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Underwater sensor network technologies, as well as devices, are developing rapidly, and underwater IoTdevices have been widely
used in energy surveys, environmental indicator detection, military surveillance, and disaster event monitoring.*e transmission
of massive amounts of underwater data to the cloud for processing and analysis has become the dominant processing paradigm,
and cloud computing has become a dominant computing paradigm. *e preparation strategy of elastomer-coated hydrogel
optical fibers for stable optical sensing proposed in this work opens up a new method and approach for developing low-cost and
highly sensitive water flow sensors while analyzing the design of wearable smart devices to assess underwater environmental
emotion perception evaluation schemes. In this paper, we propose a sensory data acquisition technique for event coverage
detection of underwater environmental emotions, observing that an event may correspond to deviations from the normal sensory
range of sensory data from multiple adjacent sensor nodes. Distributed edge computing is introduced to assume part of the cloud
computing pressure, and an edge prediction-based data acquisition and sensing scheme for underwater sensor networks is
proposed to realize the conversion of the acoustic communication transmission part of underwater data into data prediction
transmission, thus reducing the energy consumption caused by acoustic communication. *e model established in this paper
effectively reduces sensor energy consumption while ensuring accurate data transmission and can respond to the underlying
demand promptly, which is significantly better than the already existing schemes.

1. Introduction

Nowadays, IoT devices are widely introduced in the marine
environment and are mainly applied to explore the devel-
opment of monitoring and surveying in the ocean, mainly
around the sensing layer, which has played an unparalleled
role in promoting the development of underwater sensor
networks in the ocean. With the cellular increase of IoT
devices, underwater sensor networks are becoming more
and more complex and varied, and the ocean has entered the
era of big data with large volume, fast flow, diversity, and
high value.*e data collected in underwater sensor networks
are often probing values, such as acidity, carbon content, and
silicon content, which often reflect the condition of the
seafloor, such as whether there is an oil leak or whether
unusual elements are present [1]. At the same time, the

mobile devices are mobile, portable, and instantaneously
reachable, so that they can always be around the user, ac-
tively acquire and analyze user contextual data within a
certain authority to sense contextual changes, analyze the
needs of each user, predict the user’s behavioral goals, and
provide targeted information services, so that the context is
fully integrated with the user’s task goals to achieve natural
interaction. Current research on mobile context awareness
focuses on basic theoretical construction, technical support,
and application exploration, with fewer mature, systematic
products and services or solutions for common users, and
the application areas of mobile context awareness need to
continue to expand [2]. *e gradual development of intel-
ligent systems such as mobile context awareness has also put
forward new requirements for human-computer interaction
design, from microscopic to macroscopic, from interaction
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mechanisms to practical scenarios, from psychological to
sociological levels, and from human-computer interaction to
human-computer coexistence. Researchers have explored
various ways to identify emotional states in interactions,
mainly focusing on facial expression understanding, speech
acoustic feature understanding, body movement under-
standing, physiological signal understanding, and textual
emotion understanding [3]. From the mathematical point of
view, low-frequency sensor data is a series of nonstationary,
time-varying processes of time-series waveform data. *e
feature extraction method of low-frequency data has many
similarities with the feature extraction of audio signal. *ey
first calculated time-frequency-domain eigenvalues and then
calculated the mathematical-statistical feature of these ei-
genvalues. Emotional signals are mainly induced based on
materials such as videos, pictures, and texts, and the data
they acquire mainly include videos, speech, and pictures,
which are limited to the existing technical conditions; there
are still a huge amount of shortcomings in acquiring the
emotions of the underwater environment.

*is paper presents a sensory data collection technique
for event coverage detection of underwater environmental
emotions, observing that an event may correspond to de-
viations from the normal sensory range of sensory data of
multiple neighboring sensor nodes. In this study, we will
start from the actual scene where the user wears the wearable
device and study the user’s emotional state during the
underwater process in the case of the wearable device, which
is closer to the actual underwater state. *e physiological
signal systems used in these studies are limited by the
functional configuration of the devices themselves and do
not allow for effective expansion, such as the creation of
physiological signal databases and the design of underwater
activity content regulation systems.

2. Related Studies

Although continuous research over the years has improved
the performance and robustness of underwater communi-
cation transmission systems, the harsh environment un-
derwater makes no exact communication scheme be
optimally implemented, so how to deliver data to the cloud
promptly while minimizing network energy consumption
during underwater data collection is a critical issue for
underwater data transmission.

