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To prevent traffic congestion, drivers always adjust the driving behavior with their driving information. By considering the self-
anticipation effect and the optimal current difference effect on traffic flow stability, a novel two-lane lattice hydrodynamic model is
proposed. Compared with Peng’s model, the linear stability analysis results reveal that the self-anticipation term can effectively
enlarge the stable region on the phase diagram. +en, a reductive perturbation method is used to derive the mKdV equation
describing traffic congestion near the critical point. Nonlinear analyses show that the traffic congestions can be effectively
suppressed by taking the coefficient of lane-changing behaviors c and the anticipation time τ into account. +ese results further
indicate that the driver’s self-anticipation current difference effect can efficiently alleviate traffic jams. Furthermore, the numerical
simulations with periodic boundary conditions also confirm the effectiveness of theoretical results.

1. Introduction

With the rapid population expansion and car ownership
growth, traffic congestion becomes a topic issue over the past
decade. To solve this issue, various traffic models [1–7] have
been put forward to investigate the characteristics of traffic
flow. Generally, there are two kinds of traffic models, i.e.,
macroscopic traffic flow models [8–10] and microscopic
traffic flow models [11–13]. +e microscopic model focuses
on the influence of individual vehicle behavior, including
car-following models [14–19], cellular automaton models
[20, 21], etc. While the macroscopic model usually uses flux,
density, andmean speed to describe the dynamic behavior of
traffic flow. Also, it can be divided into continuous models
[22–24] and lattice hydrodynamic models [25, 26].

In 1998, Nagatani [27] firstly constructed the single-lane
lattice dynamic model to describe the jamming transition
and the density wave of traffic flow. Meanwhile, the kink-
antikink soliton solutions of the mKdV equation were de-
rived to depict the propagation of congested traffic. With the
expanding scale of vehicles, the multilane highway has
emerged to replace the single-lane highway, which greatly
relieved the urban traffic pressure. Based on the single-lane

case, Nagatani [28] developed a two-lane lattice hydrody-
namic model to reveal the effect of lane changing on the
stability of traffic flow. Since then, the two-lane lattice hy-
drodynamic model was extended with various traffic factors
such as traffic flux difference [29–31], traffic density dif-
ference [32–34], optimal current difference [35–37], and
anticipation effect [38, 39].

Anticipation effect, as a type of effective stabilization
strategy for the traffic flow system, means that drivers can
adjust their velocity according to the traffic conditions of
preceding vehicles at the next moment [37]. In addition to
the information from preceding vehicles, drivers always
adjust the current vehicle’s driving behavior with their
driving information. Lately, Zhang et al. [40] studied the
impact of the vehicle’s self-anticipation density effect on
traffic stability and proved that the traffic flow stability could
be enhanced when the self-anticipation density effect was
taken into account. Meanwhile, the optimal current dif-
ference between two successive lattices [35] has been proved
to be effective in terms of traffic stability improvements.
+rough the above considerations, both the self-anticipation
effect and the optimal current difference effect could con-
tribute to the improvement of traffic flow stability. Up to
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now, little work has been performed for the optimal current
difference with the self-anticipation effect. +is motivates us
to develop a novel two-lane lattice hydrodynamic model
fully considering the optimal current difference with the self-
anticipation effect and illustrate the effectiveness of this
optimal current difference through theoretical analysis and
numerical simulation.

+e structure of this article is organized as follows. +e
extended model will be established in Section 2. +e linear
stability analysis of themodel will be established in Section 3.
Section 4 will introduce the nonlinear analysis. +en, in
Section 5, numerical simulations will be used to verify the
previous theoretical analysis. Finally, the conclusions are
summarized in Section 6.

2. Model

By incorporating the lane-changing behavior in multilane
traffic problems, Nagatani [28] presented the original
lattice hydrodynamic model for two-lane highway. Figure 1
shows the schematic model of the traffic flow system on the
two-lane highway with the lane-changing behaviors. Let
ρ1,j and ρ2,j denote the densities of two lanes, respectively. If
ρm,j+1(t)< ρn,j(t), m≠ n(m, n ∈ 1, 2{ }), then the lane-
changing behavior appears from lane n to lane m at the rate
c|ρ20V′(ρ0)|(ρn,j(t) − ρm,j+1(t)). Here, c denotes a dimen-
sionless fixed coefficient. +us, one can get the continuity
equations for two lanes:

ztρm,j + ρ0 ρm,jvm,j − ρm,j−1vm,j−1􏼐 􏼑 � c | ρ20V′ ρ0( 􏼁| ρn,j+1 − 2ρm,j + ρn,j−1􏼐 􏼑, m≠ n(m, n ∈ 1, 2{ }). (1)

