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In this paper, the optimal position control of an underactuated robotic �nger is presented. Two trajectories, one for the proximal
and the other for the medial phalanx, are proposed in order to emulate the �nger’s �exion/extension movements. A Mandani
fuzzy control is proposed due to the lack of a precise dynamical model of the system. In order to obtain the control parameters, an
optimization strategy based on the membership functions is applied. Genetic algorithms (GA) are commonly used as an op-
timization method in diverse applications; however, in this case, the use of an autoadaptive di�erential evolution method is
proposed in order to obtain a superior convergence behavior. Simulations of the virtual prototype are carried out usingMATLAB/
Simulink software to display the trajectory tracking.�e results show that the maximum error between the proposed and obtained
trajectories is 3.1352E− 04 rad.

1. Introduction

Currently, control development for robotic hands continues
to be a topic of interest as researchers seek to recreate human
hand interaction with their environment when developing
prototypes and their interaction with the environment. �is
objective is di�cult to achieve due to the challenging nature
of controlling robotic hands, as they are relatively complex
mechatronic systems, which allow the user to hold, ma-
nipulate, and make use of di�erent objects and tools. As a
possible solution, some researchers have focused on im-
proving control tasks in order to generate a robust grasp to
reliably hold any object. In addition, the selection criteria of
actuators are an important factor because the size, weight,
and torque are variables that must be considered. Generally,
the control systems have a closed-loop structure, since they
seek to reduce errors so that the hand �nger can maintain a
speci�c desired position [1, 2], by using pneumatic [3–5] and

touch [6–8] sensors. In the literature, the most common
control schemes are the proportional-integral-derivative
(PID) control [9–11] and fuzzy control [12–14]. Controllers
based on fuzzy logic are an alternative solution that does not
require a mathematical model such as the PID [15]. A fuzzy
logic controller (FLC) is a heuristic approach composed of a
rules base proposed by the designer. �e FLC is a nonlinear
system with a knowledge based on fuzzy If-�en rules, and
in most cases, the fuzzy rules are proposed by an expert who
knows the process. In order to generate an output, mem-
bership functions are used to specify the degree of mem-
bership based on inputs. FLC must have a �exible behavior
to adapt to various situations, as well as being robust to
maintain the state of the desired output.�e implementation
of FLC is fairly common for solving problems, where (a) the
systems are partially de�ned, (b) systems with variables that
cannot be measured, and (c) system with large disturbances
[12, 14, 16]. �e principal fuzzy systems are Mandani and
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Takagi-Sugeno. In particular, the Mandani systems use
various techniques that allow fuzzy set membership function
tuning, such as genetic algorithms (GA) [16], adaptive neural
networks [17, 18], artificial bee colony optimization [19–21],
ant colony optimization [22–24], and evolutionary algo-
rithms [25–27].

Recently, fuzzy logic systems have been combined with
nonlinear approaches in order to obtain adaptive control
systems. Zhang et al. [28] proposed an FLC combined with
sliding-mode technique for controlling underactuated sys-
tems.)e authors provided a detailed stability analysis and a
numerical example of a nonspecified system to prove the
performance of the closed-loop system. However, the fuzzy
system is not optimized. Li et al. [29] combined a fuzzy logic
system with a back-stepping controller and a fuzzy state
observer to solve the tracking problem for a class of un-
certain nonlinear systems with unmodeled dynamics and
disturbances. )e stability of the systems is proven to be
input-to-state practically stable based on the small-gain
theorem, but the fuzzy logic system’s membership functions
are not optimized. Chang et al. [30] presented an adaptive
fuzzy tracking control for a class of pure feedback and
switched nonlinear systems with unknown gain.)e authors
did not provide details on the fuzzy system, such as the
procedure to determine the membership functions.

