Z(k)

3 − Z∗3 ‖
2 is nonincreasing.

6 Mathematical Problems in Engineering



(d) ‖C(k+1) − C(k)‖⟶ 0, ‖Q(k+1) − Q(k)‖⟶ 0, ‖Δ
τ(k+1) − Δτ(k)‖⟶ 0, ‖Zk+1

3 − Zk
3‖⟶ 0.

<e proof is similar to [76].

Theorem 1. If μ1  and μ2  are nondecreasing and upper
bounded by τA > σ(CCT), then the sequence A(k) , E(k) ,
Z(k)
1 , and Z(k)

2  generated by ADMM converging to a KKT
point of (11) and (14).

Proof. See Appendix.
+eorem 1 implies that the optimization variables A(k+1) 

and E(k+1)  are guaranteed to converge to the global optimum
with an appropriate choice of Z(k)

1  and Z(k)
2  and sufficiently

large penalty parameters μ1  and μ2 .

Theorem 2. If μ1 , μ2 , and μ3  are nondecreasing and
upper bounded by τC > σ(AAT), then the sequence
C(k) , Q(k) , Δτ(k) , and Z(k)

3  generated by ADMM
converges to a KKT point of (17), (20), and (22).

Proof is similar to that of +eorem 1.
+eorem 2 shows that the updating variables C(k+1) ,

Q(k+1) , and Δτ(k+1)  are guaranteed to converge to the
global optimum with an appropriate choice of Z(k)

3  and
sufficiently large penalty parameters μ1 , μ2 , and μ3 .

6. Experimental Results and Discussion

In this section, we first verify the correct recovery guarantee
and evaluate the effectiveness of the new method image re-
covery and head pose estimation based either on synthetic data
or on some public databases. Four baseline methods, including
T-RPCA [24] +LSR, PSVT [23] +LSR, LR-RR [30], and LRS-
RR [33] and the proposed one are conducted for comparison,
where T-RPCA+LSR and PSVT+LSR first perform T-RPCA
and PSVT on the illuminated and corrupted input data, re-
spectively, and then conduct regression on the error free data
using the standard least square regression. +en, first we try to
evaluate the effectiveness of the proposed method based on the
synthetic datasets. Following this, several public datasets are

taken into account to verify the effectiveness of the proposed
method.

6.1. Synthetic Data Recovery. First, we further assess the
proposed algorithm on the generated synthetic data for
prediction.

As [30, 33], we generate 400 three-dimensional
samples, in which the first 2 parts of the samples are
obtained from a uniform distribution in [− 6, 6], while the
3rd one is from two different joint subspaces given by z �

u − v and z � u + v. In addition, we add zero-mean white
Gaussian noise with unit variance into the second di-
mension, which simulates the in-subspace noise. Simi-
larly, we add zero-mean white Gaussian sparse noise with
unit variance in the 3rd subspace to simulate the noise
outside subspaces. 200 data samples are randomly chosen
for the training and the other 200 samples for the testing.
As a fair comparison, we use the relative absolute error
(RAE) between the true regression matrix F and the one
learned, F, i.e., RAEF � ‖F − F‖F/‖F‖F, and the RAE be-
tween the true regression output Y and the predicted one
Y, i.e., RAEY � ‖Y − Y‖F/‖Y‖F, as the performance mea-
sure of accuracy for regression.

+e comparison of RAEF and RAEY using the afore-
mentioned methods based on the generated synthetic data is
shown in Table 1, from which we can see that PSVT+LSR
yields better performance than T-RPCA+LSR, as it employs
the truncated nuclear norm instead of using more tensors to
deal with the outliers and heavy sparse noises.

LR-RR is superior to PSVT+ LSR and T-RPCA+LSR, as
it cleans noises and outliers in and outside subspaces in a
supervised manner to yield more precise prediction. LRS-RR
provides the second best performance, as it can cope with the
outliers coming from inside and outside subspaces, and the
disjoint subspaces. We can also see that our method out-
performs all of the baselines in both of RAEF andRAEY.+is
is because it incorporates the affine transformations with the
robust regression for low-rank subspace recovery, so it can
handle the aggregated outliers from various subspaces and
heavy sparse noises to produce more precise results.

