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This paper discusses the importance of modeling financial time series as a chaotic dynamic rather than a stochastic system. The
dynamical properties of a financial time series of an economic institution in Iran were analyzed to identify the potential occurrence
of the low-dimensional deterministic chaos. This paper applies several classic nonlinear techniques for detecting the chaotic
nature of the time series of loan payment portion and proposes a modified nonlinear predictor scheme for forecasting the future
levels of the nonperforming loan. The auto mutual information was implemented to estimate the delay time dimension, and Cao’s
approach, along with correlation dimension methodology, quantified the embedding dimension of the time series. The results
reveal a low embedding dimension implying the chaotic nature exists in the financial data. The maximum Lyapunov exponent
measure is also adopted to investigate the divergence or convergence of the trajectories. Since positive Lyapunov exponents are
revealed, the long-term unpredictability of the time series is proved. Lastly, a modified nonlinear local approximator is developed
to forecast the short-term history of the time series. Numerical simulations are provided to illustrate the adopted nonlinear
techniques. The results reported in this paper could have implications for commercial bank managers who could use the nonlinear

models for early detection of the possible nonperforming loans before they become uncontrollable.

1. Introduction

Banks and financial institutions have played a significant
role in balancing the economic life of the people in recent
decades owing to the development of the countries and the
development of new financial opportunities for the mer-
chants. Lending is one of the primary and popular ap-
proaches in such financial organizations aiming to make a
loan to somebody on the condition that the amount bor-
rowed is to be returned, usually with an interest fee.
However, in some cases, the nonperforming loan (NPL)
problem occurs when the borrowed money is not returned
in the scheduled period. High levels of NPL mean reducing
the income of the banks, which in turn leads to severe
economic losses. Therefore, governments have paid more
attention to this issue in recent years. Accordingly, a
weakening in bank loan services may cause a delay in
economic growth and can be a good reason for the economic

crisis. It has been argued that NPLs may create economic
stagnation and, therefore, can deter economic growth and
weaken financial efficacy [1]. On the other hand, high levels
of NPLs harm the growth rate of gross domestic product [2].
Given the importance of this issue, the governments and
financial sectors should encourage researchers to conduct
studies on this issue and banks to implement research results
in practice.

As a result, NPL ratios should stand at low or man-
ageable levels before the crisis. The NPL ratio prediction
method is necessary to achieve this goal based on previous
information. Various studies have attempted to study the
relationship between various economic factors and the NPLs
to forecast the NPLs. In [1], a heuristic hybrid classification
method has been used to predict banks’ nonperforming
loans using some macroeconomic and bank-specific fea-
tures. Tang et al. [3] have used a stepwise discrimination
algorithm to find essential factors for building distance
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discrimination and Bayesian discrimination models to de-
termine whether an NPL has a zero or positive recovery rate.
In [4], three two-phase mixture models of logistic regression
and artificial neural networks have been developed to create
an economic distress warning system appropriate for Tai-
wan’s banking business. The application of a neural network
predictor in forecasting loan recovery in the Nigerian fi-
nancial institutions has been reported in [5]. In [6], the
principal component analysis (PCA) technique has been
adopted for feature selection for prediction models of
Chinese bank loans. Then, the models have been assessed
using the TOPSIS multicriteria decision-making approach.
Saha et al. [7] have utilized machine learning strategies such
as ontology, text, data mining, and multiagent approaches to
develop a knowledge-determined automatic acquiescence
auditing method for bank loans. Some studies have used
other techniques, such as nonlinear regression models for
loan prediction [8, 9].

Most of the studies mentioned above have tried to check
whether a particular financial or banking attribute influences
NPLs quotient or not. In most cases, just some measurable
quantities which depend on the underlying and usually
unknown dynamics of the NPL rate are available. Since
many factors affect the ratio of NPLs, the inherent nature of
NPLs becomes more complicated and nondeterministic. In
such situations, linear estimators that minimize the variance
fail to reach the best fitting or forecasting purposes [10].
Moreover, the designer should correctly set many model
parameters in the previous nonlinear models (such as neural
networks). Therefore, it is hard to predict and interpret the
long-term future of NPLs with limited features. The complex
behavior of the NPLs cannot be easily modeled using the
common linear or nonlinear statistical approaches, such as
autoregressive methods and neural networks. Thus, it would
be better to use alternative nonlinear powerful techniques
that utilize the inherent attributes of the NPLs’ nature, such
as chaos [11]. In the past few decades, the concept of
nonlinear dynamical systems and chaos theory has changed
the treated manner of financial systems. The complicated
behavior of NPLs can be interpreted using a chaotic system
(as well as chaos theory) with high sensitivity to the initial
conditions.

Chaos is a particular version of nonlinear dynamics that
possesses unique attributes such as incredible sensitivity to
the initial states (a tiny change in the starting point will
produce a significant diversity in the future), broad Fourier
transform spectrum, irregular attractors (the states are lo-
cally unbounded but globally bounded), and fractality
property. A chaotic phenomenon is neither stochastic nor
random; it is a deterministic system in which some equations
are available to determine its behavior. Moreover, although
the chaotic time series are not periodic and random, they
exhibit a sense of order and pattern. Such unique and
complicated appearances can be detected using nonlinear
techniques, including phase space reconstruction, false
nearest neighbor (FNN) algorithm, correlation dimension
method, and Lyapunov exponent. Consequently, many real-
world applied systems that may seem to have random nature
can possess a nonlinear deterministic and potentially chaotic
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behavior. In this line, with the introduction of the ability to
model and predict the future of chaotic time series through
nonlinear deterministic system theory, many researchers
have attempted to study and detect chaos in time series of
multidisciplinary fields [12, 13]. Also, complex nonlinear
dynamical modeling and analysis have recently become
more important in advanced science approaches [14-16] and
[17]. However, a chaotic time series analysis is still a good
choice in many economic-related issues.