Optimization methods have helped with the complex
task of finding the appropriate parameter values and
structure for the fuzzy systems.)emost used algorithms for
fuzzy systems optimization are GA because they are con-
sidered as global optimizers, unlike derivative methods that
have the disadvantage of being prone to local minimum
stagnation. )ey are also considered as good optimizers
because of the existence of a population of potential solu-
tions, which may be used to discard several local minima,
meaning that there is a higher probability of finding the
global minimum [31]. Several proposals search for optimal
membership function parameters. For example, in [32] the
authors proposed a methodology for optimizing a fuzzy
controller for the speed of a permanent magnet synchronous
motor (PMSM) without expert knowledge. For this ap-
proach, 14 variables are used for the optimization, 5 for the
rule base parameters, 6 for the membership functions, and 3
for the scaling factors. A method for automatically gener-
ating fuzzy rules is presented for a system with 25 fuzzy rules
needed, and each rule needs 3 bits [33]. A fuzzy controller
applied to the wellhead back pressure control systems is
optimized through the membership function, control rules,
quantization, and scaling factors. )e parameters are error,
rate, scale, integral, and differential scale factors [34]. De-
spite this, there are other methods, such as the differential
evolution (DE), which have more advantages compared to
GA, one example being that they are more effective at
searching for numerical problems and finding the optimum
global solution [35, 36].

Motivated by the limitations of GA and other optimi-
zation methods, this paper presents the implementation of
an auto adaptive differential evolution algorithm (AADE)
[37] for optimizing the parameters of a fuzzy logic controller
(FLC) for an underactuated robotic finger in order to track

the trajectory that represents the flexion-extension finger
movements. )is optimization algorithm does not require
gradient information, which means that the optimization
problem does not need to be differentiable. In addition,
AADE is based on symmetrical discourses and fuzzy nor-
malized systems, and the parameters F (factor scale) and Cr
(crossover constant) show evidence of self-adaptation
during the evolution phase, unlike GA or classical differ-
ential evolution (DE) algorithms, increasing its power and
execution.

)e remainder of this paper is organized as follows. In
Section 1, a brief description of the prototype is presented. In
Section 2, the development of the FLC and the application of
AADE for parameter optimization is described. In Section 3,
details of the numerical implementation of the optimized
FLC are provided. Final remarks and some proposed future
works for this research are given in Section 4.

2. Materials and Methods

2.1. Prototype Design. )e robotic hand AMH-II (anthro-
pomorphic metamorphic hand), originally presented in [38],
has four fingers, all of which have three joints except for the
thumb. )e index, middle, and ring fingers are powered by
an underactuated mechanism in order to use a single motor,
thereby reducing the weight of the finger. )is configuration
allows the hand to perform the flexion/extension finger
movements. )e thumb has three joints, although only two
of them are used for the flexion/extension movements, while
the other one is used for the rotational movement. Details on
the design and kinematic analysis of the AMH-II are pre-
sented in [38]. )e virtual prototype is shown in Figure 1,
and as can be observed, each finger has two motors to
control movement. )e motors employed are Pololu
micromotors 100 :1360 RPM 6V, and the joints are con-
nected to these motors through a transmission system
comprised of a worm-gear mechanism. )e palm, unlike
other robotics hands, can be moved through a motor fixed at
the joint of the link, where the fingers are located and the
link, where the thumb is located (thumb motor). Table 1
shows the ranges of motion for flexion/extension move-
ments of the hand, corresponding to each finger joint
(except for the thumb). Similarly, the movement mea-
surements and ranges of the phalanges of the presented
prototype are also shown.

2.2. Implemented Controller. For the control system, a
Mandani fuzzy system was implemented, which includes a
micro-motor that controls the position of the fingers. )e
transfer function corresponding to the servo motor used was
obtained from [39].

G(s) �
V(s)

θ(s)
�

24
s
2

+ 24s + 10
, (1)

where V(s) is the input voltage applied to the motor, while
θ(s) is the rotor position in radians (rads) after applying a
specific voltage. )is value is used as feedback as shown in
the schematic diagram in Figure 2.
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�e reference block represents the desired trajectory,
while e and de are the error signal and its derivative, re-
spectively, which serve as inputs for the fuzzy logic controller
(FLC). �is block sends a voltage signal to the motor block
and its position is evaluated by the AADE so that the
membership function parameters are changed to reduce the
error.

