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�e automatic description (AD) of sports videos is a fundamental task for archiving the content of broadcasters, as well as
understanding video scenes, and economic management e�ectiveness visualization techniques are key to the classi�cation of
sports videos. In this paper, a freestyle gymnastics video is used as an example to study the automatic video description by
observing the set of movements of an athlete in a freestyle gymnastics video to generate the terminology of the movements
performed by that athlete. �e technique used in this paper to visualize the e�ectiveness of economic management is the long and
short-term memory (LSTM) network model, which is used to learn the mapping relationship between word sequences and video
frame sequences. Attention mechanisms (AM) are also introduced to highlight the importance of keyframes that determine
freestyle gymnastics movements. �e study is carried out by building a dataset of free gymnastics (FG) breakdown movements
from professional events and applying a planned sampling method. Experimental results show that the method can improve the
accuracy of an automatic free gymnastics video (FGV) description. �e proposed method has a wide range of applications in
sports analysis and instruction.

1. Introduction

In the 21st century, along with the rapid development of
Internet technology, video, a common form of multimedia
data, has gradually become one of the important compo-
nents of multimedia data [1]. In people’s daily lives, huge
amounts of video data are generated, of which automatic
video description allows for the e�ective management of
these video resources [2]. With the in-depth research on
automatic video description, automatic video analysis based
on human movement has made signi�cant progress in areas
such as intelligent life assistance, advanced human-com-
puter interaction, and content-based video retrieval, and is
gradually receiving close attention.

�ere is a di�cult problem in sports video analysis
research. Namely, it is di�cult for low-level video features to
accurately re�ect the needs of the human body, and the use
of single features is di�cult to meet the rapid growth of

available video data. As a popular sport, the research on AD
of FG has made considerable achievements. Among them,
the AD of FGV not only integrates theoretical knowledge of
machine learning [3] but also involves several disciplines
such as pattern recognition and video analysis, and we need
to conduct deeper research on it.

�ere are many issues that have not been adequately
addressed in current research on the problem of AD in
freestyle gymnastics videos. In terms of practical applications,
the study of the AD of FG videos has an enormous application
value. Among other things, in FG movements, we need a
quick identi�cation of the various types of movements of the
athletes. �is paper aims to achieve high recognition accuracy
in automatic video-based human movement understanding,
and even real-time movement recognition and commentary.
For nonexperts, if ADs can be achieved, it will not only
enhance the viewing experience but also facilitate their un-
derstanding and learning of the sport of FG.
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Kojima et al. [4] took an alternative perspective by
studying human activity through the theory of behavioral
concepts and thus described human behavior. Guadarrama
et al. [5] combined the semantic hierarchy theory with se-
mantic relations between multiple fragments. Rohrbach
et al. [6] described features through mathematical modelling
by studying human activity under conditional random fields.
Xu et al. [7] proposed a combination of a deep video model
and a joint embedding model as a kind of framework that
allowed for the study of relationships between videos and
words. +e above research methods were limited by some
syntactic structures [8], making the research results deviate
from everyday descriptions.

With the continuous development of deep neural net-
works (NN) [9] and the emergence of many large-scale
datasets in image recognition [10], many approaches to
semantic representation have changed dramatically.
Hochreiter et al. [11] proposed LSTM, which can effectively
solve the gradient disappearance problem of Recurrent
Neural Network (RNN) species. Gers et al. [12] proposed an
oblivion gate mechanism, in which Graves et al. [13] im-
proved the LSTM and proposed a bidirectional LSTM
(BLSTM) NN, which has been widely used.

Venugopalan et al. [11] used a convolutional neural
network (CNN) to feature extract all frames in a video and
fed them into an LSTM to decode and generate text.
Venugopalan [14] proposed S2VTwith an LSTM in both the
front and back segments. Shetty et al. [15] trained a variety of
models on different kinds of features, using an evaluation
network to assess and generate a description of the video by
generating correlations between sentences and video fea-
tures. Jin et al. [16] used multiple features and fused features
to represent the video.

