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�is paper presents novel analytical solutions for the analysis of an elliptical cavity within an in�nite plane under plane strain
conditions, considering typical displacement-controlled boundaries at the inner cavity and biaxial stresses at in�nity.�e problem
is investigated by the plane theory of elasticity using Muskhelishvili’s complex variable method. �e complex displacement
boundary conditions are represented using the conformal mapping technique and Fourier series, and stress functions are
evaluated using Cauchy’s integral formula. �e proposed solutions are validated at �rst by comparing them with other existing
solutions and then used to show the in�uences of displacement vectors on the distributions of induced stresses and displacements.
�e new solutions may provide useful analytical tools for stress and displacement analysis of an elliptical hole/opening in linear
elastic materials which are common in many engineering problems.

1. Introduction

�e stress and deformation analysis around a cavity is a
typical boundary-value problem, and it is of great interest in
the design and analysis of many engineering problems [1–3].
In general, the stress and deformation �elds around a cavity
can be obtained by means of solving a governing equation
system that is constituted of stress equilibrium equations,
displacement compatibility conditions, and stress-strain
relationships with response to given boundary conditions.
�e usual boundary conditions can be broadly categorised
into three groups, including stress-boundary, displacement-
boundary, and mixed-boundary conditions [3–7]. �is pa-
per aims to provide novel analytical solutions for the elastic
analysis of an ellipse deforming with speci�ed displacements
in an in�nite plane under biaxial far-�eld stresses.

It is instructive to review the developments of relevant
solutions for the analysis of an elliptical cavity before the
derivation. Elastic solutions for an in�nite plate with an

elliptical cavity were �rst given by Koloso� [7] and Inglis [8]
around a century ago. �e solution of Inglis [8] provided a
theoretical basis for the development of the well-known
Gri�th’s energy criterion [9] in fracture mechanics. Later,
Stevenson [10] independently carried out some two-di-
mensional analyses on similar problems in curvilinear co-
ordinate systems. �e elliptic coordinate system and the
complex variable theory were used in these solutions, and
judicious selection of the complex potentials is necessarily
required and greatly determines the solution accuracy [7].
Alternatively, a more powerful and general method was
developed by deducing the potentials directly from the
boundary conditions as elaborated in the monograph of
Muskhelishvili [3]. Based on the complex variable theory
and some more advanced mathematic techniques, this
branch of methods is capable of dealing with problems with
complex stress boundary conditions and can also be ex-
tensively applied in the analysis of cavities with various
shapes. Based on these methods, a number of analytical
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solutions have been developed over the past few decades, for
example, elastic solutions for two-dimensional analysis of
cavities with various shapes under complex stress boundary
conditions [2, 3] and elastic solutions for cavities in a
semiinfinity plane [11–13]. -ese solutions provided im-
portant and solid theoretical foundations for many areas, for
example, analyses of crack propagation and stress concen-
tration [2, 14–17]. In the geotechnical engineering, elastic
solutions for cavity loading/unloading analysis were often
employed in the static stability analysis and calculation of
static stress and deformation fields around wellbores [1, 18],
tunnels [19, 20], piles [21–23], and many other underground
structures/openings.

Previous solutions for the analysis around an ellipse mostly
focused on the problem under the stress-controlled type of
boundary conditions, for example, the analyses of an infinite
elastic plate with a traction-free [8, 14, 24, 25] or uniformly
loaded [2, 3, 26] elliptical hole subjected to biaxial far-field
loading. In fact, in some engineering problems, the inner el-
liptical cavity may also likely deform with specified displace-
ments [27, 28], for instance, the membrane expansion of a flat
dilatometer and the radial expansion process of bio-inspired soil
penetrometers/robots in the ground [29, 30]. Zhou et al. [17]
presented an analytical solution for the elastic analysis of a flat
elliptical cavity with small displacements in the direction parallel
to one coordinate axis and applied the solution to themodelling
of in-situ dilatometer tests. However, solutions for the analysis
of an ellipse withmore general types of displacement-controlled
boundary conditions were rarely reported in the literature.