Input Data matrix M ∈ Rm×n, A0 ∈ Rm×n, E0 ∈ Rm×n, Δτ0 ∈ Rp×n, C0 ∈ Rn×n, Q0 ∈ Rn×n, λ1, λ2, ρ
While not converged do

(1) Update: A(k+1) by (12)
(2) Update: E(k+1) by (15)
(3) Update: C(k+1) by (18)
(4) Update: Qk+1 by (21)
(5) Update: Δτ(k+1) by (23)
(6) Update: Z(k+1)

1 by (24)
(7) Update: Z(k+1)

2 by (25)
(8) Update: Z(k+1)

3 by (26)
(9) Update: μ(k+1)

1 by (27)
(10) Update: μ(k+1)

2 by (28)
(11) Update: μ(k+1)

3 by (29)
End while
Outputs : A,E, C, Q, Δτ

ALGORITHM 1: ADMM for the proposed algorithm.
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6.2. Face Image Recovery. In this subsection, we assess the
performance of the proposed method for face image re-
construction in terms of RAEF and RAEY based on the
images from the YaleB [82] database.

First, we conduct simulations on the YaleB database [82]
for face image recovery. +e YaleB database consists of over
2300 frontal face images from 38 subjects with varying il-
luminations. First, the cropped face images with 196 × 128
pixels are taken from the first fifteen subjects. Next, we
compute the twenty-dimensional eigenfaces based on the
training images which are taken as M.

In each test face image, ten blocks of 30 × 30 of the
corrupted pixels are generated randomly and added as a
synthetic corrupted data. To assess the accuracy, we decide
the true regression model based on the unblocked tested face
images via the eigenfaces, then we learn the regression

matrix by using various algorithms with eigenimages as the
input M and the blocked face images as Y.

+e comparison of RAEF and RAEY based on the
proposedmethod as well as the aforementioned baselines are
given in Table 2, from which we can see that LR-RR out-
performs PSVT+ LSR and T-RPCA+LSR as it cleans the

Table 1: Comparison of relative absolute error and standard deviation for the recovery of synthetic data.

Methods RAEF RAEY

T-RPCA [24] + LSR 0.0740 ± 0.1040 0.0530 ± 0.1650
PSVT [23] + LSR 0.0697 ± 0.0889 0.0150 ± 0.0060
LR-RR [30] 0.0350 ± 0.0150 0.0150 ± 0.0060
LRS-RR [33] 0.0050 ± 0.0005 0.0100 ± 0.0030
Ours 0.0047 ± 0.0001 0.0042 ± 0.000038

Table 2: Comparison of relative absolute error and standard deviation for face recovery on the YaleB database.

Methods RAEF RAEY

T-RPCA [24] + LSR 1.3000 ± 0.0177 0.2274 ± 0.0080
PSVT [23] + LSR 1.2783 ± 0.0197 0.2278 ± 0.0066
LR-RR [30] 1.0715 ± 0.0430 0.1854 ± 0.0056
LRS-RR [33] 1.0457 ± 0.0496 0.1659 ± 0.0061
Ours 0.2265 ± 0.0010 0.1482 ± 0.0055

(a) (b) (c) (d) (e) (f) (g)

Figure 1: Face image recovery: (a) original; (b) corrupted; (c) T-RPCA+LSR; (d) PSVT+LSR; (e) LR-RR; (f ) LRS-RR; (g) ours.

Table 3: Comparison of the average of the yaw angle errors and its
standard deviation on the CMU database.

Methods Yaw angle error
T-RPCA [24] + LSR 24.1636o ± 20.2201o

PSVT [23] + LSR 23.2429o ± 19.0697o

LR-RR [30] 1.97o ± 5.77o

LRS-RR [33] 1.03o ± 5.65o

Ours 0.95o ± 5.26o
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intrasample in a supervised manner to reduce the overfitting
error. LRS-RR is superior to LR-RR, as it considers the
outliers and heavy sparse noises coming from disjoint
subspaces into consideration, thereby reducing the fitting
errors and the model errors. We can also notice that the
proposed method provides the best performance. +is is

because the incorporation of affine transformations with
robust regression enables our approach to tackle the impact
of outliers and heavy sparse errors better compared with the
other methods.