In [18], Novikov’s theorem has been utilized to model
the complicated dynamics of noisy credit risk contagion with
time delay, and the Hopf bifurcation and chaotic behaviors
are evaluated. In [19], some numerical approaches have been
applied to discover Hopf bifurcation, inverse bifurcation,
and chaos phenomena in the credit risk contagion dynamics.
Lahmiri [20] has investigated the fractal inherence and
chaotic behavior in returns and volatilities of family business
companies of Morocco, using Hurst exponent and an
autoregressive model. In [21], the phase synchronization
method has been introduced for analyzing the chaotic be-
havior of stock price and index movements in crisis stages.
For identifying the quality of similarity measure of financial
time series, three techniques including information cate-
gorization approach, reconstructed phase space clustering
strategy, and system methodology with squared Euclidean
distances have been used in [22]. In addition to these works,
some research in the literature aims to predict the chaotic
financial time series. In [23], a self-organizing map neural
network along a recommender system has been proposed to
cluster and predict stock price time series. Yang and Lin [14]
have applied empirical mode decomposition and phase
space reconstruction methods combined with extreme
learning machines for predicting financial exchange rates’
time series forecasting. The artificial neural network method
is the main and mostly applied technique in the literature for
predicting the future of the financial chaotic time series
[24-27]. To the best of our knowledge, no single review
article detecting and predicting chaos in NLPs’ time series
has been published; therefore, it will be addressed in the
present work.

This research aims to investigate the financial time series
behavior of the primary interest-free institution of Iran
named Omid Entrepreneurship Fund (OEF). The main
purpose is to identify the potential occurrence of low-di-
mensional deterministic chaos in the financial time series of
OEF and to propose an efficient forecasting technique to
predict the future events of NPLs. The dataset is collected
during the last five years of the OEF activity. We adopt the
loan payment percent (LPP) as the time series to be analyzed.
We try to predict the future of the LPP with a modified
chaos-based nonlinear methodology. As a result, the pre-
dicted values can be utilized to detect and predict NPLs
(an NPL can be determined by an LPP less than a specific
value in a given time) before they become uncontrollable.
The superposition of all exogenous and endogenous vari-
ables affects the loan payment percent. Hence, in this paper,
the effects of exogenous and endogenous were considered
indirectly. The delay time dimension is discovered using
auto mutual information to investigate the chaos in the time
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series. It is employed to rebuild the irregular attractors. The
embedding dimension is calculated via Cao’s technique and
correlation dimension approach. The quantity of the sen-
sitivity to the initial states is computed with the help of the
largest Lyapunov exponent (LLE) principle. The given
positive Lyapunov exponents assure the exponential devi-
ation of the trajectories and, therefore, the unpredictability
of the time series. Finally, a modified nonlinear predictor is
realized to forecast the financial time series. All the men-
tioned approaches are illustrated wusing computer
simulations.

The rest of this article is organized as follows. In Section 2,
the nonlinear chaos-based techniques are presented. Section 3
deals with the description of a modified prediction scheme. In
Section 4, some computer simulations are carried out. Finally,
concluding remarks are provided in Section 5.

2. Nonlinear Techniques for Analyzing Chaotic
Time Series

This section discusses the adopted nonlinear techniques for
chaos detection in the financial time series.

2.1. Phase Space Rebuilding. Since the chaotic dynamics of
an irregular time series are not precisely known, a phase
space estimation of the state space of a time series can be
effectively used to rebuild the equivalent irregular attractor.
To this end, the time series is converted into the geometry of
a single moving point along a chaotic trajectory, where each
of its points corresponds to a state of the analogous chaotic
system. As a result, the phase space rebuilding can be
inferred as a multidimensional depiction of a single-di-
mensional nonlinear time series. A delay-based applied
method for rebuilding the phase space has been introduced
by Takens [28]. The main idea of the Takens method is that
the matching trajectories of the systems with a set of nat-
urally deterministic dynamics can reach toward the subset of
the phase space (i.e., the attractor). So, that technique assures
that an m-dimensional space can be created to embed the
original behavior of a given time series X;,i = 1,2,...,N, in
which each element of the state vector is obtained via the
delay coordinates as below [28]:

Y] = (X])X j+2T’ “ee ’Xj+(m—1)T)’ (1)

where j=1,2,...,N — (m—1)7/At, m is named the em-
bedding dimension (m > d where d shows the dimension of
the attractor), T denotes the delay time, and At represents the
sampling time. Computational errors caused by a finite
precision arithmetic allow to consider one pseudotrajectory
computed for a sufficiently large time interval [29-31].