Literature [4] is a collaborative data acquisition approach
for AUVs, and an AUV-assisted efficient data acquisition
routing protocol (AEDG) is designed. *e member nodes
associate the gateway nodes with the shortest path and
deliver the packets to the AUVs through the gateway nodes.
*is method can effectively reduce the energy consumption
of the nodes on the one hand and is prone to hot zone
problems on the other hand. Cengiz and Demir [5] im-
proved the AEDG and proposed a scalable and efficient data
collection routing protocol (SEDG). In SEDG, AUV dy-
namically allocates the sojourn time of GNs based on the
number of received packets and the number of associated
member nodes. Compared to AEDG, SEDG has higher
energy efficiency and scalability. A hybrid data collection

approach emphasizing data importance is proposed in lit-
erature [6]. *e nodes forward important data to the ap-
propriate layer through multiple hops to reduce latency, and
commonly, the data are collected by an underwater vehicle
AUV in a spiral trajectory from the bottom to the top. *is
scheme balances the energy consumption of the entire
network nodes, improves networking survival, and ulti-
mately reduces the latency of important data. However, it
does little to reduce the energy consumption and latency of
the entire network because of the small percentage of im-
portant data. In literature [7], the DBP sensing data pre-
diction technique is proposed with the main purpose
focused on the processing of new data. *e core idea of DBP
is to use a simple model to capture the data trends and a
resilient rule to calculate and deal with the presence of
disturbances at the same time. It is required that the user can
change the parameters to control the model, such as
choosing to use short-term or long-term historical data for
training, provided that they have the historical data collected
by the sensor nodes as samples. Ding et al. [8] investigated
the application of skin conductance, skin temperature, and
respiration rate in driver’s emotion recognition and
designed experiments to find the relationship between skin
conductance and so on and two emotions: fear and fun. *e
experimental results demonstrate the feasibility of moni-
toring drivers’ emotions using the selected physiological
parameters. Literature [9] used a network of body sensors to
acquire physiological signals from participants while the
network was wirelessly connected to a PDA-like device and
implemented an online emotion detection algorithm on the
device. *e key to literature [10], which inferred human
emotions based on RF signals reflected from participants’
bodies, was an algorithm designed to extract the heartbeat
from the wireless signals with an accuracy comparable to
that of ECG devices. *e obtained heartbeat is then used as a
feature for inferring emotions.

Literature [11] investigated users’ acceptance of two
interaction modes, active control and passive acceptance, in
context-aware systems. It was found that users usually need a
strong sense of control, and personalized features and
services can enhance the user’s sense of control; however,
users are also willing to give up part of the sense of control in
some cases, such as better privacy and security of the system
and higher usability. Sherman et al. [12] proposed fuzzy
tuning complementary filtering algorithm, which uses a
fuzzy inference table to adjust the filter parameters in real-
time. Occhiuzzi et al. [13] proposed a nonlinear comple-
mentary filter based on SO(3) and verified the feasibility of
the algorithm for low-power embedded platform applica-
tions. *e complementary filtering algorithm is simple in
structure, small in computation, and suitable for low-power
embedded platforms, but the accuracy is not as good as
Kalman filtering. *e correlation of six different emotions
defined in literature [14] extracts 12 correlation features of
accelerometer, gyroscope, and touch screen and concludes
that simple touch behavior on a smartphone has the po-
tential to identify the emotional state of the user. Han et al.
[15] found that an application implemented on the camera
of a smartphone based on photoelectric volume tracing
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technology could accurately measure a person’s heart rate,
and the study replicated classical psychological experiments
where heart rate measurement using a smartphone appli-
cation was effective in identifying two emotions, anger and
happiness.

3. A Model for Evaluating Data on Emotional
Feelings in the Underwater Environment

3.1. Low-Frequency Data Processing Methods. In the un-
derwater environment, according to the digital sampling
frequency of the sensors, the behavioral data with a sampling
frequency of 100Hz and the environmental and physical
sensor data with a sampling frequency of 0.1Hz are uni-
formly classified as low-frequency data in this paper. *e
behavioral data are mainly the three-axis gyroscope and
three-axis accelerometer three-dimensional spatial data
generated by the wrist motion, and the synthetic acceleration
and synthetic gyroscope scheme are used in this paper for
the sake of feature extraction simplicity. *e environmental
sensor data mainly contain ambient air pressure, ambient
temperature, and light intensity, which do not change
abruptly, so the sampling frequency is set relatively low.
Somatic data mainly include the temperature and humidity
of the skin surface, and these sensor data can directly
measure the physiological indicators of the wearer [16].
From a mathematical point of view, low-frequency sensor
data are a series of time-series waveform data of nonsta-
tionary, time-varying processes, and the low-frequency data
feature extraction method has much in common with audio
signal feature extraction, both calculating time-frequency-
domain eigenvalues first and performing mathematical-
statistical feature calculations on these eigenvalues.

As shown in Figure 1, the processing flow of low-fre-
quency sensor data such as behavioral, environmental, and
physical signs can be divided into a total of four steps. To
offset the influence of the stationary state in long time ex-
periments, this paper proposes the preprocessing method of
debase; that is, first collect a set of sensor data under a
completely stationary and quiet environment, calculate the
baseline value of various features, and use a long time ex-
perimental data to subtract this baseline value first and then
do the feature extraction in the later order. First, the analog
data collected from the behavioral, environmental, and
physical sensors are discretized at different frequencies to
convert the low-frequency sensor data into discrete digital
signals, then white noise and interference in the stationary
environment are removed by preprocessing with debase and
sliding window, then eight time-domain features and nine
frequency-domain features are calculated offline on the
computer, and finally, the extracted and calculated time- and
frequency features are subjected to mathematical and sta-
tistical feature. Finally, the extracted time and frequency
features are subjected to mathematical-statistical features,
such as maximum value, plural, and minimum value. *e
final mathematical secondary statistical features will be
correlated with the mental health questionnaire scores, PCA
feature compression analysis, logistic regression linear

classification analysis, and integrated learning model deci-
sion fusion analysis based on Boosting method.