With its greater freedom, varied movements, and the
ability to perform a complete set of moves in a set time, FG is
one of the most aesthetically pleasing sports in competitive
gymnastics and is the quintessential representative of
competitive gymnastics. +e study of automatic video de-
scriptions of FG is of great relevance. For nonexperts, ADs
would not only improve the viewing experience but also
make it easier for them to understand and learn the sport of
FG. In this paper, automatic video description is performed
by extracting the athletes’ set movements from FGVs. +e
LSTM network visualization techniques are used to learn the
mapping relationship between word sequences and video
frame sequences. An AM is also introduced to highlight the
importance of the keyframes that determine the FG
movements. Experiments are conducted on MSVD data and
self-built datasets, using planned sampling to eliminate the
differences between the training decoder and the prediction
decoder.

2. Techniques for Visualizing the
Effectiveness of Economic Management

2.1. Background and Issues. In recent years, the study of AD
of sports video content has gradually become a hot topic,
with the rapid growth of sports video data volume and
audience groups. Apart from football and badminton, which

are typical representatives of ball sports, other areas of sports
video research are less involved. +is paper takes FGV as the
object of study because it plays a fundamental role in other
sports. FG has the greatest degree of freedom and difficulty
among competitive gymnastics and is highly representative.

By FGV comprehension, wemean understanding a given
video of FG. +e terminology for the set performed by the
athlete is generated by observing the set in the video, such as
the method, direction, and angle of the body flip. +e tra-
ditional method relies on manual commentary, and many
important competitions require real-time commentary by
the commentator, which demands a high level of expertise.
Nonspecialists understand the competition primarily
through the point of view of the commentator, and any
errors in the commentary will reduce the viewing experience
of these people. It is essential to use pattern recognition
techniques combined with natural language processing to
achieve ADs of FGVs.

2.2. Algorithmic Framework Structure. +e framework of
this paper is shown in Figure 1 and uses economic man-
agement effectiveness visualization techniques to analyze
freestyle gymnastics video features. +at is, an LSTM net-
work [17] is used to express the mapping between the
features studied and the words, to enable the description of
the language. With the development of deep neural nets,
many larger datasets have emerged, such as Sport-1M. In the
study of this paper, the data used contain videos of FG from
the Olympic Games and the National Games, and their
decomposed movements are studied as a dataset.

In the FGVs, the decomposed movements mainly in-
clude the direction of the flip, the number of rotations, and
the body posture of the athletes.+e video frames containing
the key movements of FG are defined as keyframes, and the
keyframes with high discriminative power are extracted to
improve the accuracy of the video description. +e dis-
criminative power of the video frames is calculated through
an AM. In this paper, the AM [18] is integrated into the
existing video description network to maximize the accuracy
of video description by calculating the weights between
different video frames.

+e basic framework shown in Figure 1 begins with the
construction of a free-form gymnastics decomposition
movement dataset. +e AD of sports videos starts with a
CNN for feature extraction. For text data that have been
annotated, the corresponding dictionary needs to be pro-
posed to extract the corresponding features. Randomly se-
lected text data are trained in the model until the model’s
effect stabilizes. +e remaining text data are used as the test
set, resulting in automated descriptions of freestyle videos.

2.3. Feature Extraction. In the AD of the freestyle video
studied in the text, the data type contains not only video data
but also text data. We achieve a more accurate description of
this video by using CNNs to extract video features and
natural language text processing for text features.

+e NN model is robust and the training cost of the
model is small and the classification accuracy is high. +e
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CNN model has simple operating conditions and does not
require much hardware for the device, and the speci�c
morphology of the features is not considered at all when
using feature extraction [19]. In this section, three di�erent
types of 2D CNN, Visual Geometry Group (VGG) [20],
ResNet [21], and DenseNet [22], are used to perform feature
learning on videos, respectively, and the VGG network
structures are shown in Figure 2. �e VGG network
structure to extract feature representations of freestyle
gymnastics videos has a signi�cantly lower error rate. ResNet
can use the original signal directly into the deeper layers of
the neural network, speeding up the training e�ciency of the
network, while DenseNet builds on and improves ResNet.
�e feature mapping generated by DenseNet will also be
used as input to all subsequent layers, ensuring that the
information is passed on, and thus avoiding gradient
disappearance.