�e fuzzy system has three variables, error (e) and error
change (c) are the inputs, and voltage (v) is the system
output. Moreover, the variables have their own discourse
universe range (Table 2) [37]. �e con�guration of the fuzzy

system is established in 9 rules as shown in Table 3. Symbols
NE, ZE, and PE are the linguistic terms for “negative error,”
“zero error,” and “positive error”; NC, ZC, and PC are the
linguistic terms for “negative change,” “zero change,” and

Proximal

Middle

Distal

(a)

Motor 1
Motor 2

Palm motor

Thumb motor

(b)

Figure 1: AMH-1: (a) phalanges of the hand and (b) motors’ position.

Table 1: Ranges for �exion/extension movements comparison.

Phalanx Length of the prototype (mm) Range of human hand movement Range of prototype movements
Distal (index and middle) 14 0–90° 0–85°
Middle (index and middle) 38.16 0–90° 0–75°
Proximal (index and middle) 41.89 0–90° 0–75°

Auto-Adaptive
Differential

Evolution (AADE)Fitness
function

Reference

e
+

-

de
dt FLC

Voltage
v (t)

DC Motor

Phalanx
24

s2 + 24s + 10

Θ

Θ (t)

Figure 2: Block diagram of the control system.

Table 2: Ranges for the fuzzy system.

Variable Discourse ranges
Position error e [0 , (π/2)]
Error change c [0 , (π/6)]
Voltage v [−8.19, 8.19]
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“positive chance”; and NV, ZV, and PV are the linguistic
terms for “negative voltage,” “zero voltage,” and “positive
voltage.”

�e fuzzy function proposed for the control is Gaussian
for ZV, ZE, and ZC. Sigmoid functions were used, as were Z
shape membership functions for NE, NC, and NV, and for
the rest of the variables, the S shape function was imple-
mented. �ree parameters are needed in order to de�ne a
Gaussian function, while 2 parameters are needed for sig-
moid functions. �e optimization problem is then de�ned
by 21 parameters. �e number of variables requires a
considerable amount of computation time and the use of
resources for the optimization algorithm. �erefore, the
following methodology was implemented in order to reduce
the number of variables.

2.3.Methodology. In [37] a method for reducing the number
of parameters for a fuzzy set control through the use of

symmetrical discourses was proposed. In basic terms, these
variables can distribute several sets to the positive part of the
discourse universe, and then re�ect them all in the negative
part. It is important to consider that not all the applications
can be addressed with these variables, as it is preferable that
every consequent action of the fuzzy system has the same
magnitude in both positive and negative directions. In this
case, the symmetrical discourses can be applied because the
servomotors have the same range for the output in the
positive and negative response.

For example, in Figure 3, di�erent membership func-
tions (MFs) are shown, all of which are symmetrical. �e
NULL or Zero set corresponding to the triangular function is
located exactly in the middle of the discourse universe (red
line) while the opening of the triangular function is varied,
denoted as d1e . In order to achieve a symmetric function, the
provided value is changed to negative and as a result, the
complete function is obtained. �e parameters of S function
are de�ned by d2e and d

3
e , and to obtain the Z function, the S

Table 3: Rules set.

Voltage NC ZC PC
Position error
NE NV(1) NV(2) PV(3)

ZE NV(4) ZV(5) PV(6)

PE PV(7) PV(8) PV(9)

NE ZE PE

1

e

NV ZV PV

1

v

NC ZC PC

1

c

d2
e

d2
c

d1
e d2

e d3
e d1

c d2
c d3

c d1
v d2

v d3
v

d1
c

d3
c

d1
e

d3
e

d3
v

d1
v

d2
v

Figure 3: Example of a symmetrical variables.
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parameter functions are reflected. With this approach, the
shape of the error sets can be defined with three parameters.
)is same approach is also applied for the change and
voltage variables. When applying this method to the pro-
posed problem, the number of parameters is reduced from
21 to 9.

In the methodology proposed in [37], GA was used as an
optimization method, while in this paper the auto adaptive
differential evolution proposed by [40] is used. )is is be-
cause it tends to converge to the solution in fewer iterations
(ten), and does not depend on the number of the population
as with GA. A description of the algorithm is presented in
the next section.