As an illustration, we provide some corrupted images
recovered by the aforementioned methods, as depicted in
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(e)

Figure 2: Projection of the head pose images, where (“.”) denotes the output space and the red (“+”) is the ground true location of pose
angles. (a) T-RPCA+LSR; (b) PSVT+LSR; (c) LR-RR; (d) LRS-RR; (e) ours.
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Figure 1, from which we can observe that the proposed
algorithm recovers the corrupted data better compared with
the other four baselines. As shown in Figure 1(g), the re-
covered image provides a clearer visual quality by removing
the corruption. +is is in agreement with the results in
Table 2 and further justifies that the new approach is more
resilient to outliers and heavy sparse noises.

6.3. Head Pose Estimation. In this section, we conduct
simulations for head pose estimation based on the CMU
multi-PIE database [83], which consists of more than 5000
faces taken from 53 different subjects. In this experiment,
nine images are chosen with yaw pose angles that vary from
θ � [− 90o, 90o] with an increment of 22.5°. +e face images
are cropped around the faces and resized to 48 × 48. We also
readjust the face images after applying linearization toM and
the yaw angles are considered as the output, denoted as Y �

[cos(θ); sin(θ)] [30, 33].
+e comparison of the averaged yaw angle errors by the

proposed method and the four baselines is given in Table 3,
from which we can see that PSVT+LSR yields smaller yaw
angle errors than T-RPCA+LSR. +is is because the per-
formance of T-RPCA is influenced by the number of tensors,
so it cannot work well when there are lots of outliers and
heavy sparse noise.

We can also notice that LR-RR outperforms the above
two methods, as it is based on a supervised learning to better
tackle the impact of outliers and heavy sparse noises. LRS-
RR produces even smaller yaw angle errors, as it also takes
into account the outliers and sparse errors lying in disjoint
subspaces. Our approach is superior to all of the baselines
because it combines the affine transformations with more
robust low-rank-sparse representation, entailing better
resilience to outliers and heavy sparse noises.

To further verify the performance of the proposed
method as an illustration, some projections of the head pose
images onto the output space Y are also furnished in Fig-
ure 2, from which we can find that the head poses predicted
by the new novel method are close to the true ones compared
with the other baselines, as shown in Figure 2(e). +e su-
periority of the new approach is to combine the affine

transformations with more robust low-rank-sparse repre-
sentation, so it is more robust against the cumbersome
noises, outliers, and heavy sparse noises. +is is again in
agreement with the results in Table 3.

7. Conclusions

In this work, we considered affine transformation for image
recovery and head pose estimation to remove the potential
impacts of annoying effects in statistical signal processing.
+is approach is very useful to correct the distorted or
misaligned images. +e determination of the affine trans-
formations as well as the optimization parameters are for-
mulated as a convex optimization problem. +ereafter, the
ADMM approach is considered and a new set of parameters
and equations is derived to update the parameters and affine
transformations iteratively in a round-robin manner. Ad-
ditionally, the convergence of the developed updating
equations is addressed as well. +e experimental conducted
simulations show that the new approach outperforms the
state-of-the-art method for head pose estimation and face
recovery on some common databases.

Appendix

In this appendix, we will prove+eorem 1 in Section 5. First,
let Φ � AC + E, f(A) � ‖A‖∗, and g(E) � ‖E‖1, all of which
are convex functions in (1). By Proposition 2(a),
A(k),E(k),Z(k)

1 ,Z(k)
2  are bounded, so the accumulation

point of A(kj),E(kj),Z(kj)
1 ,Z(kj)

2  is A∞,E∞,Z∞1 ,Z∞2 . We
proceed our proof in two steps.

First, we show that A∞,E∞,Z∞1 ,Z∞2  converge to a
KKT point of problem (1). By Proposition 2(b), we have

α A(k+1)
  + Ψ E(k+1)

  − Φ

� μ− 1
k Z(k+1)

1 − Z(k)
1  + μ− 1

k Z(k+1)
2 − Z(k)

2 ⟶ 0,
(A.1)

which implies the accumulation points of A(k),E(k)  are a
feasible solution.