*ere is no absolute criterion for the selection of cli-
nostat feature values, and the main basis for our selection is
the results of preexperiments and the feature sets used by
researchers with better results in sentiment computation
[17]. If a large number of features are extracted, on the one
hand, this will increase the difficulty of classification and
bring about a “dimensional disaster,” and on the other hand,
an unselective increase in the number of features may lead to
the inclusion of redundant and relevant features, which may
lead to wrong experimental results.

*e signal amplitude area refers to the sum of the area
enclosed by the discrete data and the horizontal time axis,
and this feature is more obvious in the stationary andmotion
states, as shown in the following equation, where t denotes
the time corresponding to a frame of discrete low-frequency
data.

Ssigma �
1
t


T

0
[x(t) − c(t)]dt + C. (1)

According to the amplitude statistical feature, let M(i)

be the frequency amplitude of the ith window after the FFT
transformation, andN denotes the number of windows; then
several statistics of the amplitude statistical feature are
calculated as follows:

σ � Kx · 
N

i�1
M(i) − c t0(  

3
. (2)

On this basis, the discrete data FFT transformed spectral
waveform area is S, which is calculated as

SFFT � Ssigma + σ ·
n!

i!(n − i)!
. (3)

When calculating the eigenvalues of behavioral sensor
data, to ensure the accuracy of the features while also being
able to reduce the complexity of the calculation, this paper
uses synthetic acceleration and synthetic gyroscope to cal-
culate the time- and frequency-domain eigenvalues in the
following manner:

ω �

�������������



N

i�1

i − Ssigma

σ
 

3



+ λshape. (4)

After extracting the time-domain and frequency-domain
features of low-frequency sensing data, we can find more
perceptual information of behavioral, environmental, and
somatic signals [18]. To counteract the influence of the
stationary state in long time experiments, this paper pro-
poses the preprocessing method of debasing, that is, at first
collecting a set of sensor data in a completely stationary and
quiet environment, calculating the baseline value of various
features, and using a long time experimental data to subtract
this baseline value first before doing the feature extraction in
the later order, and it is experimentally verified that the
preprocessing method of debasing can reduce the influence
of the stationary state and quiet environment.
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3.2. A Technical Route to Edge Computing-Based Data Ac-
quisition for Underwater Sensor Networks. *e energy of the
underwater nodes is mainly consumed in sending/receiving
data by the UWM2000H; for example, the bottom node
performs sending/receiving data with about 100 times the
energy consumption of the microprocessor operation, so the
key to extending the lifetime of the underwater nodes is how to
reduce the amount of data sent. *us, it is proposed that the
bottom and edge layer nodes perform prediction algorithms to
reduce the energy consumption of the bottom nodes during
underwater data collection. At the same time, for the char-
acteristics of cloud edge end, a suitable scheme such as the
bottom layer prediction stage mainly considers the charac-
teristics of the bottom nodes such as weak computing power
and power storage or nodes are not easy; the edge layer
considers the characteristics of AUVs distributed deep under
the sea, which need to consume more energy to move and
transmit data, and the selected model should be maximized to
ensure the prediction accuracy. In response to the need for
energy consumption for data transmission from underwater
nodes, this thesis evolves the data transmission process into a
data prediction model to minimize the energy consumption of
sensor nodes. Two-level prediction is carried out, using an
exponential smoothing algorithm as well as an extended
Kalman filter moving the average autoregressive model to
unfold separately, using the computational performance at the
edge as well as the collected data to perform predictive analysis
of underwater environmental mood data and analyze potential
hazards promptly. *e technical route of the study is shown in
Figure 2.

In the traditional method, the data are obtained un-
derwater, the bottom node transmits to the upper layer
through the routing protocol, each forwarding node in the
routing path acts as a relay node, then each node consumes
energy to receive and send data in the forwarding process,
and the node easily becomes a full shutdown node, because
of the possibility of movement of underwater nodes, which
increases the risk of packet loss. Moreover, when the data are
transmitted to the cloud layer, there are multiple levels of
multinode forwarding from the underwater device to the
cloud layer with a huge delay [19]. *erefore, for the data
transmission from the bottom node, an exponential
smoothing calculation that can be done layer by layer is used
to weaken the impact due to random factors and determine
the data trend, thus getting more accurate predicted values.
In the process of this interaction, a two-way mechanism is
designed to ensure accuracy, with the bottom node as the
transmitter and the edgemobile device as the receiver, and to
ensure the accuracy of the data, the bottom node discrim-
inates the error and feeds it back to the receiver.