2.4. Autoadaptive Differential Evolution Algorithm (AADE).
)e AADE is a type of evolutionary algorithm used for
multidimensional real-valued functions. )is method does
not require gradient information, which means that the
optimization problem does not need to be differentiable. In
addition, it has an efficient memory utilization as well as
being effective and robust [36, 40–42]. )e main feature of
AADE is that parameters, such as F (factor scale) and Cr
(crossover constant), show evidence of self-adaptation
during an evolution phase, unlike GA or classical differential
evolution (DE) algorithms, increasing its power and exe-
cution. Figure 4 summarizes the AADE operation flow chart.
More specifically AADE’s basic strategy can be described as
shown below.

2.4.1. Population. )e population is a vector x defined as

x � x1, x2, . . . , xD( , (2)

whereD is the dimensionality of the function f.)e variables
domains are defined by their lower and upper bounds: xj,low
and xj,upp; j ϵ {1, . . ., D}. )e initial population is selected
randomly between the lower (xj,low) and upper (xj,upp)
bounds defined for each variable xj.)e bounds are specified
according to the user.

2.4.2. Mutation. In every iteration (generation) G, DE uses
the mutation operation for producing the donor vector. For
each target vector xi, G, i� 1, 2, 3, . . ., NP, a mutant vector

vi � vi,1, vi,D  is generated according to a specific mutation
scheme. )e most widely used in differential evolution are

DE

rand/1vi( 
� xr1 + F xr2 + xr3( ,

DE

best/1vi( 
� xbest + F xr1 + xr2( ,

DE

rand/2vi( 
� xr1 + F xr2 + xr3(  + F xr4 + xr5( ,

(3)

where r1, r2, r3, r4, and r5 are random integers within the
range [1, NP] and are different to index i
(r1≠ r2≠ r3≠ r4≠ r5≠ i). F is a real and constant factor, which
controls the amplification of the differential variation.

2.4.3. Crossover. )e crossover operator is used to increase
the perturbed parameter vectors’ diversity. )e trial vector

Ui,G+1 � U1i,G+1, U1i,G+1, . . . , UDi,G+1 , (4)

is formed, where

Uji,G+1 �
Uji,G+1, if(rand b(j) ≤ CR) or j � rnbr(i),

xji,G, if(rand b(j) >CR) and j≠ rnbr(i),

⎧⎨

⎩ j � 1, 2, . . . , D, (5)

where rand b (j) is the jth evaluation of a uniform random
number generator within the range [0, 1], which has to be
determined by the user. rnbr (i) is a randomly chosen index
ϵ1, 2, . . ., D, which ensures that Ui,G+1 receives at least one
parameter from Ui,G+1.

2.4.4. Selection. )e trial vectorUi,G+1 is compared to the target
vector xi, G using the greedy criterion in order to decide whether
or not it should become amember of generationG + 1. If vector
Ui,G+1 yields a smaller cost function value than xi, G, thenxi,G+1 is
set to Ui,G+1; otherwise, the old value xi, G is retained.

Start

First generation
initialization

Fitness
evaluation

Stop
criteria

End

yes

no

Selection
method

Mutation

Crossover

Set new
values for F

and Cr

Figure 4: DE flow chart.
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2.4.5. F and Cr Value Adjust. �e estimation of the F and Cr
values depends on the following equations:

Fi+1,G � Fi+1,G − randi,j[0, 1]∗
f Ui,G( ) − f Yi,G( )

f Ui,G( )
 ,

Cri+1,G � Cri+1,G − randi,j[0, 1]∗
f Ui,G( ) − f Yi,G( )

f Ui,G( )
 ,

FG+1 � randi,j[0, 1]∗
max −min

max
( ),

CG+1 � randi,j[0, 1]∗
max −min

max
( ),

(6)

where Fi+1,G and Cri+1,G represent the estimation of the F and
Cr of each vector. f(Ui,G) is the new vector and f(Yi,G) is the
current vector. FG+1 andCG+1 are the new F andCR values for
the next generation. In addition, the max and min are values
obtained from an array that contains all Fi+1,G and Cri+1,G.

�e methodology implemented is as follows:

(1) Start AADE algorithm

(a) Set the initial parameters.
(b) Initialize all NP individuals with random

positions.
(c) Generate three and four individuals from the

current population randomly based on the
mutation used.

(d) Apply the mutation operator to form the donor
vector using equation (6).

(e) Apply the crossover operator in order to increase
diversity.