+en, equation (1) can be reduced into

ztρj + ρ0 ρjvj − ρj−1vj−1􏼐 􏼑 � c|ρ20V′ ρ0( 􏼁| ρj+1 − 2ρj + ρj−1􏼐 􏼑,

(2)

where ρj � ρ1,j + ρ2,j/2, ρjvj � ρ1,jv1,j + ρ2,jv2,j/2. Accord-
ingly, the evolution equation of a two-lane lattice hydro-
dynamic model was introduced as

zt ρjvj􏼐 􏼑 � aρ0Ve ρj+1􏼐 􏼑 − aρjvj, (3)

where Ve(ρj) � Ve(ρ1,j) + Ve(ρ2,j)/2. To analyze the impact
of the anticipation effect in traffic stabilization, Wang et al.
[41] addressed a new single-lane lattice model described by

zt ρj(t)vj(t)􏼐 􏼑 � aρ0V ρj+1(t) + β ρj+1(t + τ) − ρj+1(t)􏼐 􏼑􏼐 􏼑 − aρj(t)vj(t), (4)

where τ and β represent the anticipation time and an
influenced coefficient, respectively. ρj+1(t + τ) − ρj+1(t) is
the predictive density variation at site j + 1. In 2013, Peng

[35] constructed a novel two-lane lattice model with the
optimal current difference effect

zt ρj(t)vj(t)􏼐 􏼑 � a ρ0V ρj+1(t)􏼐 􏼑 − ρjvj􏽨 􏽩 + aρ0λ V ρj+2(t)􏼐 􏼑 − V ρj+1(t)􏼐 􏼑􏼐 􏼑, (5)

where λ is the reaction coefficient and
ρ0(V(ρj+2(t)) − V(ρj+1(t)) represents the optimal current
difference between two successive lattices j + 2 and j + 1 at
time t.

As the essential factors in traffic flow discipline, both the
driver’s anticipation effect and the optimal current differ-
ence effect can moderate traffic congestion. Meanwhile,

drivers are inclined to adjust their vehicles with their self-
anticipation information rather than anticipation infor-
mation from the successive lattices in real traffic scenarios.

In order to study the influence of driver’s self-antici-
pation traffic information on traffic flow stability, a new
evolution equation with the self-anticipation current dif-
ference effect (SCDE) is defined by

zt ρjvj􏼐 􏼑 � aρ0V ρj+1(t)􏼐 􏼑 − aρjvj + aρ0λV ρj+1(t + τ)􏼐 􏼑 − V ρj+1(t)􏼐 􏼑, (6)
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where λ is an anticipated response coefficient of current
difference and ρ0(V(ρj+1(t + τ)) − V(ρj+1(t))) denotes the
self-anticipation current difference of site j + 1. In addition,
the longer the time of τ is, the more attention the drivers

would pay to their driving behavior, which tends to make
traffic flow more stable.

For the sake of convenience, performing a Taylor ex-
pansion of variableV(ρj+1(t + τ)) and ignoring its nonlinear
terms, equation (6) can be simplified as

zt ρj(t)vj(t)􏼐 􏼑 � a ρ0V ρj+1(t)􏼐 􏼑 − ρj(t)vj(t)􏽨 􏽩 + aρ0λ V′ ρj+1(t)􏼐 􏼑τztρj+1(t)􏼐 􏼑. (7)

By combing equation (6) with equation (2) and elimi-
nating the velocity vj, the 2-order density equation is in-
cluded as

z
2
t ρj + aρ20 V ρj+1􏼐 􏼑 − V ρj􏼐 􏼑􏽨 􏽩 + aρ20λ V′ ρj+1􏼐 􏼑τztρj+1 − V′ ρj(t)􏼐 􏼑τztρj􏽨 􏽩 + aztρj

− ac|ρ20V′ ρ0( 􏼁| ρj+1 − 2ρj + ρj−1􏼐 􏼑 − c|ρ20V′ ρ0( 􏼁| ztρj+1 − 2ztρj + ztρj−1􏼐 􏼑 � 0.
(8)

+e optimal velocity function V(ρ) is the same as that in
Nagatani’s model [28]:

V(ρ) � tanh
2
ρ0

−
ρ
ρ20

−
1
ρc

􏼠 􏼡 + tanh
1
ρc

􏼠 􏼡. (9)

3. Linear Stability Analysis

+e objective of stability analysis is to identify the evolution
process of the traffic flow with added disturbances. In this
section, the linear stability approach is applied to analyze the
self-anticipation effect on the two-lane vehicular system.