Considering that the AUV is subject to its gravity and the
buoyancy of the water, the direction of the AUV will deviate
from the intended shortest path, and eventually, the AUV will
not reach the intended target cluster head node; especially, the
greater the external force is, the further the AUV will deviate
from the intended target. *e larger the external force is, the
farther it deviates from the intended target. *erefore, it is
important to keep the AUV moving on the intended path. To
solve this problem, a simple and effective velocity synthesis
algorithm is proposed in this paper.*e edge layer can analyze
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Figure 1: Low-frequency data processing flow.
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the next cycle of underwater environmental emotion data for
the data of this cycle, and this stage involves the edge layer as
well as the cloud layer, so to get the underwater environmental
emotion data situation timely and accurately; we propose a
numerical prediction framework based on edge computing and
deep learning; after getting the data in the edge layer, the data
will be put into the deep learning algorithm for multilevel
circulation to get the next cycle of underwater environmental
emotion.*erefore, for the data transmission from the bottom
node, exponential smoothing can be used layer by layer to
weaken the effects caused by random factors and to determine
the data trend to obtainmore accurate prediction values. In this
interaction, a two-way mechanism is designed to ensure ac-
curacy, with the bottom node as the transmitter and the edge
mobile device as the receiver, and to ensure the accuracy of the
data, the bottom node discriminates the error and gives
feedback to the receiver. In this framework, the edge settings
are mainly taken care of by the computationally powerful base
station and the surface buoy, with the AUV playing a sup-
porting role. Parameterized sink velocity information, in-
cluding the magnitude and direction of the sinking velocity,
can be set. In addition, the implementation of the motion
model is based on the case where the AUV is controllable. *e
velocity magnitude of the AUV and the magnitude and di-
rection of the sinking velocity to which the AUV is subjected
are known, and the direction of motion of the AUV is con-
trolled to ensure that it is feasible to visit the target on the
desired path.

*e underwater wireless sensor network involved, which
consists of nodes statically placed at different depths in the
ocean, collaboratively detects the ocean conditions. *e
UWSN is divided into two layers based on the node

properties and locations, namely, the edge layer and the
sensing layer. *e edge layer consists of surface aggregation
nodes, surface buoys, and mobile nodes AUVs configured
with radio as well as acoustic transceivers; the sensing layer
consists of common sensor nodes at the depth of the ocean.

When the data collected by the bottom node ni per unit
time has to be delivered to the aggregation node sk, it will
incur forwarding data energy consumption Msend; when ni

acting as a relay forwarding node, it will incur receiving data
energy consumption Mreceive; therefore, assuming that the
energy value of the node ni is Eni

, the remaining energy value
can be obtained as

Erest � Eni
+

Mreceive · 
N
i�1 ni · Ei

Msend
, (5)

when computing power allows, dynamic optimization using
gradient descent can solve the constraints imposed by fixed
values, where the loss function is expressed as the following
equation:

Loss �
xi − V

T
i 

2

2
. (6)

To minimize the energy consumption of underwater
sensor nodes, that is, to maximize the residual energy of the
network, it is urgent to satisfy

Etotal �  Erest + Mreceive + Msend(  · ni  + Eloss, (7)

where Eloss is the nontransmission loss energy, to reduce the
energy consumption of the underwater sensor node; that is,
the value of needs to be Etotal minimized; that is,
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Figure 2: Technical route of predictive sensing model for underwater sensor network data.
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dEtotal

dt
� − xi − V

T
i 

z
2
V

zx
2 � 0. (8)

From the above algorithm idea, it is clear that the AUV
and the node use adaptive exponential smoothing to predict
the data before the end of the Tth cycle, and the determi-
nation of the coefficient α in exponential smoothing is
crucial to determine the relationship between the historical
and predicted values, which determines the accuracy of the
prediction, considering the computational capacity of the
bottom node in the underwater environment, and the ef-
ficient determination of the coefficient value can reduce the
energy consumption of the underwater bottom. Combining
the data prediction model with underwater data transmis-
sion, the edge device is used to predict the estimated value of
the next cycle of sensor readings, and the error threshold is
used to determine the accuracy of the predicted value and
thus whether the collected data need to be sent. *is scheme
saves transmission energy and extends the node lifetime
[20]. Due to the weak computational power of the under-
lying nodes, the accuracy of the selected prediction model
cannot be guaranteed, and in case of errors, the delay in-
creases, and half the effort is made.

4. Design of aWearable Sensor-BasedModel for
Evaluating Emotional Feelings in
Underwater Environments

Context-aware technology has brought some impact on the
interaction of mobile devices; for example, mobile devices
can actively obtain contextual information, implicitly pro-
vide services to users, free users from some tasks, and have
the remaining attention to deal with other tasks; the interface
level may be “a thousand people,” adaptive adjustment, and
so on, which all pose new challenges to interaction design
and interface design. *is poses new challenges to inter-
action design and interface design. At the same time, it is also
necessary to avoid the occurrence of phenomena or expe-
riences such as information overload, low user involvement,
and interruptions in traditional HCI systems.