Let k � kj − 1 in Proposition 1, and using the sub-
gradients, we can get

f A(kj)
  + g E(kj)

 ≤f A∗(  + g E∗( 

+〈A(kj)
− A∗, − μ(kj− 1)τA A(kj)

− A(kj− 1)
  − α∗ Z(kj)

1 〉

+〈A(kj)
− A∗, − μ(kj− 1)τA A(kj)

− A(kj− 1)
  − α∗ Z(kj)

2 〉

+〈E(kj)
− E∗, − μ(kj− 1)ηE E(kj)

− E(kj− 1)
  − Ψ∗ Z(kj)

1 〉

+〈E(kj)
− E∗, − μ(kj− 1)ηE E(kj)

− E(kj− 1)
  − Ψ∗ Z(kj)

2 〉.

(A.2)
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If we let j⟶ +∞, by Proposition 2(b), we have

f A∞(  + g E∞( ≤f A∗(  + g E∗(  +〈A∞ − A∗, − α Z∞1( 〉 +〈A∞ − A∗, − α Z∞2( 〉

+〈E∞ − E∗, − Ψ∗ Z∞1( 〉 +〈E∞ − E∗, − Ψ∗ Z∞2( 〉

� f A∗(  + g E∗(  − 〈α A∞ − A∗( ,Z∞1 〉 − 〈α A∞ − A∗( ,Z∞2 〉

− 〈Ψ E∞ − E∗( ,Z∞1 〉 − 〈Ψ S∞ − E∗( ,Z∞2 〉

� f A∗(  + g E∗(  − 〈α A∞(  + Ψ E∞(  − α A∗(  − Ψ E∗( ,Z∞1 〉 − α A∗( 

+〈Ψ E∗( ,Z∞2 〉

� f A∗(  + g E∗( .

(A.3)

+us, we can see that both A∞,E∞{ } and A∗,E∗{ } are
feasible solutions. +erefore, A∞, S∞{ } is an optimal solu-
tion of (1).

With the definition of the subgradients and letting
k � kj − 1, we can get

f(A)≥f A(kj)
  +〈A − A(kj)

, − μ(kj)τA A(kj)
− A(kj− 1)

  − Ψ∗ Z(kj)
1 〉

+〈A − A(kj)
, − μ(kj)τA A(kj)

− A(kj− 1)
  − Ψ∗ Z(kj)

1 〉.
(A.4)

Fixing A and letting j⟶∞, we can obtain

f(A)≥f A∞(  +〈A − A∞, − Ψ∗ Z∞1( 〉

+〈A − A∞, − Ψ∗ Z∞2( 〉,∀A.
(A.5)

+us, − α∗(Z∞1 ) ∈zf(A∞) and − α∗(Z∞2 ) ∈zf(A∞).
Similarly, − Ψ∗(Z∞1 ) ∈zg(E∞) and − Ψ∗(Z∞2 ) ∈zg(E∞).

+erefore, we can conclude that A∞,E∞,Z∞1 ,Z∞2  con-
verges to a KKT point of problem (1).

Next, we prove that the sequence A(k),E(k),Z(k)
1 ,Z(k)

2 

will converge to a KKT point of problem (1). By choosing
A∗,E∗,Z∗1 ,Z∗2  as A∞,E∞,Z∞1 ,Z∞2  in Proposition 2, we
have

τA A(kj)
− A∞

�����

�����
2

− α A(kj)
  − A∞

�����

�����
2

+ ηE E(kj)
− E∞

�����

�����
2

− Ψ E(kj)
  − E∞

�����

�����
2

+ μ(kj) Z(kj)
1 − Z∞1

�����

�����
2

+ μ(kj) Z(kj)
2 − Z∞2

�����

�����
2
⟶ 0.

(A.6)

By Proposition 2(a), we can obtain

τA (A) − A∞
����

����
2

− α A(k)
− A∞ 

�����

�����
2

+ ηE E(k)
− E∞

�����

�����
2

− Ψ E(k)
  − E∞

�����

�����
2

+ μ2k Z(k)
2 − Z∞2

�����

�����
2
⟶ 0.

(A.7)

+erefore, A(k),E(k),Z(k)
1 ,Z(k)

2 ⟶ A∞,E∞,Z∞1 ,Z∞2 

and we can conclude that A(k),E(k),Z(k)
1 ,Z(k)

2  converges to
a KKT point of problem (1). It thus completes the proof.
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