X

jrT

2.2. Time Delay Estimation. Two main approaches can carry
out a proper estimation of the time delay 7. In the first
strategy, one can calculate the autocorrelation function of
the time series and choose the first zero-crossing time. In this
strategy, the X, ., sample can be fully decorrelated from the
X; sample, once the autocorrelation function reaches zero at

spots the past point [32, 33]. This technique reproduces only
linear features of the dynamics and usually requires sup-
plementary data. At the same time, the other methodology
involves a nonlinear autocorrelation function named mutual
information (MI) to compute the delay from the time series
[34]. Shannon’s information theory inspires the main mo-
tivation of this technique to produce the information ac-
complished from examinations of one random event on
another using the MI criterion. The MI is a nonlinear
equivalent to the correlation function, and both linear and
nonlinear reliance among two time series can be measured
by it. Once the Ml is adopted for time-delayed translations of
the identical sequence, it is named auto MI (AMI).

Usually, the MI recognizes the quantity of information a
signal gives regarding the other signal. Thus, the AMI cal-
culates the approximate degree of forecasting X, , from X;.
From an information-theoretic point of view, the AMI
discovers how the measurements X; are joined X;,.. The
following formula gives the AMI [34]:

P(Xi’XiH') )
I0= Y P(X,X,.)] <4 )
0= 2 P Xdloe paopae ) @

where i denotes total sample number, P(X;) and P(X,,,)
show the marginal probabilities for measurements X; and
X, respectively, and P(X;, X;,,) gives their connection
probability density for measurements X; and X, ..

Remark 1. A delay time 7 that minimizes I () for t = 7 and
X, appends the highest information on X; has the optimal
value.

2.3. Embedding Dimension. The minimum number of the
state variables needed to display the system behavior is called
the embedding dimension m. The Grassberger-Procaccia
(GP) [35], the singular value decomposition (SVD) [36], the
FNN [37], and Cao’s scheme [38] are the main approaches
for obtaining the minimum embedding dimension from a
scalar time series. The delay coordinates at a specified time
delay 7 are used in the GP method to rebuild the dynamics of
a scalar time series in an embedding space of dimension .
Although this procedure is data demanding and subjective
and consumes more time in the simulation, it can determine
the time series’s chaotic and/or random nature. With the
help of singular values of embedding, the quantity of var-
iance of the trajectory’s projection on the orthogonal di-
rections in the embedding space is used in the SVD method.
The minimum dimension is computed by the number of
directions the rebuilt trajectory sees and determined by the
large singular values. The main drawback of the SVD scheme
is its subjectivity to the number of singular values.

The FNN algorithm is inspired by the fact that the orbits
of a chaotic attractor cannot cross or go beyond each other.
In contrast, when a lower dimension than the adequate
characterizes an irregular attractor, a junction and/or an
overlap occurs. In other words, the FNN algorithm relies on
that if a too low embedding dimension is chosen, the points
distant from each other in the original phase space will be



closed in the rebuilt phase space. Subjectivity and the need
for supplementary data are weaknesses of this approach.

The drawbacks of the algorithms above are tackled using
Cao’s strategy. This scheme adopts a scalar time series
X,,X,,..., Xy and the delay time vector (1) with the fol-
lowing norm [38]:

||y,~(m +1) - Yn(im) (m + 1)"

, i=1,2,...,N —-mrt,
1y: (1) = Y iy ()|

a(i,m) =

(3)

where y; (m + 1) denotes the ith reconstructed vector with
embedding dimension m+1, ie, y;(m+1)= (X,
Xivrr - > Xipme)» 1 <n(i,m) <n—mrt stands for an integer
such that y,,(; ., (m) is the nearest neighbor of y; (m) in the
m-dimensional rebuilt phase space, and [y, (n)-
Vi = maxo e, Xy jr = X jel-

Remark 2. 1f y, ; ., (m) is equal to y, (m), the second nearest
neighbor is adopted instead of it.

In Cao’s and FNN approaches, any two points represent
true neighbors that their nearness in the m-dimensional
rebuilt phase space guarantees that they are still near in the
(m + 1)-dimensional rebuilt phase space. If this condition is
not met, the two points will be interpreted as false neighbors.
In a perfect embedding, no false neighbors should be
supposed. In [32], a false neighbor has been recognized by
checking whether a (i, m) is larger than some threshold rate.
Nonetheless, it is clear from (3) that this requires the de-
rivative of the original signal. Hence, different threshold
values are essential for different phase points i implying that
it is difficult to gain an appropriate threshold value inde-
pendent of the values of m, X, and the time series.

To circumvent the issue above, Cao has applied the
average value of all a (i,m) s as another quantity as follows:

1 N-mt

N 2 alm). (4)

i=1

E(m) =

The variation of E (m) from m to m + 1 can be evaluated
using the following formula [35]:

E(m+1)

E,(m) = E(m)

(5)

Once the time series appears from a chaotic attractor,
E, (m) ends variation when m is greater than a fixed value
my. In this situation, m = m + 1 is taken as the minimum
embedding dimension.

2.4. Largest Lyapunov Exponent Measure. It is well known
that once a time series is susceptible to the initial states, it will
be unpredictable, at least for the long term. The highly
sensitive time series have divergent exponential trajectories
varying with small fluctuations of the initial states. A mean
norm of this divergence and the unpredictability of a chaotic
time series are given by the Lyapunov exponent measure, in
which it expresses the rate of division of infinitesimally close
states. The LLE calculates the deviation of close trajectories
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in the phase space. Therefore, a positive Lyapunov exponent
implies the occurrence of chaos.