With the advent of the intelligent era, implicit interac-
tion has become an important research area of the human-
computer interaction experience. By the evolution of tra-
ditional HCI systems to context-aware systems, the input
and output of the system are implicit, and the original
process of perceiving the environment by the user and
adjusting the input according to the output is left to the
context-aware computing system. *e traditional interac-
tion process is mostly command-based, in which the user
actively and explicitly inputs commands through hardware
devices such as key-win or touch, gesture, and voice, and the
system/device performs the task according to the com-
mands, which is called explicit interaction. Implicit inter-
action, on the other hand, has no explicit user instructions
and is often referred to as invisible interaction, where the
user no longer thinks too much about how to use the device
or system during the interaction, but the wearable device
actively and implicitly recognizes and analyzes the user’s

behavior and implicitly executes the analyzed concluding
instructions. Interruptibility is an important topic in the
field of computer-supported collaborative work and human-
computer interaction. Broadly it refers to the condition that
people are willing and able to handle interruptions even if
they occur in a way that may interfere with the active
process. Implicit interaction, on the other hand, has no
explicit user instructions and is often referred to as invisible
interaction, meaning that the user no longer thinks too
much about how to use the device or system during the
interaction; instead, the wearable device actively and im-
plicitly identifies and analyzes the user’s behavior and im-
plicitly executes the analyzed concluding instructions. *e
subject has attracted more attention especially after the
emergence of notifications as an interaction mechanism on
smartphones. In context-aware systems, many tasks require
judgments and commands from the user, and currently, the
system chooses to use explicit ways to alert or ask the user to
respond. If the output method is sporadic and inappropriate,
it will not only cause disturbance to the user and interrupt
the main task currently performed by the user but may also
affect the user’s attention situation and even mental emo-
tions, reducing the efficiency and accuracy of the user in
performing the task.

*e wearable sensor-based human motion capture
system consists of several sensor nodes fixed on the human
limbs, convergence nodes, and the upper computer software
as shown in Figure 3. *e sensor nodes are worn on the
human limbs, such as limbs, head, and chest, utilizing elastic
bandages for capturing the motion data of each limb. To
improve the comfort of wearing the system, the curvature is
done on the back of the sensor node. *e node is the bridge
between the sensor nodes and the computer and is re-
sponsible for establishing, configuring, and managing the
entire sensor node network and ensuring the synchroni-
zation of data from each node.*e aggregation node collects
the motion data of all the sensor nodes at regular intervals
and then packages and sends the data to the computer
according to a certain format or it can be stored offline in the
memory card. *e host computer software receives and
parses the human motion capture data sent by the aggre-
gation nodes, completes the reconstruction of the human
motion in combination with the human kinematic model,
and drives the 3D human model to display the human
motion synchronously.

To meet the applications in different fields and scenarios,
technical specifications such as the number of sensor nodes,
data update frequency, and system latency should be fully
considered during the system solution design [21].

4.1. Number of Sensor Nodes. *e location and number of
sensor nodes deployed on the human body are directly
related to the level of granularity of human motion capture.
To capture richer human motion information, the number
of sensor nodes needs to be increased. However, too many
sensor nodes increase the pressure on the system data
transmission and processing, which affects the update fre-
quency and real-time performance of the system. *e
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motion capture system designed in this paper can support up
to 20 sensor nodes, which can be flexibly configured
according to the application requirements to meet the needs
of different users.

4.2. Frequency of Data Update. Typically, the human eye
recognizes coherent images at a minimum speed of 24
frames per second, and coherent images at or above this
speed will not feel jarring when viewed by humans. *e
higher the data update frequency, the higher the fluency of
the captured human action but the greater the system data
transmission and processing pressure. *e data update
frequency of the human motion capture system designed in
this paper is divided into 50Hz, 100Hz, and 150Hz. *e
communication network should be designed according to
the maximum number of sensor nodes and greater update
frequency to ensure sufficient network bandwidth and data
throughput. Attitude and position solving are performed
directly in the sensor module so that only the final results
need to be transmitted without transmitting the raw sensor
data, thus reducing the amount of data transmission and
transmission latency.

4.3. System Delay. *e time delay of the motion capture
system contains the following components: transmission
time from the sensor node to the aggregation node, data
processing time at the aggregation node, transmission time
from the aggregation node to the computer, and processing

time at the computer. For motion capture systems, low
latency and high response rate are critical metrics. *e
segmentation method based on simple thresholds is easy to
implement, but it is prone to misclassification. If the
threshold is set too small, the jitter of the limb will be
recognized as a valid action segment; if the threshold is set
too large, some actions with relatively small action ampli-
tude will be ignored. To improve the success rate of human
action segmentation, the sliding window threshold seg-
mentation method is used to achieve the segmentation of
action segments. In many application areas of motion
capture, such as virtual reality and human-computer in-
teraction, there is a high requirement for the latency of the
system. *e design latency of this system is less than 20ms,
so it is important to coordinate all aspects of the design and
establish a precise time synchronization mechanism to
compress the latency of each aspect to the maximum.