In this study, considering general types of displacement-
controlled boundary conditions at the inner elliptical cavity
and biaxial stresses at infinity, analytical solutions for the
elastic stresses and displacements are derived for the first
time.-e problem is defined at first, which is followed by the
solving process using the complex variable theory of elas-
ticity and the conformal mapping technique. -en, the
proposed solutions are validated with other existing solu-
tions in the literature and discussed briefly. Finally, con-
clusions are drawn in the last section.

2. Problem Definition

An elliptical cavity within an infinite plane is considered
(Figure 1). -e inner cavity deforms with given displacements
under plane strain conditions, and nonequal biaxial stresses are
applied at infinity. It is assumed that the cavity is surrounded by
isotropic, linear elastic materials. For convenience, both Car-
tesian coordinates (o, x, y) and orthogonal curvilinear coor-
dinates (o, ρ, ϑ), which have the same origin in the centre of the
ellipse (i.e., point o), are employed [31] as shown in Figure 1. ρ
represents the distance from the inner boundary to a particular
point along the direction normal to the innermost cavity wall. ϑ
is the angle from the positive x-axis direction to the direction
that is normal to the inner elliptical boundary (ϑ ∈ [0, 2π]).

-e paralleled elliptic coordinates in Figure 1 were
proposed by Unger [32, 33], which consist of a series of
naturally orthogonal oval shape lines, paralleling to the
innermost ellipse, and radial lines, perpendicular to the
innermost cavity. Points in the new coordinates system can
be expressed as

x � x0 + ρ cos ϑ,

y � y0 + ρ sin ϑ,
(1)

where (x0, y0) represents coordinates of points on the initial
ellipse as defined in the following equation:

x0
2

a
2 +

y0
2

b
2 � 1, x0 � a cos t, y0 � b sin t( 􏼁, and a≠ 0, b≠ 0,

(2)

where “t” represents the eccentric angle of an ellipse (see
Figure 2). “a” and “b” are the semimajor axis and the
semiminor axis, respectively.

-e two coordinate systems can be linked with tan ϑ �

a/b tan t so that the inner ellipse can be described in the
curvilinear coordinates as

x0 �
a
2 cos ϑ

��
H

√ ,

y0 �
b
2 sin ϑ

��
H

√ , H � a
2cos2 ϑ + b

2sin2 ϑ􏼐 􏼑.

(3)

To complete the transformation between these two co-
ordinate systems, the concept of metric coefficients [5, 6] is
applied.-e strain tensor, strain-displacement relations, and
equilibrium equations in the paralleled elliptic coordinate
system can be readily established with the general relations
for orthogonal curvilinear coordinate systems [6] as

ερρ �
zuρ

zρ
,

εϑϑ �
1

ρ + F(ϑ)

zuϑ

zϑ
+ uρ􏼢 􏼣,

ερϑ �
1
2

1
ρ + F(ϑ)

zuρ

zϑ
+

zuϑ

zρ
−

uϑ

ρ + F(ϑ)
􏼢 􏼣,

(4)

x

y
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o
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ρ

Figure 1: Geometry boundaries and coordinate systems.
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where F(ϑ) � a2b2/H3/2. uρ and uϑ are displacement com-
ponents in the normal and the tangential directions of the
parallel-elliptic coordinates, respectively. ερρ, εϑϑ, and ερϑ are
strain components in the normal, tangential, and axial di-
rections of the parallel-elliptic coordinates, respectively. In
fact, F(ϑ) represents the radius of curvature of the corre-
sponding point at the cavity wall.