In this paper, the descriptors of the FGVs are trans-
formed into features by using the one-hot vector coding.�e
words in the FG annotated text are �rst counted to construct
a dictionary. �e number of words used in the descriptions
of the FG decomposition movements is not large, so no
�ltering of words is performed in the preprocessing.

3. AD Methods for Sports Videos

3.1. AD System for FG. We use LSTM to learn video features
from this paper. Standard recurrent NNs are prone to
gradient disappearance during backpropagation, making it
di�cult to continuously optimize the network parameters
[23]. �e LSTM is a special type of recurrent NN that can
e�ectively solve this problem, especially in long-distance
dependent tasks, where it outperforms the RNN. �ese are
input gates, forgetting gates, and output gates. �e gate
control can be regarded as a fully connected layer in the
CNN, and the LSTM stores and updates the information
through these gate controls. �e gate control quanti�es the
amount of information passing through each part of the cell
by using a sigmoid function to obtain a probability value
between 0 and 1. When the sigmoid function is 0, no in-
formation variables are allowed to pass at that moment, and
when the sigmoid function is 1, all variables are allowed to
pass at that moment. �e gates for forgetting are called
“forgetting gates” and gates for outputting are known as
“output gates.”

�e LSTM encodes a �xed-dimensional sequence of FG
decompositions into feature sequences, which are then

decoded and used to generate text by the LSTM NN. First,
encode the �xed dimensional FG decomposition movement
feature vector X � (x1, . . .xn) into a feature sequence, and
obtain the output H � (h1, . . . hn) of the corresponding
hidden layer. �e output of the LSTM is known to be de-
pendent on the previous input sequence, so the feature
vectors are fed into the LSTM once in sequence, and the
output is a coded mapping of the sequence vectors. After the
feature vector of the last frame is input, the output of the
LSTM is the encoding of the sequence of frames. �e LSTM
in the decoding phase is fed the start character, which
prompts it to begin decoding the hidden state it is subjected
to a sequence of words, and the output yields a sequence of
words Y � (y1, . . .ym) with a probability of p(y1, . . .
ym|x1, . . .xn):

p y1, . . .ym|x1, . . .xn( ) �∏
t�1

m

p yt|hn+t−1, yn−1( ). (1)

When training in the decoding phase, the log-likelihood
of the predicted sentence is found under the condition that
the hidden state of the frame sequence and the previously
output words are known. �e model is trained so that the
following equation reaches its maximum value:

θ∗ � argmaxθ∑
t�1

m

log p yt|hn+t−1, yn−1; θ( ), (2)

where θ is the angle of the vector at which the maximum log-
likelihood is reached and argmax indicating the maximum
value. �e entire training dataset is optimized using a sto-
chastic gradient descent algorithm, which allows the LSTM
to learn more appropriate implicit states. �e output of the
second layer LSTM z is speci�ed by �nding the most
probable target word y in the vocabulary Y as shown in the
following equation, where Wy indicates the weight of the
output:

p y|zt( ) �
exp Wyzt( )

∑y′∈yexp Wy′zt( )
. (3)

3.2. Attention Mechanism. �e di�erence in the attention
allocated to di�erent signals by the human brain when
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Figure 2: VGG16 network structure diagram.
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processing signals is referred to as visual AM[24].�e area of
the target on which human vision can gain focus by quickly
capturing the image, in order to obtain more detailed in-
formation about the target to be focused on and to eliminate
other useless information is referred to as the focus of at-
tention [25]. In this paper, the AD of FGmovements is based
on the principle of the AM, which �rst selects the decisive
video movements that can be taken, i.e., the way the athlete’s
body �ips, the angle, and the di�erent directions, which
should be assigned more weight in order to make the AD
more accurate. �e introduction of this AM allows the
decoder to assign weights to all feature vectors in the FGV.
�e structure of the model containing the AM is shown in
Figure 3.