*e data transmission of the system can be divided into
two phases: the first phase is from the sensor node to the
aggregation node, and the second phase is from the ag-
gregation node to the host computer. *e connection be-
tween sensor nodes and aggregation nodes is divided into
wired and wireless solutions.*e wired connection connects
all the sensor nodes in series through cables, which can
complete the data transmission and power supply of the
sensor nodes at the same time. Sensor nodes do not require
integrated charging modules and batteries, which can greatly
reduce their size and weight. *e wired connection has a fast
and stable data transmission speed, and high data security is
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Figure 3: *e framework of human motion capture system based on wearable sensors.
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less susceptible to interference from the external environ-
ment and simple communication protocol. To facilitate the
connection between the sensor node and the aggregation
node, this design uses a four-prong headphone plug and
socket as the connection interface. In the subsequent design,
the sensor nodes can be combined with the clothes, and the
connection cable can be embedded into the clothes, thus
improving the comfort and convenience of wearing the
system.

At the same time, to improve the reliability of the system
data transmission, the corresponding transmission proto-
cols are designed for each of the two data transmission
stages. *e data transmission from the sensor nodes to the
aggregation node uses the UART interface, and one UART
interface of the aggregation node can connect several sensor
nodes in series. To prevent communication confusion, each
sensor node has a unique address. *e data transmission
from the sensor nodes to the aggregation node uses a ro-
tational communication mechanism. At each acquisition
cycle, the aggregation node sends data transmission in-
structions to each sensor node in turn according to its
address, the sensor node receives the instruction and
compresses it with its address, and if the address matches
successfully, it sends data to the aggregation node according
to the instruction.

5. Experimental Verification and Conclusions

5.1. Human Action Segmentation Based on Sliding Window
;reshold Segmentation Method. Human action segmenta-
tion is the separation of valid action segments from con-
tinuous acquisition data, which directly affects subsequent
action recognition and classification. *e segmentation
method based on simple thresholding is easy to implement,
but it is prone to misclassification. If the threshold is set too
small, the jitter of the limb will be recognized as a valid
action segment; if the threshold is set too large, certain
actions with relatively small action amplitude will be ig-
nored. *e underwater wireless sensor network is mainly
based on acoustic waves as the physical carrier of wireless
transmission, through the scattered in a wide range of static-
dynamic sensor nodes to collect information, the functions
of data acquisition, transmission, processing, and can be
integrated. To improve the success rate of human action
segmentation, the sliding window threshold segmentation
method is used to achieve the segmentation of action seg-
ments. *e segmentation threshold ξm can be determined
by the amplitude of the pose fluctuation of the limb while
remaining at rest as follows:
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������

y
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+ x
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*e motion window threshold segmentation method
uses a sliding windowwith a width of c and sliding step size c

to determine the segmentation point of the human action. A
binary state is defined by comparing the amplitude of the
pose fluctuation within the sliding window with the seg-
mentation threshold. When more than y y % of the sliding
window exceeds the segmentation threshold, the state is

defined as 1; when less than (100-y) % of the sliding window
exceeds the segmentation threshold, the state is defined as 0;
in other cases, the state of the current sliding window re-
mains the same as the state of the previous window. A
quantity percentage threshold y is a real number within
0–160, which can be determined experimentally. When
performing human action segmentation, the start point of
the action is determined first, and then the endpoint is
determined. A change in the state of the sliding window
from 0 to 1 is the starting segmentation point of the action,
and a change in the state of the sliding window from 1 to 0 is
the ending segmentation point of the action, as shown in
Figure 4.

Next, the collected action sequences are initially screened
to filter out the unqualified action sequences. Normally, the
duration of normal actions should be kept within a certain
range, and action sequences that are too long or too short,
which may be irregular movements of the limb, should be
discarded so that meaningless calculations can be avoided.
Since the gesture measurements of human limbs are relative
to the geographical coordinate system, the gesture motion
sequences of the limbs will differ when the human body
performs the same action in different orientations, and the
relative motion of the limbs involved in the action is used to
describe the human action. Based on the limb’s gesture
measurements, the sequence of joint angular motions cor-
responding to the body’s movements (X1, . . . , Xn) or the
relative gesture motion trajectory of the limb can be ob-
tained (K1, . . . , Kn).

5.2. Validation of Human Emotional Feelings. In the user-
related recognition experiments, multiple recognition tests
were conducted for each experimenter separately, and then
the average recognition rate of all experimenters was used as
the final experimental result. A side-by-side comparison of
Figure 5 reveals that the recognition rate based on the
gestural gesture signal is the highest, which is due to the high
accuracy of the gesture measurement based on multisensor
fusion and the small reconstruction error of the gestural
gesture trajectory. *e recognition rate based on the ac-
celeration signal is the lowest, which is because the changes
in both the gesture and linear acceleration of the arm during
motion affect the accelerometer measurement, and there is a
large measurement noise and error in the gesture acceler-
ation sequence.