(f ) Calculate the �tness of each individual.

(g) Calculate the new F and Cr values.

(2) Once the best individual is found, every parameter
must be assigned to its corresponding set.

(3) Evaluate the fuzzy system.

2.5. Simulations and Results

2.5.1. Experimental Con�guration. �e numerical experi-
ments were carried out on a Legion Y540-15IRH laptop with
Core i7 9th gen processor, 16GB RAM, and a clock speed of
2.6GHz with turbo boost of up to 4.5GHz.

Considering the range of �exion/extension movements
generated by the human �nger, a middle part of a sinusoidal
trajectory was proposed as a reference for the position
control. Due to the robotic �nger design con�guration, the
amplitude of the function is 1.4835 rad (85°) for the proximal
phalanx and 1.3962 rad (80°) for the medial phalanx. �e
equation of the mean squared error (MSE) is used in order to
measure the performance of the fuzzy controller. �e goal
function is as follows:

min
1
N
∑
N

k�1
[x(k) − y(k)]2 +M1h1





, (7)

where h1 (x)� 0 ⟶ the values are in the range.h1 (x)� 1
⟶ otherwise.

In equation (1), x (k) represents the value at time k, y (k)
is the value produced by the system at time k, and N rep-
resents the total number of samples. M1 is a constant of a
very high value that penalize the goal function when the
constraint fails.

�e optimization problem is de�ned by

(i) Design variables X� [ d1e , d2e , d3e , d1c , d2c , d3c , d1v , d2v
, d3v ].

-K- +
-

∆u
∆t ∆u

∆t
∆u
∆t

∆u
∆t

∆u
∆t∆u

∆t

in out
24

s2 + 24s + 10

error

S
PS

+ Conn1
Conn3

Conn2
PS S -K-

-K- +
- in out

24
s2 + 24s + 10

error1

S
PS

+Conn1
Conn3

Conn2 PS S -K-

Figure 5: Block diagram of the �nger control system.
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(ii) Limits of the variables: d1
e , d2

e , d3
e ∈ [0, (π/2)]; d1

c , d2
c ,

d3
c ∈ [0, (π/6)]; and d1

v , d2
v, d3

v ∈ [−8.16, 8.16].
(iii) Parameters of the algorithm:

Population size� 50.

Generation limit� 150.
F� 0.5.
Crossover rate� 0.2.

Table 4: Parameters for set distribution with different mutation strategies.

Mutation strategy d1e d2e d3e d1c d2c d3c d1v d2v d3v
DE/rand/1 0.5677 0.0873 0.0014 0.1883 0.3423 0.1870 0.9259 5.7279 7.6088
DE/best/1 0.7120 0.0957 0.0053 0.2691 0.4952 0.2781 3.6487 4.0871 6.5742
DE/rand/2 0.3860 0.0406 0.0180 0.2568 0.2537 0.3045 0.3248 6.003 6.6644

Table 5: Comparison of different mutations strategies in terms of error value.

Mutation strategy Fitness Pha1 Fitness Pha2
DE/rand/1 3.1352E− 04 2.7109E− 04
DE/best/1 7.2511E− 04 6.4323E− 04
DE/rand/2 4.1357E− 04 4.0554E− 04

1

0

0.5

-1.5 -0.5 0.5 1.50 1-1

NE ZE PE

(a)

1

0

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.50

NC ZC PC

(b)

Figure 6: Membership function obtained for inputs: (a) error and (b) change.
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�e proposed optimization algorithm was implemented
using Matlab software, while the parallel mode was used
because it increases the convergence speed, thereby dem-
onstrating another advantage of using this approach. �e
algorithm was iterated using the mutation strategies from
equations (5)–(7), with 30 total iterations, and 10 per each
mutation strategy. In order to evaluate the proposed fuzzy
control, some simulations were carried out using the
Simulink environment. For simulation purposes, a �nger
from the hand model presented in Figure 1 was exported to
Simmechanics, and the control was implemented in two
parts: one for the proximal phalanx and another for the
middle phalanx. �is is because the distal and middle
phalanxes are connected through a link resulting in a
subactuated mechanism. Only one �nger is simulated be-
cause it is the same movement for the other �ngers. �e
block diagram is shown in Figure 5.