-e stress equilibrium equations along the normal and
the tangential directions with the absence of body force for
the plane strain problem can be expressed as

zσρρ
zρ

+
1

ρ + F(ϑ)

zσρϑ
zρ

+
σρρ − σϑϑ
ρ + F(ϑ)

� 0,

1
ρ + F(ϑ)

zσϑϑ
zϑ

+
zσρϑ
zρ

+
2σρϑ

ρ + F(ϑ)
� 0,

(5)

where σρρ, σϑϑ, and σρϑ are stress components in the normal,
tangential, and axial directions within the parallel-elliptic
coordinates, respectively.

3. Elastic Stress and Displacement Solutions

3.1. Complex Variable 1eory for Elasticity. -e complex
variable theory provides a powerful theoretical tool for
dealing with a broad class of two-dimensional boundary-
value problems in elasticity [34]. From its first systematic use
in elasticity by Kolossof as early as 1909, this method ex-
perienced great developments and improvements in both
theory and application [2, 3, 35]. Briefly, it has been found in
the plane theory of elasticity that stresses and displacements
can be expressed by means of one single auxiliary function
U(x, y) (e.g., Airy function), and every biharmonic function
U(x, y) may be represented in a simple manner with the
help of two analytic functions of a complex variable z �

x + iy (z � x − iy, i �
���
− 1

√
) such as φ(z) and χ(z) [3], and it

can be expressed as

U(x, y) � Re[zφ(z) + χ(z)], (6)

where Re[...] represents the symbol to take the real part of a
complex number.

-en, the stresses and displacements (free of body
forces) can be represented by the first-order and the second-
order derivatives of φ(z) and χ(z) as

σe
x + σe

y � 4Re[Φ(z)], (7)

σe
y − σe

x + 2iτe
xy � 2[zΦ′(z) + Ψ(z)], (8)

2G u
e
x + iu

e
y􏼐 􏼑 � [κφ(z) − zφ′(z) − ψ(z)], (9)

where σe
x, σ

e
y, and τe

xy are elastic stress components, and ue
x

and ue
y are elastic displacement components.Φ(z) andΨ(z)

are usually referred to as the Kolosov–Muskhelishvili
complex potentials. Φ(z) � φ′(z), Ψ(z) � ψ′(z), and
ψ(z) � χ′(z). κ � 3 − 4v for plane strain problem. G is the
elastic shear modulus, and v is Poisson’s ratio.

-e conformal mapping technique is able to convert
the region with a contour in various shapes in the physical
plane to the region bounded by the unit circle with origin
in the centre of the phase plane [34]. For the problem of
an infinite region with a simple contour inside, it is
convenient to map the exterior of the cavity in the
physical plane onto the exterior region of the unit circle
in the phase plane. As illustrated in Figure 2, the con-
formal mapping function of (10) can conformally map the
exterior of an elliptical cavity in the physical plane onto
the exterior region of the unit circle “c” in the phase
plane.

z � x + iy � ω(ζ) � R ζ +
m

ζ
􏼠 􏼡, (10)

where ζ � ξ + iη � reiϕ describing the position vectors in
the phase plane (o, r, ϕ) as illustrated in Figure 2. ξ and η
are the real part and the imaginary part of the complex
number ζ, respectively. r and ϕ are the modulus and the
argument of ζ, respectively. R � a + b/2, m � a − b/a + b.
By relating to the previously defined curvilinear coor-
dinates, the corresponding positions of points in the
phase plane and the physical plane can be linked with (11)
and (12).

z = ω (ζ)Physical plane Phase plane

x

y

r

t

o

(x0, y0)

θ ϑ

ρ

η

ϕ

ξ

Figure 2: Mapping function for an ellipse.
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x � x0 + ρ cos ϑ � R r +
m

r
􏼒 􏼓cos ϕ, (11)

y � y0 + ρ sin ϑ � R r −
m

r
􏼒 􏼓sin ϕ. (12)