Suppose that s,; and s,, are two points in two trajectories
in the state space with ||s,; — s,,l = 0y <« 1. If At time steps
are continued, one has 0,, = [Is;1,4; — Siaacll, 95 <1 and
At > 1, which means that the initial division 9, will diverge
the trajectories with an exponential rate, d,, = e*** 9, where
A is the Lyapunov exponent [39]. As a result, a positive A
assigns an exponential divergence of the closed trajectories,
implying a chaotic behavior. On the other side, dissipative
and nonconservative time series show negative Lyapunov
exponents, and their trajectories will attain a stable equi-
librium point or a periodic orbit. Also, the Lyapunov ex-
ponent of the conservative time series is equal to zero.

In work [40], a numerical algorithm has been given for
determining the LLE of the scalar time series. The algorithm
looks for every neighbor within a neighborhood of com-
mand trajectory and gets the average distance of neighbors
and the command trajectory as a function of time. This
algorithm computes a stretching factor S(7) whose slope is
equal to the LLE. The methodology in [39] takes a ¢ from the
setT,={mm+1,...,T -7} to find U, = e- neighborhood
of an arbitrary point X, in the time series. Afterward, for all
i € Uy, the distance of X, and a neighbor of it is computed as
|X,,; — Xi;-|, and the logarithm of the mean of these dis-
tances is found. This process is repeated for all t € T, and
the stretching factor is achieved.

$(n) = H}fﬁn(ln(r?gn(lxm - Xml)))- (6)

The other algorithm for estimating the LLE of a scalar
time series has been introduced by Rosenstein et al. [41]. This
algorithm utilizes all the information of the entire dataset
rather than relying on one trajectory. Once the phase space is
built by supposed 7 and m, a point X, is taken, all neighbor
points X, closer than a distance r are recognized, and the
average distance from that point between them is calculated.
This process is reiterated for N points along the trajectory to
find an average value of S as follows:

s=L iln ;z |X,, - X,
N =1 |UX,,0 o

, (7)

where |[Uy | denotes the number of neighbors recognized
around the'point X,,- The diagram of the stretching factor
against time t = NAt appears an arc with a linear increase at
the start, continued by an approximately smooth area.

2.5. Surrogate Data. One of powerful tools for the nonlin-
earity examination is surrogate data test [12, 42], in which
the null hypothesis indicates that the observed spatial series
is produced by a Gaussian (linear) process with a possibly
nonlinear static transform. This method considers the mean,
the standard deviation, the cumulative distribution function,
and the power spectrum of the original data. The surrogate
approach produces substitute data with the identical
probabilistic organization as the original data [12].
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The iterative amplitude-adjusted Fourier transform
(IAAFT) has been introduced in [42] to produce the surrogate
datasets. In this approach, the created surrogates rely on the
idea of generating constrained realizations, where the mea-
surable features of the spatial series are taken into account
rather than the basic model equations [12]. The null hy-
pothesis of underlying Gaussian linear stochastic processes
can also be formulated, denoting that randomized samples
can be created by generating orders with the same linear
attributes as the observed data but which are otherwise
random [12]. In the surrogate data test, if the squared am-
plitudes of the discrete Fourier transform are adopted to
denote the linear characteristics of the data, the surrogate
spatial series will be produced by multiplying the Fourier
transform of the data by random phases and subsequently
transforming back to the time domain [12]. An appropriate
subsequence of the data is chosen before creating the sur-
rogates to avoid the periodicity artifact from leading to false
nonlinearity test outcomes [12]. Moreover, windowing and
zero-padding techniques can be applied to suppress the edge
effects’ problems. However, these methods degrade the
invertibility of transform and, therefore, cannot be effectively
applied for the phase randomization of the surrogates [12].

In the surrogate data test, the TAAFT is applied to
preserve the probability density function and the correlation
structure (and therefore the power spectrum) of the original
data by iteratively minimizing the deviation. The main
procedure of the adopted algorithm is given below [12, 43].

(a) A sorted record of the original spatial series {s,} and
the squared amplitudes of its Fourier transform,
S2 = | YN e 2 are saved.

(b) The data are randomly shuftled (without substitu-
tion) {S{?} to corrupt any nonlinear associations and
correlations.

(c) The Fourier transform of {S{} is calculated, and its
squared amplitude is substituted by S;. The result is
transformed back to the time domain.

(d) The resulting series is ranked in order, and each
value is replaced with the original series value with
an equal rank. This work corrects the probability
density function of the data and modifies the power
spectrum once more.

(e) Steps (c) and (d) are repeated to achieve a given
accuracy.

3. Nonlinear Predictor

In nonlinear dynamics theory, although chaos is deter-
ministic, it cannot be cast further than short intervals. The
average forecast horizon of a chaotic time series can be
reached by the LLE norm as follows [44]:

1
Atmau( =7 (8)

)Lmax
In recent years, some approximate linear and/or non-
linear algorithms have been presented in the literature to
forecast the future of the chaotic time series. In [45], a simple

nonlinear technique has been provided, restated as follows.
First, the delay time of the time series X;, i=1,2,...,N,is
calculated to rebuild the phase space. Then, the irregular
attractor is established with an embedding dimension m, and
the following m-dimensional map f is applied to model the
dynamics of the time series.