In this paper, a dynamic weighted sum of temporal
feature vectors is used, with the following equation:

φt(X) �∑
i�1

n

α(t)i χi, (4)

where t denotes the moment t and xi denotes the vector.
∑i�1n α(t)i � 1, α(t)i is the proportion of the overall score that
the output of the hidden layer at that moment matches the
entire video representation vector, calculated as follows:

α(t)i �
exp score xi, hi( )( )

∑j�1n emp score xi, hi( )( )
, (5)

where score(xi, hi) denotes the fraction of the video feature
vector xi occupied by the output hi of the ith hidden layer,
the larger the fraction, the greater the attention of the input
at this moment in that video, which is calculated as follows:

scorexi, hi � w
ttanh Wxi + Uhi + b( ), (6)

where w,W,U are weight vectors and b are o�sets.

4. Model Analysis

4.1.Experimental Setup. �e graphics card in this paper is an
NVIDIA Titan 1080 and the memory size is 11GB. During
the network training, the input data were resized to 227∗227,
and the VGG-16 pretrained model provided in the model
parameter training was performed directly on the ILSVRC-
2012 image set, a subset of the ImageNet. Comparison ex-
periments were added in order to verify the impact of the
features extracted from the di�erent 2D CNN on the de-
scription results of the freestyle gymnastics videos. We
conducted experiments on the ResNet101, ResNet50, and
DenseNet201 CNN to compare the results of the experi-
ments after feature extraction and input to the model for
coding and decoding.

4.2. Dataset Construction. �e construction of a dataset of
decomposed movements for FGs is an essential task for the
AD of FGs. �e experimental dataset in this paper is mainly
collected from videos of professional athletes competing in
professional competitions, such as the Olympic Games,
World Championships, National Games, and several other
heavyweight events. �ese collected videos are �rst

preprocessed, with a number of video frames per athlete
being cut o� to include only the athlete’s FG movements.
Because these videos are interspersed with highlights, replay,
and slow-motion commentary, which together make up a
video, these are the parts that were ignored in the AM.

�rough data collection, we obtained a total of 298
training video data and 45 test video data. After pre-
processing all the videos, there are still some problems. As
these videos are among those obtained live, there is no real-
time caption display for the narrator’s words, and we address
the e�ect of distracting factors by using speech recognition.
In this paper, word frequency statistics were performed on
the 298 video descriptions collected, and the results showed
that a total of 48 words appeared in these descriptions, and
the word frequencies of all words are shown in Table 1. �e
words occur less than 10 times, and nearly half of the words
occur once and twice. Figure 4 also analyses the frequency of
the 25 words with more than 10 occurrences. It can be seen
that the number of words with more than 150 occurrences is
still very small and the names of the words in Figure 4 are
replaced by the �rst two letters.

4.3. Scheduled Sampling. In the decoder of the training
phase, it is the target sample that is used as the input for the
next predicted subsample. Whereas in the prediction phase
the decoder takes the previous prediction result and uses it as
an input for the next prediction value. �is di�erence leads
to the problem that the training and prediction scenarios are
di�erent. In prediction, if the previous word is predicted
incorrectly, all subsequent ones will follow, whereas the
training phase does not.

�is paper modi�es the model of the decoder during
training by introducing a planned sampling approach. �e
base model will only use the true annotated data as input, the
training decoder with the addition of planned sampling is to
select the model’s output with a probability P as the input for
the next prediction and the true markers with 1-P as the
input for the next prediction. �at is, the sampling rate of P
varies during the training process. In the beginning, when
training is not su�cient, start by making P smaller and try to
use the true description as input, and as training progresses,

II II II II

II

II

II

ht–1

h1

LSTM LSTM LSTM LSTM

h2 h3 hn

αnα3α2α1

ht

h%

Figure 3: Integrated network architecture.