Based on the determinacy analysis of these complex
potentials within a given stress state and/or an admissible
displacement field, the general forms of the Kolo-
sov–Muskhelishvili for multiple-connected regions and
single-connected regions were given by Muskhelishvili [3].
For addressing the problem concerned in this paper, the
general solutions for an infinite plane with a single hole are
as follows:

φ(ζ) � ΓRζ −
X + iY

2π(1 + κ)
ln ζ + φ0(ζ), (13)

ψ(ζ) � Γ′Rζ +
κ(X − iY)

2π(1 + κ)
ln ζ + ψ0(ζ), (14)

Γ′ �
− N1 − N2( 􏼁e

− 2iΛ

2
,

Γ �
N1 + N2( 􏼁

4
,

(15)

where N1 and N2 represent the principal stresses at in-
finity (tension for positive). Λ is the angle between N1 and
the x-axis direction, taking the x-axis direction to the
direction of N1 of anticlockwise rotation as positive.
φ0(ζ) and ψ0(ζ) are holomorphic in the whole concerned
region. X and Y represent components of the resultant
stress vector in x-axis and y-axis directions, respectively.
Accordingly, the complex potentials are related to the
stress boundary conditions. For more details about the
derivation of equations (13)–(15), refer to Chapter 14 of
the reference [3].

By expressing the formulas from equations (7) to (9) in
terms of ζ, the stress and displacement components can be
expressed with

σe
x + σe

y � 4Re[Φ(ζ)],

σe
y − σe

x + 2iτe
xy � 2

ω(ζ)

ω′(ζ)
Φ′(ζ) + Ψ(ζ)⎡⎣ ⎤⎦,

2G u
e
x + iu

e
y􏼐 􏼑 � κφ(ζ) −

ω(ζ)

ω′(ζ)
φ′(ζ) − ψ(ζ)⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(16)

where Φ(ζ) � φ′(ζ)/ω′(ζ) , Ψ(ζ) � ψ′(ζ)/ω′(ζ).
Points between the physical plane and the phase plane

can be correspondingly related by (11) and (12). In addition,
based on the mapping function, required functions in the
above representations are obtained as

ω(ζ) � ω(ζ) � R ζ +
m

ζ
􏼠 􏼡 � R

r
2

ζ
+

mζ
r
2􏼠 􏼡,

ω′(ξ) � R 1 −
m

ζ2
􏼠 􏼡, ω′(ζ) � R 1 −

mζ2

r
4􏼠 􏼡, (17)

where ζ · ζ � r2 in the phase plane (ζ is the conjugate
complex of ζ ).

3.2. Complex Potentials for an Ellipse Deforming with Given
Displacements

3.2.1. Inner Displacement Boundary Conditions. -e dis-
placement boundary condition consists of two basic pa-
rameters, including the magnitude and the direction of
movement of each point. It is assumed that the initial po-
sition of points on the inner ellipse (x0, y0) is defined by the
following equation:

x0
2

a0
2 +

y0
2

b0
2 � 1, (18)

where a0 and b0 denote the semimajor axis and the semi-
minor axis of the initial elliptical cavity, respectively.

It is assumed that the cavity after deformation is still in
an elliptical shape, and its axes’ directions coincide with the
initial ellipse. (19) describes the geometry of the deformed
cavity.

x1
2

a1
2 +

y1
2

b1
2 � 1. (19)

Note that, in theory, the deformed cavity can also be
defined in other shapes by replacing (19) with specified
equations. Based upon (18) and (19), two typical displace-
ment-controlled boundary conditions are considered as
follows.

Case 1. Inner boundary displacements being normal to the
initial surface

In this case, it is assumed that points on the inner ellipse
move outwards along the direction perpendicular to the
initial cavity wall, and the magnitude of the boundary
displacements is determined by the given initial and final
position of the cavity (Figure 3). In addition, nonequal
biaxial stresses are applied at infinity.