Yj+T = fT(Yj)’ (©)

where Y ; and Y, 1 are vectors of dimension m in which they
denote the state at the current time j and the state at the
future time j + T, respectively.

The next step is to get the help of the observed time series
to discover a proper estimation of f;. In the local ap-
proximation procedure [44], a locally piecewise structure is
adopted to build the dynamics in the embedding space.
Moreover, the domain is divided into some local neigh-
borhoods, and the model is accomplished for each neigh-
borhood separately, resulting in a different f for each
subset. Hence, the dynamics of the system are governed part
by part, and the complexity of f is considerably reduced
without affecting the accuracy of the forecast.

The deviation of the trajectory concerning the time
should be estimated to forecast in the m-dimensional space.
Regarding the relation of the X, and X, , points, the future
of the system at the time p on the irregular attractor can be
estimated via a nonlinear function F as follows:

X, = F(X,). (10)

The primary assumption of this forecast algorithm is that
the variation of X, with time on the irregular attractor is
identical to those of close points (Xr,, h=12,...,n).
Afterward, X, , is built by the order d polynomial F (X,) as

t+p
follows.

—

m—1 m—

Xep=fot D fuXenet 2 Forn Xk eXin
K20 -

1=0

=3

(11)

m—1

Tt Z S degieye kg Xty Xebeyr e Xk
ka=ka-,
ki =0
In [44], it has been suggested that using n of X, and
Xr,.p with known values, the coefficients f can be reached
by the following equation:

X = Af, (12)
')XTn+p)’ f: (fo’flo’fn’

where X = (X7, X7 -

ceey fl(l’H*l)’ e ’fd(m—l)(m—l)---(m—l)) and A is a I’l(m + d)!/
m!d! Jacobian matrix described below.
2 2
XTl XTI—T XTI—(m—l)T XTI XTl—(m—l)T
2 2
A= XT2 XTZ—T s XTZ—(m—l)T XTZ . XTZ—(m—l)T
2 2
XT” XTn—T tee XTW—(m—l)T XTH s XTn—(m—l)r
(13)



However, in this paper, the idea of memory usage is
proposed. In our approach, the Jacobian matrix A not only is
constructed by m points of the current attractor, but also
benefits the other m points of the past attractors to increase
the accuracy of the approximate model. Thus, the size of the
Jacobian matrix A is modified as n(K(m+
d)l/ (Km)! (K d)!, where 1 <K <m is selected as an integer.
The rows matrix A must approve the following inequality to
attain a sure solution:

(K (m + d))!

4. Data and Numerical Results

In this section, a brief description of the adopted data is
given. Then, comprehensive numerical simulation and
analysis are provided to verify the data’s complex behavior
and forecast the short-term future of the chaotic financial
time series.

4.1. Financial Data. Recently, some microfinance institutes
have the mission of providing limited loans with no (or at
least a minimum) interest. The target population of such
interest-free organizations is low-income people who lack
access to the financial services of other banks or traditional
financial institutions. The essential condition for requesting
an interest-free loan is that the recipient must prove setting
up a small-scale enterprise. The essential goal of such
microfinance institutions is to help low-income people get
better access to financial services and finance small or
medium projects. Omid Entrepreneurship Fund (OEF) is
the biggest and the most important interest-free institution
in Iran. OEF has at least one branch in each state of Iran. We
have taken the five-year loan payment percent of two
branches of OEF that have the highest activity in the con-
sidered time horizon and call them B, and B, branches. For
the considered loans, the due of the first installment is in the
range of years 2011-2017. The considered period does not
contain any crisis years and other shocks. Since an NPL is
defined as a loan with no payment for at least 18 months for
the OEF policies, the two last years’ data (which do not
contain an NLP) are removed. The time series of the two
time series are depicted in Figure 1. Furthermore, the sig-
nificant statistical attributes of these time series are given in
Table 1.

4.2. Phase Space. We choose m = 2 and 7 = 1 to rebuild the
phase space and make an illustrative attractor. In this case,
the irregular attractor will be projected to the plane
{X;, X;,,}- Figure 2 depicts the phase space reconstruction of
the B; and B, time series. One sees that an irregular attractor
occurs in both the phase space plots. Moreover, these plots
deny the requirement for a stochastic modeling approach for
the time series because the attractors are in well-defined
regions, implying that the deterministic chaos can effectively
elucidate the system dynamics.

Mathematical Problems in Engineering

4.3. Time Delay Assignment. The time delay is estimated
using the AMI algorithm with a delay time belonging to
[1, 30]. The results for the two datasets are illustrated in
Figure 3. Finding the first local minima on the diagrams is
needed to estimate an appropriate time delay. This happens
in the delay time of 4 and 3 for B, and B,, respectively.

4.4. Embedding Dimension Estimation. Cao’s algorithm is
implemented to find the minimum value of the embedding
dimension to determine the sufficient embedding dimension
for the phase space reconstruction. The maximum value of
the embedding dimension is assigned equal to 50 to achieve
a good result. Then, the criterion E, (m) is depicted versus
the variation of m. The simulation results are plotted in
Figure 4. Figure 4(a), which stands for B, time series, shows
that E,(m) end varies m;, = 16. Thus, based on Cao’s
technique, the minimum embedding dimension for B, is
m=my+1=17.