By comparing Figure 5 vertically with the same number
of nodes, the network life cycle of this algorithm is much
higher than the other three algorithms. Our proposed al-
gorithm updates the cluster head node every round so that
the node with the highest energy is the cluster head, and each
member node finds the closest cluster head node to itself,
saving the energy consumption of forwarding data to the
cluster head node and thus balancing the network energy
consumption. In the user-unrelated gesture recognition test,
the gesture samples of all experimenters are combined. For
each gesture, 30 samples were randomly selected as training
samples, and the remaining 270 samples were used as test
samples. *e user have different recognition rates for
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different gesture signals and gesture templates. *e com-
parison shows that, with the same gesture signal and gesture
template, the user irrelevance recognition rate is somewhat
lower than the user relevance recognition rate. Since the
variability of gestures of different experimenters is much
greater than that of the same experimenter, the gesture
templates cannot characterize the gestures of all experi-
menters, and therefore a decrease in recognition rate occurs.
*e user irrelevant recognition experiments with gestural

gesture signals and the ADBA time-series averaged template
selectionmethod had the highest recognition rate of 96.9%, a
2.3% decrease relative to the recognition rate used for
irrelevance.

Based on the mature evaluation systems of usability,
satisfaction, and user experience, combined with the rela-
tionship models of experience factors proposed by re-
searchers for context-aware systems or other intelligent
systems, indicators suitable for evaluating mobile context-
aware systems are extracted.

Certain remarks on the extracted indicator categories
can be used as a reference when naming factors distilled
from multiple indicators in the later factor analysis. *ere is
no absolute standard for selecting the values of the clinically
sensitive features, and the main basis for our selection is the
results of preexperiments and the feature sets used by re-
searchers with better results in sentiment computing. If a
large number of features are extracted, on the one hand, this
will increase the difficulty of classification and lead to a
“dimensional catastrophe,” and on the other hand, an un-
selective increase in the number of features may lead to the
inclusion of redundant and relevant features, which in turn
may lead to erroneous experimental results. Energy con-
sumption and acquisition is the most difficult problem to
solve. Sensor nodes are randomly arranged underwater, and
since node supply is only provided by batteries, replacing
batteries to replenish power is difficult. At this stage of the
study, the seven sets of features mentioned above were
selected as the feature set to ensure the correctness of the
final results. After the normalization process, all the obtained
84 sets of GSR values all fall between 0 and 1, and the
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variability of different experimental subjects can thus be
offset, as Figure 6 shows.

Analyzing the above results can find that, compared to
RF and SVM algorithms, KNN and QASCA algorithms have
the best performance, and the overall correct recognition
rate of the user’s emotional state by a dermal electrical signal
is maintained at about 60% and 70%, considering that, in the
process of research, the average weight method is used for
the feature selection of dermal electrical signal, and then the
features are weighted with different weights. *e perfor-
mance of SVM is the worst, mainly because SVM is suitable
for machine learning with a huge sample size and does not
perform well in small sample cases. As for the prediction of

H user affective states, it was found that the best perfor-
mance was obtained for the prediction of perceived difficulty
and relatively poor for the judgment of perceived stress and
interest level.

In Figure 7, we compare the performance of various
online task assignment algorithms on the Bluebird dataset
when the task assignment limit is changed from 10 to 100.
We can observe that QASCA possesses optimal perfor-
mance. Specifically, the accuracy of QASCA first increases
rapidly as the capacity increases and then slowly decreases as
the capacity exceeds 50. We also note that its number of
allocations first increases and then rapidly decreases after
reaching a peak. One possible reason for this is that as the
upper limit of tasks that users can accept grows, highly
qualified users will complete more tasks. Since observations
from high-quality users can significantly improve the quality
of the data, low-quality users will be assigned fewer tasks, so
the number of assignments decreases from 1438.1 (capaci-
ty� 50) to 686.3 (capacity� 100). *e significant reduction
in task assignment results in only a slight decrease of 0.176%
in the accuracy of QASCA.

Compared to QASCA, we find that MEPG-LTM uses
only 81.77% of the number of tasks assigned by the QASCA
algorithm at a capacity of 50 and achieves a higher accuracy
(0.832% higher) than the QASCA algorithm. When the
capacity is 100, the accuracy ofMEPG-LTM is 0.285% higher
than the accuracy of the QASCA algorithm, while the
number of tasks assigned to the MEPG-LTM algorithm is
only 39.69% of QASCA at this time. Compared with the
suboptimal performance comparison algorithmCrowdDQS,
MEPG-LTM shows a significant disadvantage in both ac-
curacy and number of assignments. For how to predict the
next cycle of water quality data after obtaining it at the edge
and how to efficiently transmission to the cloud layer, we can
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consider the neural network of deep learning with higher
accuracy. However, due to the complexity of water quality
prediction, only one neural network model often cannot
completely solve the problem. To improve the reliability of
data prediction, in the case of sufficient computing power at
the edge layer, a combined prediction model is introduced,
which can further improve. To improve the reliability of data
prediction, in the case of sufficient computing power in the
edge layer, a combined prediction model is introduced,
which can further improve the accuracy of water quality
data.