In this case, the displacement components can be
expressed using the orthogonal parallel-elliptic coordinates as

u
e
x + iu

e
y � ρ(ϑ)cos ϑ + iρ(ϑ)sin ϑ � ρ(ϑ)e

iϑ
. (20)

Note that the normal distance (ρ(ϑ)) from the initial
cavity rims to the ellipse after deformation varies with
angle because the circumference of the deformed ellipse
does not parallel to the original ellipse. Solving (1) and
(19) gives
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ρ(ϑ) �
− x0b1

2
cosϑ+ y0a1

2 sin ϑ􏼐 􏼑 +

�������������������������������������������������������������

x0b1
2
cosϑ+ y0a1

2 sin ϑ􏼐 􏼑
2

− a1
2sin2 ϑ+ b1

2cos2 ϑ􏼐 􏼑 x0
2
b1

2
+ y0

2
a1

2
− a1

2
b1

2
􏼐 􏼑

􏽱

􏼔 􏼕

a1
2sin2 ϑ+ b1

2cos2 ϑ􏼐 􏼑
. (21)

As given in (9), the relation between the complex po-
tentials and the displacement boundary is rewritten as

2Gg(x, y) � 2G u
e
x( +iu

e
y􏼑|c � κφ(σ) −

ω(σ)

ω′(σ)
φ′(σ) − ψ(σ).

(22)

To transform the displacement boundary in Eq. (20) to
the phase plane, the angle ϑ is related to the argument ϕ of
the phase plane on the basis of (11) and (12) as

tan ϑ �
a0

2
(1 − m)

b0
2
(1 + m)

tanϕ. (23)

All the trigonometric functions can be expressed with
the above tangent function. As a result, (20) becomes a
function of the variable of argument ϕ. -e resultant dis-
placement boundary function g(ϕ) is continuous in the
range of 0≤ ϕ≤ 2π along the circumference of the unit circle
c in the phase plane and satisfies the Dirichlet conditions.
-erefore, it is convenient to reexpress it based on the ex-
pansion of the Fourier series in terms of σ (σ � eiϕ) [3, 17].
-e series-type representation is

g(ϕ) � g1(ϕ) + ig2(ϕ) � u
e
x + iu

e
y � 􏽘

+∞

− ∞
Ane

inϕ
� 􏽘

+∞

− ∞
Anσ

n

� 􏽘
+∞

n�1

A− n

σn + A0 + 􏽘
+∞

n�1
Anσ

n
, n � 1, 2, 3, · · ·,

(24)

where An � 1/2π 􏽒
2π
0 [g1(ϕ) + ig2(ϕ)]e− inϕdϕ which are the

coefficients of the Fourier series. g1(ϕ) is an even function,
and g2(ϕ) is an odd function. As a result, An are real
numbers based on the property of the Fourier series. Fur-
thermore, based on the consistency requirement of (20) and
(24) in parity with respect to the variable of σ, it can be
concluded that the even terms of the Fourier series in (24)
should equal to zero. Hence, g(ϕ) can be simplified to be

g(ϕ) � 􏽘
+∞

n�1

A− (2n− 1)

σ2n− 1 + 􏽘
+∞

n�1
A2n− 1σ

2n− 1
. (25)

In the special case of Case 1, the cavity deforms with the
same normal displacements.

In this special case, points on the initial cavity wall move
outwards in the normal direction with the same distance. In
another word, a constant value of ρ is assumed. Hence, the
boundary condition becomes

u
e
x + iu

e
y � ρ cos ϑ + iρ sin ϑ � ρe

iϑ
, (ρ � const). (26)

-e same procedure can be followed as above to
transform this boundary condition into Fourier series, and
the same form of representation as (25) can be obtained but
with different coefficients.