On the other hand, as Figure 4(b) shows, the curve
E, (m) ends vary with m, = 15 in the case of B,. So, the
minimum embedding dimension of these data equals to
m =my+ 1 =16. The most important issue is that since
E, (m) does not vary after some finite value of m,, both the
time series B; and B, are originated from an irregular
attractor, implying the existence of chaos.

4.5. Largest Lyapunov Exponent. The computation of the
LLE is carried out using the algorithm proposed in [41]. The
time delay and minimum embedding dimension parameters
computed in the previous subsections are used in the nu-
merical simulation. The curves for the stretching factor S
versus the number of points N are displayed in Figure 5. One
can see that linear increased regions with some fluctuations
placed over the linear parts occur. It is noted that owing to
the stretching factor as an average value of the local
stretching or shrinking rates in the irregular attractor, some
fluctuations typically emerge, and the different rates cannot
be continually flattened by the averaging process of the
algorithm [46].

Accordingly, the slopes of the curves about the linear
regions are determined using a least-squares line fitting
approach aiming to achieve the LLEs of the time series. The
LLEs of the B; and B, time series are achieved as 0.0205 and
0.0178, respectively. These positive values of the LLEs
confirm the exponential divergence rate of the trajectories
and, then, the chaotic behavior of the financial time series.
Besides, the inverse of the LLEs is computed to get the
forecast horizon. In this situation, it is revealed that the
forecast horizons are 48 and 56 samples for B; and B,,
respectively. The predictions over these values are subject to
extreme uncertainties.

4.6. Surrogate Data. The potential nonlinearity of the time
series can be tested for the surrogate data procedure. At a = 1%
the significance level, to gather 1/a — 1 = 99 surrogate time
series, the iterative algorithm given in the previous subsections
is adopted to verify that if the original data come from a linear
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TaBLE 1: Statistical attributes of the time series.
Statistical attribute B, B,
Number of data 1138 851
Mean 87.9281 80.0138
Median 100 92.3100
Min 0 1.9300
Max 100 100
Standard deviation 19.8204 24.4088
Variance 392.8466 595.7916
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FIGURE 2: Phase spaces of the time series (a) B; and (b) B,.
stochastic process or not. In this regard, the nonlinear pre-  and the original data are plotted in Figure 6. The lower thick

diction error examination is applied for the test statistic. The  long line stands for the prediction error, and the other thin
diagram of the nonlinear prediction errors of 99 surrogates,  lines show the other 99 surrogates, indicating that the null
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FiGURE 7: Forecast results for the time series (a) B; and (b) B,.

hypothesis is declined at the 99% significance level. This means
that the hypothesis that the data originality is discarded from a
linear stochastic process. Therefore, the surrogate data test
further validates that the correlation dimension’s convergence
occurs due to the low-dimensional dynamics that are domi-
nant in the chaotic systems; i.e., it is not due to the linear
stochastic nature of the data.

4.7. Prediction. We attempted to forecast the future of the
LPP with the modified chaos-based nonlinear prediction
method. The performed analysis in the prior sections has
proved that the financial time series exhibit a chaotic be-
havior with a long-term unpredictability feature. On the
other hand, the modified local forecasting algorithm can

model their future values quickly. The inverse of LLEs
suggests that the maximum window for accurate forecasting
is 48 and 56 samples for B, and B,, respectively. The mo-
tivation for such prediction is clear: the developments of
many financial processes have become ever more de-
manding for the exact short-term prediction. It is noticed
that the partial predictability of a chaotic time series owes to
its high sensitivity to initial states. This fact indicates that the
information is built in the whole time series and that short-
time predictions are reasonable. The forecasting results of
the time series (with K = 2) and the corresponding actual
values are depicted in Figure 7. It is viewed that the fore-
casting results are satisfactory, and they follow the actual
data reasonably accurately, except for extreme value. As a
result, the predicted values can be utilized to identify and
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predict NPLs (an NPL is an LPP whose value is less than a
particular fixed constant in a specified time) before they
become uncontrollable. Therefore, these predictions can
help the managers of economic institutions to develop the
necessary policies regarding the budget and the remainder of
the loans.

5. Concluding Remarks

This paper has introduced the concept of chaotic predictions
over short periods for the loan time series. The main idea is
that if one can forecast the future behavior of the loan
payment percent, then the nonperforming loans will be
identified. So, the policies can be modified according to the
current state of the budget. Various nonlinear dynamic
methods have been realized to identify the existence of low-
dimensional chaos in the data to implement this idea. First,
the well-known AMI algorithm has discovered the delay
time to rebuild the possible irregular attractors. Afterward,
the dimensionality of the trajectories was detected using
Cao’s technique. A low embedding dimension has validated
the low-dimensional chaos in the financial data. Accord-
ingly, based on the largest Lyapunov exponent norm, it has
been revealed that the time series is susceptible to tiny
fluctuations of the initial states. This proves the exponential
divergence of the trajectories and the unpredictability of the
time series. Subsequently, the surrogate data examination
has been adopted to verify that the financial time series do
not originate from a stochastic process. Lastly, a modified
local nonlinear approximator has been presented to forecast
the short-term behavior of the time series. The numerical
simulations on the data collected from an interest-free
economic institution in Iran have confirmed the complex
nonlinear structure of the LPPs. The findings of this article
may help the managers of the banks and economic orga-
nizations forecast the short-term horizon of the NPLs and,
therefore, balance the budget and loans.