Suppose that the initial traffic flow keeps constants density ρ0
and optimal velocity V(ρ0). +en, the steady solution of the
two-lane vehicular system is

ρj(t) � ρ0, vj � V ρ0( 􏼁. (10)

Combining small fluctuations yj(t) with equation (10)
yields

ρj(t) � ρ0 + yj(t). (11)

Substituting (11) into (8) and linearizing it, one can
deduce

z
2
t yj + aρ20V′ ρ0( 􏼁 yj+1 − yj􏼐 􏼑 + aρ20λτV′ ρ0( 􏼁 ztyj+1 − ztyj􏼐 􏼑 + aztyj

− ac|ρ20V′ ρ0( 􏼁| yj+1 − 2yj + yj−1􏼐 􏼑 − c|ρ20V′ ρ0( 􏼁| ztyj+1 − 2ztyj + ztyj−1􏼐 􏼑 � 0,
(12)

j-1 j j+1

j-1 j j+1

lane n

lane m

Figure 1: Schematic of the lattice hydrodynamic model.
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where V′(ρ0) � dV(ρ)/dρ|ρ�ρ0. Let yj(t) � exp(ikj + zt).
Substituting the expanding terms of yj(t) into equation (8),
one can get the simplified equation

z
2

+ aρ20λτV′ ρ0( 􏼁 e
ik

− 1􏼐 􏼑 + a − c|ρ20V′ ρ0( 􏼁| e
ik

− 2 + e
− ik

􏼐 􏼑􏽨 􏽩z

+aρ20V′ ρ0( 􏼁 e
ik

− 1􏼐 􏼑 − ac|ρ20V′ ρ0( 􏼁| e
ik

− 2 + e
−ik

􏼐 􏼑 � 0.
(13)

Expanding the parameter z to z � z1(ik) + z2(ik)2 + · · ·

and substituting it into equation (13), we can retain the first-
order and second-order terms of ik, as

z1 � −ρ20V′ ρ0( 􏼁,

z2 �
1
2a

−2z
2
1 − aρ20V′ ρ0( 􏼁 − 2acρ20V′ ρ0( 􏼁 − 2az1λτρ

2
0V′ ρ0( 􏼁􏼐 􏼑.

(14)

When z2 is negative, the steady-state solution of the
distribution uniformly inclines to be unstable. On the
contrary, it remains to be stable when z2 is positive.+us, the
neutral stability condition is derived:

a � −
2ρ20V′ ρ0( 􏼁

1 + 2c − 2λτρ20V′ ρ0( 􏼁
. (15)

Hence, the stable condition of the homogeneous traffic
flow can be obtained:

a> −
2ρ20V′ ρ0( 􏼁

1 + 2c − 2λτρ20V′ ρ0( 􏼁
. (16)

Note that the stable condition of Peng’s model [35] is

a> −
3ρ20V′ ρ0( 􏼁

1 + 2(λ + c)
. (17)

Set c � 0.1 and λ � 0.2 in both equations (16) and (17).
Let τ � 0.2. As shown in Figure 2, solid lines represent the
neutral stability curves. +e phase diagram is divided into
two regions with the neutral stability curve: the stable re-
gions and the unstable regions. +en, the stable areas under
the new lattice model and Peng’s lattice model are both
described in Figure 2. It is obvious that the stable area of our
model with self-anticipation is larger than that of Peng’s
lattice model even with a small parameter τ.

As shown in equation (16), we apply the lane-changing
coefficient c, the anticipation time τ, and the anticipated
response coefficient λ into the lattice model, which effec-
tively smooths traffic congestion.