4 Mathematical Problems in Engineering



increase P and use more of its own output as input for the
next prediction. As training progresses, P gets larger and
larger, and the training decoder model eventually becomes
the same as the prediction decoder model. Eventually, the
di�erence between the training and the prediction decoder is
reduced by planning the sampling scheme.

4.4. Loss Function. �e iterations of the loss function in the
experiments are presented using the visualization tool Tensor-
Board, as shown in Figure 5, which shows the variation of the
training loss value with the number of iterations for the original
model and the model after the introduction of the AM.�e loss
values of both models gradually decrease and converge. �e
model with the AM has an increased rate of convergence as the
time complexity increases and the starting loss value is larger.

4.5. Evaluation Metrics and Performance Comparison.
�e result of the AD of FG is the description of the
decomposition of FG movements, which is a kind of

natural language, and the evaluation of the result of the
description can be referred to the metrics used in natural
language to evaluate the quality of machine translation
results. Bleu is the closest metric to the human rating
at present. Bleu is a matching principle using N − gram.
N − gram is the representation of a sentence as a
sequence of n consecutive words. �is paper conducts
experiments on two corpora, the MSVD and the self-
built dataset. �e experimental results are shown in
Table 2.

�e experimental results compared in Table 2 are the
mean Blue from Bleu_1 to Bleu_4. �e table shows three
datasets, two of which are our own, each of which is di�erent
when tagging the video descriptions. OURS(1) is the most
straightforward natural language, and since the profes-
sionalism required for the description of FG breakdown
movements is high, OURS(2) is di�erent when describing
markers; the descriptive statements are adapted to the
specialist terminology. From the results of the three datasets,
we know the model with the AM introduced in this paper
performs better on both the MSVD dataset and the self-built
dataset.

�e di�erent test results for the three models are given in
Figure 6. From Figure 6, we know that the MSVD has the
best performance among the three models and it accounts
for the largest percentage. Whereas OUS(1) is the least ef-
fective and OUS(2) is the second most e�ective, indicating
that the e�ectiveness of the modi�ed model has improved.

Table 3 shows the comparison of the experimental results
of feature extraction using ResNet101, ResNet50, and
DenseNet201 networks on the self-built dataset OURS (2). In
Table 3, two evaluation metrics, ROUGE_L and METEOR,
are also added, and in order to highlight the gaps in the
experimental results more, Table 3 compares the results of
the Bleu evaluation metrics in Table 2 with speci�c �e
average Bleu from Table 2 is compared and expanded into
Bleu_1, Bleu_2, Bleu_3, and Bleu_4 speci�c results. �e
speci�c experimental results show that the DenseNet201
performs the best in all evaluation metrics compared to
VGG16.

Table 1: Word frequency statistics.

Words Frequency Words Frequency Words Frequency
Stretched 165 Half 19 �omas 4
Backward 164 Handspring 16 Planche 3
Forward 157 Handstand 14 Spring 3
Two 145 Arm 13 Step 3
Tucked 78 Straight 13 Ring 2
Salto 70 Flexion 13 Sit 2
Twist 64 Extension 13 Spin 2
Twohalf 57 Vertical 12 Push-up 2
Onehalf 55 Fast 11 Flip 2
Piked 47 Back 10 �reehalf 1
One 45 And 9 Pushup 1
�ree 42 Spring 9 Deceleration 1
Jump 31 Change 7 Straightened 1
Arab 22 Flare 5 With 1
Leg 20 Straddle 5 Double 1
Roll 19 Split 4 Withdrawal 1
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4.6. Comparison of the Experimental Results of the FG Video
Depiction Examples of the Di�erent Models on the Self-Con-
structed Dataset. Compared to the S2VT, the results of the

model with the AM are similar for the direction test as
“forward” in blue, but for the body posture test as
“stretched” in red, the improved model is more speci�c. A
comparison of the visual results of the di�erent feature
extraction networks is shown in Figure 7.