Data Availability

Access to data is restricted due to Omid Entrepreneurship
Fund (OEF) policy. To access data, a request should be sent
to OEF.

Conlflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The Omid Entrepreneurship Fund of Iran financially sup-
ported this research.

References

[1] Y. Zhang, G. Yu, and D. Yang, “Predicting non-performing
loan of business bank by multiple classifier fusion algorithms,”
Journal of Interdisciplinary Mathematics, vol. 19, no. 4,
pp. 657-667, 2016.

Mathematical Problems in Engineering

[2] A. Belgrave, G. Kester, and M. Jackman, “Industry specific
shocks and non-performing loans in Barbados,” the review of
finance and banking, vol. 4, no. 2, 2012.

[3] Y. Tang, H. Chen, B. Wang, M. Chen, M. Chen, and X. Yang,
“Discriminant analysis of zero recovery for China’s NPL,”
Advances in Decision Sciences, vol. 2009, Article ID 594793,
16 pages, 2009.

[4] S. L. Lin, “A new two-stage hybrid approach of credit risk in
banking industry,” Expert Systems with Applications, vol. 36,
no. 4, pp. 8333-8341, 2009.

[5] A.O.Adewusi, T. B. Oyedokun, and M. O. Bello, “Application
of artificial neural network to loan recovery prediction,”
International Journal of Housing Markets and Analysis, vol. 9,
no. 2, pp. 222-238, 2016.

[6] G.Kou, Y. Peng, and C. Lu, “MCDM approach to evaluating

bank loan default models,” Technological and Economic De-

velopment of Economy, vol. 20, no. 2, pp. 292-311, 2014.

P. Saha, I. Bose, and A. Mahanti, “A knowledge based scheme

for risk assessment in loan processing by banks,” Decision

Support Systems, vol. 84, pp. 78-88, 2016.

Z. Bitvai and T. Cohn, “Predicting peer-to-peer loan rates

using bayesian non-linear regression,” in Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence,

pp- 2203-2209, Austin, TX, USA, January 2015.

[9] R. Calabrese, “Predicting bank loan recovery rates with a
mixed continuous-discrete model,” Applied Stochastic Models
in Business and Industry, vol. 30, no. 2, pp. 99-114, 2014.

[10] P. Tahmasebi and A. Hezarkhani, “A hybrid neural networks-
fuzzy logic-genetic algorithm for grade estimation,” Com-
puters & Geosciences, vol. 42, pp. 18-27, 2012.

[11] B. LeBaron, “Chaos and nonlinear forecastability in eco-
nomics and finance,” Philosophical Transactions of the Royal
Society of London, Series A: Physical and Engineering Sciences,
vol. 348, no. 1688, pp. 397-404, 1994.

[12] M. Pourmahmood Aghababa and J. Abdollahi Sharif, “Chaos
and complexity in mine grade distribution series detected by
nonlinear approaches,” Complexity, vol. 21, no. S2,
pp. 355-369, 2016.

[13] S. Ramdani, F. Bouchara, and O. Caron, “Detecting high-
dimensional determinism in time series with application to
human movement data,” Nonlinear Analysis: Real World
Applications, vol. 13, no. 4, pp. 1891-1903, 2012.

[14] H.-L. Yang and H.-C. Lin, “Applying the hybrid model of
EMD, PSR, and ELM to exchange rates forecasting,” Com-
putational Economics, vol. 49, no. 1, pp. 99-116, 2017.

[15] A. Papana, C. Kyrtsou, D. Kugiumtzis, and C. Diks,
“Detecting causality in non-stationary time series using partial
symbolic transfer entropy: evidence in financial data,”
Computational Economics, vol. 47, no. 3, pp. 341-365, 2016.

[16] V. K. Dabhi and S. Chaudhary, “Financial time series mod-
eling and prediction using postfix-GP,” Computational Eco-
nomics, vol. 47, no. 2, pp. 219-253, 2016.

[17] P. Flaschel, F. Hartmann, C. Malikane, and C. R. Proafio, “A
behavioral macroeconomic model of exchange rate fluctua-
tions with complex market expectations formation,” Com-
putational Economics, vol. 45, no. 4, pp. 669-691, 2015.

[18] T. Chen, X. Li, and J. He, “Complex dynamics of credit risk
contagion with time-delay and correlated noises,” Abstract
and Applied Analysis, vol. 2014, Article ID 456764, 10 pages,
2014.

[19] T.Chen,J. He, and J. Wang, “Bifurcation and chaotic behavior
of credit risk contagion based on fitzhugh-nagumo system,”
International Journal of Bifurcation and Chaos, vol. 23, no. 07,
Article ID 1350117, 2013.

[7

[8



Mathematical Problems in Engineering

[20] S. Lahmiri, “On fractality and chaos in Moroccan family
business stock returns and volatility,” Physica A: Statistical
Mechanics and Its Applications, vol. 473, pp. 29-39, 2017.

[21] S. Radhakrishnan, A. Duvvuru, S. Sultornsanee, and
S. Kamarthi, “Phase synchronization based minimum span-
ning trees for analysis of financial time series with nonlinear
correlations,” Physica A: Statistical Mechanics and Its Ap-
plications, vol. 444, pp. 259-270, 2016.

[22] Q. Tian, P. Shang, and G. Feng, “The similarity analysis of
financial stocks based on information clustering,” Nonlinear
Dynamics, vol. 85, no. 4, pp. 2635-2652, 2016.