4. Nonlinear Stability Analysis

In order to analyze the nonlinear characteristics of the
equation (8) near the critical point, we adopt the reductive

perturbation method and define slow variable T, space slow
variable X, and density ρj as

X � ε(j + bt), T � ε3t, ρj � ρc + εR(X, T),

0< ε≪ 1.
(18)

Substitute (18) into (8) and keep the Taylor series ex-
pansion of the resulting formula under fifth order of ε. +en,
one gets the following equation:

ε2q1zXR + ε3q2z
2
XR + ε4 zTR + q3z

3
XR + q4zXR

3
􏼐 􏼑

+ ε5 q5zTzXR + q6z
4
XR + q7z

2
XR

3
􏼐 􏼑 � 0.

(19)

+e coefficients qi(i � 1, 2, . . . , 7) are demonstrated in
Table 1.

Let ac � a(1 + ε2), m � ρ20V′(ρ0), and b � −m. +e
second term and the third term of ε can be eliminated from
equation (19). +en, one can obtain the simplified equation

ε4 zTR − g1z
3
XR + g2zXR

3
􏽨 􏽩 + ε5 g3z

2
XR + g4z

4
XR + g5z

2
XR

3
􏽨 􏽩 � 0,

(20)

where

g1 � −m(ac − 3m(2c + acλτ))/6ac,
g2 � 1/6V′′′ρ2c ,
g3 � 1/2m(−1 − 2c + 2λτm),
g4 � 1/24a2

c(m(a2
c(1 + 2c) − 8acm(−1 + acλτ) + 12m2

(−2 + acλτ) (2c + acλτ))),
g5 � −1/12ac(ρ2c(−acV′′′ +2m(−2+ acλτ) + acλτV′′′)).

For the sake of computing the propagation velocity, the
following condition must be satisfied:

R0′, M R0′􏼂 􏼃( 􏼁 � 􏽚
+∞

−∞
dX′R0′M R0′􏼂 􏼃 � 0. (21)
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With the selected velocity c � 5g2g3/2g2g4 − 3g1g5, the
kink-antikink soliton solution can be expressed by

ρj � ρc + ε
���
g1c

g2

􏽲

tanh
�
c

2

􏽲

X − cg1T( 􏼁􏼢 􏼣, (22)

and the amplitude of the derived solution is

A �

�����
g1

g2
ε2c

􏽲

. (23)

Both the freely moving phase and the congested phase
are contained into the co-existing phase in the kink-antikink
solution, which is, respectively, described by ρj � ρc − A and
ρj � ρc + A in the space (ρ, a). In each pattern of Figure 3,
solid lines and dashed lines represent the neutral stability
curves and the co-existing curves, respectively. With an
increasing anticipation time τ in Figures 3(a) and 3(b), it is
clear that the apex of curves (ρc, ac) decreases no matter
whether lane changing occurs or not. +is indicates that
traffic congestions can be alleviated more efficiently with the
increasing value of τ in both cases. Comparing Figures 3(a)
and 3(b), the stability region with lane changing (c � 0.1) is
significantly larger than that without lane changing (c � 0).
Moreover, the corresponding stable region expands grad-
ually with the increasing value of c when τ � 0.4 as shown in
Figure 3(c). +is phenomenon demonstrates that the lane-
changing behavior could be favorable to the stability en-
hancement of traffic flow. In summary, the SCDE effect and

the lane-changing behavior both play positive roles in the
improvement of the traffic flow stability.

5. Numerical Simulations

In this section, numerical simulations are provided to
demonstrate the effect of driver’s self-anticipation in two-
lane traffic flow with linear as well as nonlinear stability
analysis. +e initial densities are adopted with the periodic
boundary conditions as follows:

ρj(1) � ρj(0) �

ρ0; j≠
N

2
,
N

2
+ 1

ρ0 + η; j �
N

2

ρ0 − η; j �
N

2
+ 1

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

where the initial disturbance η is 0.01 and total amount of
lattices N is 200. Following Reference [35], the related
parameters with the SCDE effect are chosen as a � 1.5,
λ � 0.2, and ρ0 � ρc � 0.25.

+e evolution of density waves is exhibited in Figures 4–7
with an anticipation time variable τ. Figures 4–7, respectively,
correlate with the no lane-changing case (c � 0) and the lane-
changing case (c � 0.1).