�e ultimate goal of the multiclassi�cation in this paper
is to achieve AD of the video, using the improvedmethod for
testing. To ensure experimental rigour, the mean Blue from
Bleu_1 to Bleu_4 is still taken here as the evaluation metric,
and the freestyle description statements identi�ed are
compared with the correct descriptions labelled from the
previous section.�e comparison of the experimental results
is shown in Table 4, and it is clear that the method of using
video multilabel classi�cation transformation for AD of
freestyle gymnastics videos gives better experimental results.

�e pie charts of the experimental results of the �ve
methods are shown in Figure 8. �e experimental results of
the method in this paper are the best, which veri�es the
e�ectiveness of the proposed method.

�e experimental results of the di�erent AD models of
FG on the self-constructed dataset are compared with those
of the classi�cation method in this paper. Compared to the
original model S2VT, the results of the model with the AMs
are similar for the direction test as “forward” in blue, but for
the body posture test as “stretched” in red, the improved
model is more speci�c. In the classi�cation problem, the
video contains two actions, and although only one correct
category is identi�ed, “forward stretched twist three,” this
category contains four correctly described words, thus im-
proving the accuracy of the description.

Although the improved model improves the accuracy of
the description, the ADmethod for FGV based on the LSTM
networks only applies a two-dimensional CNN model for
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Table 2: Analysis of experimental results of the improved model.

Category S2VT AMs Planned sampling
MSVD 17.2 17.9 18.8
OURS (1) 8.7 9.3 10.4
OURS (2) 10.9 11.2 12.3
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feature extraction.�is increases the risk of gradient loss due
to the temporal loss of information in the video data. In the
future, three-dimensional CNN could be used for feature
extraction and the network could be improved by fusing
multimodal video features. In addition, the introduction of
the AM could be further improved by aiming to be able to
introduce several attention modules at the same time to
highlight the importance of the keyframes in decision-
making. Attention should be paid to the speed and e�ciency
of the operation and to the improvement of the algorithm to
improve the accuracy of the description.

5. Conclusion

In this paper, the method of the video AD and related
technical theories were introduced, and the method AD of
FGV based on the LSTM networks was described in detail.
Firstly, the automatic video description method was taken as
the entry point, and the current status of AD video methods
and sports video research studies were reviewed. From the
perspective of economic management e�ectiveness visuali-
zation techniques, the relevant concepts and development
history were introduced, and the structure of three im-
portant types of NNs was described with emphasis on the
structural dissection of typical network models, respectively.
�e paper introduced the integration of AMs into existing
video description networks, weighing the importance of
video frames by the means of weight values. In the course of
the experiments to improve the model’s computational
accuracy, application schemes were employed to reduce the
discrepancy between the training decoding model and the
predicted decoding model before. Finally, experiments were
conducted on multiple feature extraction network structures
of VGG16, ResNet101, ResNet50, and DenseNet201,
through which the feasibility of the improved method was

Table 4: Comparison of experimental results.

Category Bleu mean value
Methodology of this paper 41.25
VGG16 12.30
ResNet101 17.85
ResNet50 17.88
DenseNet201 18.75

Table 3: Comparison of experimental results for di�erent feature extraction networks.

Category Belu_1 Belu_2 Belu_3 Belu_4 Belu ROUGE_L METEOR
VGG16 21.64 16.42 10.50 0.64 12.30 40.67 14.42
ResNet101 30.63 25.27 14.83 0.67 18.75 41.94 15.66
ResNet50 30.74 25.32 14.80 0.67 17.88 41.94 15.64
DenseNet201 31.17 25.88 17.19 0.74 18.75 43.26 16.14
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verified. As the results of this paper were obtained in an
experimental setting, there should be more extraneous
factors interfering in the practical application, and themodel
will be improved to make it applicable in a realistic setting.
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