6. Conclusions

With the rise of IoT, the scope of cloud computing is be-
coming more and more extensive, it is gradually difficult to
meet the demand of timely response of the bottom layer and
to bear the pressure of the high load of data transmission,
and the volume size and the number of types of underwater
data are increasing. In this thesis, distributed edge com-
puting is introduced to solve the problems of energy con-
sumption, timely response, and evaluation of the emotional
feeling of the underwater environment in the bottom nodes.
To avoid the use of acoustic communication data trans-
mission from the bottom sensor nodes to the AUV, a data
prediction acquisition mechanism based on edge devices
and bottom sensors is proposed.*e problem of underwater
energy consumption is mathematically problematized based
on the environmental structure of the underwater bottom
sensors, and the adaptive exponential smoothing algorithm
and the idea of bidirectional prediction are elaborated to
develop the first level of underwater data transmission. *e
proposed scheme is proven to maximize the residual energy
of the nodes. Aiming at the heterogeneity of devices in the
IoT environment, the ARMA prediction models with ex-
tended Kalman filtering algorithm between AUV and ag-
gregation nodes are used to carry out two-way prediction,
the selection of parameters and error analysis are introduced
in detail, and the experiments show that the prediction effect
is good and the accuracy is high. Meanwhile, comparing the
schemes of AUV-assisted data collection, multihop routing,
and DBP and discussing them in terms of node mortality,
node energy consumption, and time delay, the results all
show that the two-level prediction transmission scheme
performs well and is, on balance, more suitable for data
prediction transmission in underwater sensor networks, so
that the required data can be obtained at the edge end.
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[10] S. Coşar, M. Fernandez-Carmona, R. Agrigoroaie et al.,
“ENRICHME: perception and interaction of an assistive robot
for the elderly at home[J],” International Journal of Social
Robotics, vol. 12, no. 3, pp. 779–805, 2020.

[11] T. Ni, D. Liu, Q. Xu, Z. Huang, H. Liang, and A. Yan,
“Architecture of cobweb-based redundant TSV for clustered
faults,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 28, no. 7, pp. 1736–1739, 2020.

[12] M. W. Sherman, S. Sandeep, and L. M. Contreras, “*e
tryptophan-induced tnaC ribosome stalling sequence exposes
high amino acid cross-talk that can Bemitigated by removal of
NusB for higher orthogonality,” ACS Synthetic Biology,
vol. 10, no. 5, pp. 1024–1038, 2021.

[13] C. Occhiuzzi, S. Parrella, F. Camera, S. Nappi, and
G. Marrocco, “RFID-based dual-chip epidermal sensing
platform for human skin monitoring[J],” IEEE Sensors
Journal, vol. 21, no. 4, pp. 5359–5367, 2020.

[14] J. Howard, “Artificial intelligence: implications for the future
of work,” American Journal of Industrial Medicine, vol. 62,
no. 11, pp. 917–926, 2019.

[15] F. Han, T. Lang, B. Mao et al., “Surface plasmon resonance
sensor based on coreless fiber for high sensitivity,” Optical
Fiber Technology, vol. 50, pp. 172–176, 2019.

[16] M. Krishnan, S. Yun, and Y. M. Jung, “Enhanced clustering
and ACO-based multiple mobile sinks for efficiency

Mathematical Problems in Engineering 11



improvement of wireless sensor networks,” Computer Net-
works, vol. 160, pp. 33–40, 2019.

[17] A. Guerra, M. von Stosch, and J. Glassey, “Toward bio-
therapeutic product real-time quality monitoring,” Critical
Reviews in Biotechnology, vol. 39, no. 3, pp. 289–305, 2019.

[18] H. Shen, M. Zhang, H. Wang, F. Guo, and W. Susilo, “A
cloud-aided privacy-preserving multi-dimensional data
comparison protocol,” Information Sciences, vol. 545,
pp. 739–752, 2021.

[19] J. Wen, J. Yang, B. Jiang, H. Song, and H. Wang, “Big data
driven marine environment information forecasting: a time
series prediction network[J],” IEEE Transactions on Fuzzy
Systems, vol. 29, no. 1, pp. 4–18, 2020.

[20] J. Sena, J. Barreto, C. Caetano, G. Cramer, andW. R. Schwartz,
“Human activity recognition based on smartphone and
wearable sensors using multiscale DCNN ensemble,” Neu-
rocomputing, vol. 444, pp. 226–243, 2021.

[21] X. He, W. P. Tay, L. Huang, M. Sun, and Y. Gong, “Privacy-
aware sensor network via multilayer nonlinear processing,”
IEEE Internet of ;ings Journal, vol. 6, no. 6, pp. 10834–10845,
2019.

12 Mathematical Problems in Engineering