Table 1: +e coefficient qi of the model.

q1 q2

b + m b2/a + cm + 1/2m + bλτm

q3 q4
b/acm + 1/6m + 1/2bλτm 1/6ρ2cV′′′
q5 q6
2b/a + λτm 1/12cm + 1/24m + 1/6bλτm

q7
1/12ρ2cV′′′ + 1/6bλτm

0.15 0.2 0.25
Density

0.3 0.35
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1.8
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Figure 2: Phase diagram in parameter space (ρ, a) with the new model and Peng’s model.
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Case 1. No lane changing (c � 0).
Since the given parameters in Figures 4(a)–4(c) do not

satisfy the stable condition equation (16), the added
disturbance will cause the kink-antikink density waves.
Meanwhile, Figures 4(a)–4(d) and Figures 5(a)–5(d) re-
veal that the amplitude of density waves decreases with the
rising value of τ (τ � 0.2, 0.4, 0.6, and 0.8, respectively) and
the traffic congestion does not disappear until τ � 0.8. In
other words, the driver’s self-anticipation can efficiently
suppress the traffic jam even without lane-changing
behavior.

Case 2. Lane changing (c � 0.1).
Figures 6 and 7 demonstrate the simulation results

under the case of lane changing with the same anticipation
time variable τ defined in Figures 4 and 5. +e relationship
between density waves and the variable τ in Figure 6 is
similar to that in Figure 4. Moreover, the amplitudes of
density waves in Figure 7 are smaller than their coun-
terparts in Figure 5. +is phenomenon indicates that

appropriate lane changing could further promote the
stabilization of traffic flow which incorporates driver’s
self-anticipation.

Figures 8(a) and 8(b) show the phase space of density
difference ρ(t) − ρ(t − 1) against ρ(t) for t � 10000 − 12000
without and with lane changing under different τ, respec-
tively. +e pattern exhibits the behavior characteristic of
chaos. In Figure 8(a), with increasing τ, the points are denser
and the amplitude of the limit cycle is smaller. When τ ≥ 0.8,
phase states converge to a stable point, which means that the
density difference is zero, i.e., the traffic system without lane
changing is stable. In Figure 8(b), the variation characteristic
of the limit cycle with lane changing is similar to the one
without lane changing. Although the cycles in Figure 8(b)
are more irregular than those in Figure 8(a) under the same
τ, the traffic system is easier to be stable. Note that when
τ ≥ 0.6, the traffic flow becomes stable in Figure 8(b), but the
traffic flow remains unstable until τ ≥ 0.8 in Figure 8(a). It
also validates that the self-anticipation current difference
effect with lane changing can effectively relieve traffic
congestion.
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Figure 3: Phase diagram in parameter space (ρ, a) with different values of parameters τ and cwhen λ � 0.2. (a) c � 0. (b) c � 0.1. (c) τ � 0.4.
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Figure 5: Density profile of the density wave at time t � 10200s for (a) τ � 0.2, (b) τ � 0.4, (c) τ � 0.6, and (d) τ � 0.8 when c � 0.
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Figure 4: Spatiotemporal evolutions of density (for time t � 10000 − 10200 s) when c � 0, λ � 0.2, and a � 1.5 for different values of τ.
(a) τ � 0.2. (b) τ � 0.4. (c) τ � 0.6. (d) τ � 0.8.
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Figure 7: Density profile of the density wave at time t � 10200s for (a) τ � 0.2, (b) τ � 0.4, (c) τ � 0.6, and (d) τ � 0.8 when c � 0.1.
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Figure 6: Spatiotemporal evolutions of density (for time t � 10000 − 10200 s) when c � 0.1, λ � 0.2, and a � 1.5 for different values of τ.
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6. Conclusion

In this paper, a novel lattice hydrodynamic model is con-
structed to explore the anticipation effect concerning the
SCDE for a two-lane traffic system. +e neutral stability
condition and the solution of the mKdV equation are de-
duced to describe traffic jams. +e results of theoretical
analysis demonstrate that both the anticipation time τ and
the coefficient of lane-changing behaviors c are major
factors for the enhancement of traffic flow stability. +e
numerical simulation results validate the theoretical anal-
ysis, which indicates that the self-anticipation current dif-
ference effect can push forward an immense influence on the
stability of traffic flow. Future work will focus on solving the
traffic congestion on message propagation mechanism, the
characteristics of drivers, the vehicular emergency warning
system, and the automation for longitudinal driving.
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