[23] B. B. Nair, P. K. S. Kumar, N. R. Sakthivel, and U. Vipin,

“Clustering stock price time series data to generate stock

trading recommendations: an empirical study,” Expert Sys-

tems with Applications, vol. 70, pp. 20-36, 2017.

A. Parida, R. Bisoi, P. Dash, and S. Mishra, “Financial time

series prediction using a hybrid functional link fuzzy neural

network trained by adaptive unscented kalman filter,” in

Proceedings of the 2015 IEEE Power, Communication and

Information Technology Conference (PCITC), pp. 568-575,

Bhubaneswar, India, 15 October 2015.

R. Singh and S. Srivastava, “Stock prediction using deep

learning,” Multimedia Tools and Applications, vol. 76, no. 18,

pp. 18569-18584, 2017.

[26] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, and Z. Tang,

“Financial time series prediction using a dendritic neuron

model,” Knowledge-Based Systems, vol. 105, pp. 214-224,

2016.

R. Chandra and S. Chand, “Evaluation of co-evolutionary

neural network architectures for time series prediction with

mobile application in finance,” Applied Soft Computing,

vol. 49, pp. 462-473, 2016.

[28] F. Takens, “Detecting strange attractors in turbulence,” in
Dynamical Systems and Turbulence, pp. 366-381, Springer,
Warwick, England, 1981.

[29] T. A. Alexeeva, N. V. Kuznetsov, and T. N. Mokaev, “Study of
irregular dynamics in an economic model: attractor locali-
zation and Lyapunov exponents,” Chaos, Solitons & Fractals,
vol. 152, Article ID 111365, 2021.

[30] N. V. Kuznetsov, T. N. Mokaev, O. A. Kuznetsova, and
E. V. Kudryashova, “The Lorenz system: hidden boundary of
practical stability and the Lyapunov dimension,” Nonlinear
Dynamics, vol. 102, no. 2, pp. 713-732, 2020.

[31] N. V. Kuznetsov, G. A. Leonov, T. N. Mokaev, A. Prasad, and
M. D. Shrimali, “Finite-time Lyapunov dimension and hidden
attractor of the Rabinovich system,” Nonlinear Dynamics,
vol. 92, no. 2, pp. 267-285, 2018.

[32] J. Holzfuss and G. Mayer-Kress, “An approach to error-es-

timation in the application of dimension algorithms,” in

Dimensions and Entropies in Chaotic Systems, pp. 114-122,

Springer, New York, NY, USA, 1986.

W. Liebert and H. Schuster, “Proper choice of the time delay

for the analysis of chaotic time series,” Physics Letters A,

vol. 142, no. 2-3, pp. 107-111, 1989.

[34] A.M. Fraser and H. L. Swinney, “Independent coordinates for
strange attractors from mutual information,” Physical Review
A, vol. 33, no. 2, pp. 1134-1140, 1986.

[35] K.P.Harikrishnan, R. Misra, G. Ambika, and A. K. Kembhavi,
“A non-subjective approach to the GP algorithm for analysing
noisy time series,” Physica D: Nonlinear Phenomena, vol. 215,
no. 2, pp. 137-145, 2006.

[36] D. S. Broomhead and G. P. King, “Extracting qualitative
dynamics from experimental data,” Physica D: Nonlinear
Phenomena, vol. 20, no. 2-3, pp. 217-236, 1986.

[24

[25

(27

(33

11

[37] M.B.Kennel, R. Brown, and H. D. 1. Abarbanel, “Determining
embedding dimension for phase-space reconstruction using a
geometrical construction,” Physical Review A, vol. 45, no. 6,
pp. 3403-3411, 1992.

[38] L. Cao, “Practical method for determining the minimum
embedding dimension of a scalar time series,” Physica D:
Nonlinear Phenomena, vol. 110, no. 1-2, pp. 43-50, 1997.

[39] S. Mehdizadeh, “A robust method to estimate the largest
Lyapunov exponent of noisy signals: a revision to the
Rosenstein’s algorithm,” Journal of Biomechanics, vol. 85,
pp. 84-91, 2019.

[40] A. Wolf, ]. B. Swift, H. L. Swinney, and J. A. Vastano, “De-
termining Lyapunov exponents from a time series,” Physica D:
Nonlinear Phenomena, vol. 16, no. 3, pp. 285-317, 1985.

[41] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical
method for calculating largest Lyapunov exponents from
small data sets,” Physica D: Nonlinear Phenomena, vol. 65,
no. 1-2, pp. 117-134, 1993.

[42] T. Schreiber and A. Schmitz, “Improved surrogate data for
nonlinearity tests,” Physical Review Letters, vol. 77, no. 4,
pp. 635-638, 1996.

[43] C. T. Dhanya and D. Nagesh Kumar, “Nonlinear ensemble
prediction of chaotic daily rainfall,” Advances in Water Re-
sources, vol. 33, no. 3, pp. 327-347, 2010.

[44] H. Abarbanel, Analysis of Observed Chaotic Data, Springer
Science & Business Media, Berlin, Germany, 2012.

[45] K.-I. Ttoh, “A method for predicting chaotic time-series with
outliers,” Electronics and Communications in Japan, vol. 78,
no. 5, pp. 44-53, 1995.

[46] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis,
Cambridge University Press, Cambridge, England, 2004.