3. Results and Discussion

Table 4 shows the best performance solutions for the �nger
control with the three used mutation strategies.

�e �tness of each solution is shown in Table 5. Pha1 and
Pha2 represent the proximal and middle phalanges, re-
spectively. All solutions are acceptable because the error is
very close to zero, although the best solution is presented by
DE/rand/1, followed by DE/rand/2 and DE/best/1.

Using DE/rand/1 solution, the input and output values
of the fuzzy system are de�ned. Figures 6 and 7 show the
membership functions and Figure 8 shows the 3D surface
viewer of the fuzzy logic controller to get a perspective of
rules design.

�e results of the virtual prototype and comparison
between the desired trajectory and the trajectory by the
control of each phalanx are shown in Figures 9 to 11.
Figure 9 shows the virtual con�guration of the robotic
underactuated �nger, while the position of the distal phalanx
depends on the movement of the middle phalanx, which is
transmitted by the P bar.

Based on Figure 10, DTPP represents the desired tra-
jectory of the proximal phalanx and OTPP is the obtained
trajectory. �e maximum rotation value of the proximal
phalanx is 1.4835 rad due to the con�guration of the

mechanism. As can be seen in the �nger’s �nal position, the
base is represented by the B block and the movement by the
A block. �e time simulation is 3.2 s, and the OTPP con-
verges to DTPP with an error of 3.1352E− 04 rad. �is error
is more visible in two intervals, from 1.3 to 2 and from 2.5 to
3.2. Between the trajectories, there are oscillations that
cannot be appreciated because they are very small (1
E− 03 rad) and appear in the interval from 0 to 1.4 s.

Referring to the results of Figure 11, DTMP and OTMP
are the desired and obtained trajectories of the medial
phalanx. �e maximum rotation value is 1.3089 rad due to
the �nger structure. Compared to the human �nger range
there is a di�erence of 16.66%, meaning that the �nger is not
able to grasp small cylindrical objects (diameter of less than
60mm). �e error between trajectories is 2.7109E− 04 rad.

According to analysis of its behavior, the controller
presents a fast response due to the extremely small error
tolerance (0.1 approx.), based on the membership function
intersection (Figure 6(a)). Under the same conditions and
modifying only the d3e values, the system response speed
decreases. On the other hand, after only modifying the
parameter d3c to values less than 0.2, the system does not
present changes. It means that the motor does not change
the direction of rotation and its velocity is the same under
any condition. In this way, the values for d1e , d

2
e , and d

3
e a�ect

the response speed of the controller, the signal to change

-6 -4 -2 0 2 4 6
0

0.5

1
NV ZV PV

Figure 7: Membership function obtained for the output.

5

0

-5

0.5

0
change -0.5 -1

0
1

error

vo
lta

ge

Figure 8: Rule surface.
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rotation of themotor is de�ned by the parameters d1c , d2c , and
d3c . �e rest of the parameters de�ne the motor rotation
speed.

Table 6 shows a comparison between the present work
and some results previously reported in the literature, and it
can be observed that almost all of the �nger models are
underactuated. �e most common technique for controlling
the position of the robotic �nger is the PID controller with
some variants. A fuzzy controller is also used but the

parameters are manually selected. Based on information in
the table, in some cases, the �nger dynamic model is pre-
sented in order to control the three joints. In [10, 12, 14], the
authors report a step response with a steady-state error (SSE)
of 0, although in [10] the time response is more than 10 sec.
On the other hand, the numerical results presented in
[12, 14] show settling times of less than 5 sec, but the control
parameters are manually obtained. Tasar et al. [11] used a
PID controller for a regulation problem of a full-actuated

(a)

A

P

B

(b)

Figure 9: Finger position: (a) initial and (b) �nal.

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0

1

Po
sit

io
n 

(r
ad

)

0 0.5 1.5 2 2.5 31
Time (S)

Proximal phalanx trajectory

DTPP
OTPP

Figure 10: Comparison of desired and obtained trajectory for proximal phalanx.
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robotic �nger. A maximum overshoot of 14.902° was
achieved for a reference of 90° for each actuated phalanx.
Sinusoidal trajectories are proposed in [43] and di�erent
control techniques are presented. As in previous cases, the
control parameters are tuned manually. �e considered
trajectory is a sinusoidal function with an amplitude range
[0–(−1)] rad in PID and SMC (sliding model control) cases,
which is very similar to what is reported in this work but
with a larger error.�emain di�erence with our work is that
the controller parameters are automatically adjusted, and the
obtained error is the smallest in all the presented trajectories.