Case 2. Displacements of the inner ellipse pointing out-
wards from the centre of the initial ellipse

In this case, material points on the initial ellipse move
outwards along the radial direction of the cylindrical co-
ordinate system (see Figure 4). -erefore, a combination use
of the Cartesian coordinate system and the cylindrical co-
ordinate system is adopted in this analysis. Similarly, the
coordinate positions can be expressed in terms of the centre
angle θ as

x � x0 + l cos θ,

y � y0 + l sin θ,
(27)

where x0 � ab cos θ/
��
T

√
, y0 � ab sin θ/

��
T

√
, and

T � b2cos2 θ + a2sin2 θ. l represents the distance from one
given point to the corresponding point on the inner ellipse
along the radial axis direction.

Subsequently, the given boundary conditions can be
expressed as

u
e
x + iu

e
y � l(θ)cos θ + il(θ)sin θ � l(θ)e

iθ
. (28)

And, similarly

l(θ) �

− x0b1
2
cosθ + y0a1

2 sin θ􏼐 􏼑

+

���������������������������������������������������������������

x0b1
2
cosθ + y0a1

2 sin θ􏼐 􏼑
2

− a1
2sin2 θ + b1

2cos2 θ􏼐 􏼑 x0
2
b1

2
+ y0

2
a1

2
− a1

2
b1

2
􏼐 􏼑

􏽱
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a1
2sin2 θ + b1

2cos2 θ􏼐 􏼑
.

(29)

-en, the centre angle is related to the variable ϕ be-
longing to the phase plane with

tan θ �
(1 − m)

(1 + m)
tanϕ. (30)
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�en, following the same procedure, the displacement
boundary conditions can be expressed in the same form as
(25) with di�erent coe�cients.

3.2.2. Biaxial Far-Field Stress Boundary Conditions.
Biaxial compression stresses (P1 and P2) are applied at
in�nity (far away from the cavity comparing with the cavity
size), and the semimajor axis direction of the ellipse takes a
clockwise angle Λ to the direction of the principal stress P1.
As a result,

Γ �
− P1 + P2( )

4
, Γ′ �

P1 − P2( )e− 2iΛ

2
, (at infinity). (31)

3.2.3. Derivation of the Complex Potentials. To represent the
given type of displacement boundary conditions in terms of
the complex potentials, (9) is rewritten as

2Gg(x, y) � 2G g1 + ig2( ) � κφ(ζ) −
ω(ζ)
ω′(ζ)

φ′(ζ) − ψ(ζ).

(32)

With this representation and general forms of φ(ζ) and
ψ(ζ) (i.e., Eq. (13) and Eq. (15)), Muskhelishvili [3] (see
Chapter 15) gave the general representations for the complex

potentials with the displacement-type boundary conditions
for the problem of an elliptical cavity in an in�nite plane.

φ0(ζ) � −
2G
κ

1
2πi
∫
c

g

σ − ζ
dσ + mΓ + Γ′( )

R

κζ
,

ψ0(ζ) �
G

πi
∫
c

g

σ − ζ
dσ + ΓR

κ
ζ
− ζ

1 +m2

ζ2 − m
( )

+
X + iY

2π(1 + κ)
1 +m2

ζ2 − m( )
− ζ

1 +mζ2

ζ2 − m
φ0′(ζ) + ψ0′(∞),

ψ0(∞) � −
G

πi
∫
c

g0
σ
dσ � −

G

πi
∫
c

g

σ
dσ +

m(X + iY)
2π(1 + κ)

.

(33)

Based on these formulas and the given boundary con-
ditions, complex potentials for the de�ned problem can be
obtained using the Cauchy integral method as follows:

y

O

x

After displacement

a0

b0

P2

P1
–Λ

Figure 3: Schematic diagram of the boundary conditions (Case 1).

y

O

x

After displacement

a0

b0

P2

P1
–Λ

Figure 4: Schematic diagram of the boundary conditions (Case 2).

x

y
b

-b0

a

Figure 5: Normal directions of points on a �at cavity.
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φ0(ζ) �
2G

κ
􏽘

+∞

n�1

A− (2n− 1)