Regarding the optimization of the fuzzy control, other
works have presented methods that, in some cases, optimize
more than 10 variables [29]. Moreover, the most common
algorithm is GA, although one of the main problems with
this type of algorithm is that it is largely dependent on the
population size. Moreover, the selection of the initial pa-
rameters represents a challenge because selecting the wrong
values can lead to the algorithm not converging. In order to
avoid this problem, the methods applied in this paper show

that it is possible to reduce the number of parameters,
considering that the fuzzy set is symmetrical. Instead of
using a GA algorithm, it was decided to implement an
AADE algorithm because the control parameters F and CR
are automatic and the time convergence is smaller compared
to GA. Another advantage is that the AADE has the potential
to generate a fuzzy control with no previous knowledge of
the system.

4. Conclusion

When removing the empiricism of a fuzzy controller, a
nonlinear problem with several dimensions appears, which
can be solved by focusing on the membership function to
generate a desired control. In this paper, the auto adaptive
di�erential evolution algorithmwas implemented because of
the limitations of other methods such as genetic algorithms,
arti�cial bee colonies, or ant colonies. �e chosen method
performs a sophisticated local search through the recom-
bination method, and the way in which the mutated method
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Figure 11: Comparison of desired and obtained trajectory for medial phalanx.

Table 6: Comparison between di�erent control strategies.

Author Control Finger dynamic model Trajectories Error
Calderon et al. [10] PI No Step 17mm SSE 0
Tasar et al. [11] PID Yes Step (for three phalanxes) SSE 0.255 deg (max)
Ghazali et al. [14] Fuzzy-PID No Step 90 deg SSE 0 deg
Ghazali et al. [14] Fuzzy No Step 90 deg SSE 0.12 deg
Raković et al. [12] Fuzzy No Step 100 rad SSE 0 rad
Jalani et al. [43] PID Yes Sinusoidal [0–(−1)] rad 0.0159 rad
Jalani et al. [43] Adaptive Yes Sinusoidal [0–4] rad 0.0791 rad
Jalani et al. [43] SMC Yes Sinusoidal [0–(−1)] rad 0.0167 rad
Our proposal Optimized fuzzy No Sinusoidal [0–1.483] rad 3.1352E− 04 rad
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vector is calculated means that the algorithm depends less on
an initial position. Furthermore, another advantage is that F
and Cr values are calculated automatically. Additionally, the
use of the symmetrical discourses is different to other
methods for finding the membership function mentioned in
the introduction. Specific information about the system is
neither not needed nor necessary to work with all the
variables shown in the proposed problem. At the start of the
process, it was composed of 21 variables, and before applying
the method, the variables were reduced to 9. With the
obtained vector, the MFs were generated to the fuzzy
control. From the simulation, the obtained results proved
that the control is able to perform flexion-extension
movements following the proposed trajectory with an error
of almost zero, despite not having a mathematical model of
the robotic hand. It would be very difficult to achieve these
results by selecting the controller parameters empirically.

)e following step in this research is to prove experi-
mentally the effectiveness of the proposed controller by
carrying out tests on the physical prototype reported in [38].
In addition, future studies will focus on the optimization of
membership functions to generate movement in the palm
and doing fingers able to perform different kinds of grasps to
evaluate the efficiency of this type of control scheme. An-
other interesting topic to be addressed in future works is the
consideration of type-3 fuzzy logic systems (T3FLS) to
improve the control system performance. T3FLS have been
proposed to handle an increased number of uncertainties
[44]. However, their main disadvantages are that the
structure of the fuzzy sets has been assumed to be constant
and themembership computation is complicated. Moreover,
studies on the parameter optimization of T3FLS have been
scarcely reported in literature [45]. )erefore, combining
AADE algorithms with T3FLS could be a promising alter-
native to provide robustness and improve the fuzzy logic
controller performance.
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