ζ2n− 1 + − m
P1 + P2( 􏼁

4
+

P1 − P2( 􏼁e
2iΛ

2
􏼢 􏼣

R

κζ
,

ψ0(ζ) � − 2G 􏽘
+∞

n�1

A2n− 1

ζ2n− 1 + R
P1 + P2( 􏼁

4
κ
ζ

− ζ
1 + m

2

ζ2 − m
􏼠 􏼡

− ζ
1 + mζ2

ζ2 − m
−
2G

κ
􏼚 􏽘

+∞

n�1
(2n − 1)

A− (2n− 1)

ζ2n
+ m

P1 + P2( 􏼁

4
−

P1 − P2( 􏼁e
2iΛ

2
􏼢 􏼣

R

κζ2
􏼩,

φ(ζ) � −
P1 + P2( 􏼁

4
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Figure 6: Validation of the solution with displacement boundary.
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4. Results Analysis

In this section, the proposed solutions are validated by
comparing them with existing solutions for special condi-
tions at first. -en, some results are presented to show the
differences between the concerned two types of displace-
ment boundary conditions.

4.1. Comparison with the Solution for a Flat Cavity. -e
analytical solution for Case 1 (i.e., displacements normal to the
initial cavity wall) is compared with the solution proposed by
Zhou et al. [17]. -eir solution was designed for a flat elliptical
cavity undergoing small displacements in the direction parallel
to one coordinate axis, and the given final shape of the inner
cavity is still in an elliptical shape. -e boundary condition is
defined in Eq. (35). Note that the defined moving directions of
the inner boundary in the solution of Zhou et al. [17] are not
exactly the same as those defined in Case 1 of this paper.
Nevertheless, it is anticipated that they could give approximately
the same results when the ellipse is very flat. As illustrated in
Figure 5, the normal directions of the inner flat ellipse are
almost parallel to the axis direction in a large angular scope.

u
e
x + iu

e
y|c �

− ia b − b0( 􏼁sinϕ
���������������������
β2b0

2
+ a

2
− β2b0

2
􏼐 􏼑sin

2ϕ
􏽱 . (35)

Taking the elastic modulus as 15MPa and Poisson’s ratio
as 0.5, comparisons between these two solutions are carried
out as shown in Figure 6. With the given geometry param-
eters, the normal direction of the inner flat ellipse just rotated
1° away from the direction of y-axis even when x0 � 0.9927a.
Not surprisingly, these two solutions gave almost the same
results in a wide range as demonstrated in Figure 6, which
validates the accuracy of the present solution for Case 1.

4.2. Comparison with Solution for Circular Cavity.
Providing that the initial and the final shapes of the inner cavity
are both circular (a0 � b0 � R0) and the far-field stress con-
ditions are hydrostatic (i.e., axisymmetric stress and geometry
conditions), the presented displacement-controlled solutions
can give the same results as the conventional stress-controlled
solution (e.g., equation (36) to (38) from Yu [1]), and solutions
for Cases 1 and 2 become identical in this special case. As
demonstrated in Figure 7, results calculated with these three
solutions agree well in this simplified condition.
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2G

R
2
0

r
r. (38)

4.3. Comparison of Stress and Displacement Fields. Except at
the vertices, the normal direction of points on an ellipse does
not coincide with the normal direction, and this difference
would be intensified with increases of a/b. -erefore, the
formed stress field around the ellipse calculated with the
previously developed two displacement-controlled solutions
would be different. Taking a/b � 5/3 as an example, with the
same soil properties and cavity positions (initial and final),
results calculated with these two solutions are presented in
Figures 8 and 9, respectively (G � 20MPa, Poisson’s ratio
] � 0.4).

-e directions of displacements at the inner ellipse for
Case 1 are more paralleling to the major axis direction of
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Figure 7: Comparison with the conventional solution for the circular cavity.
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the ellipse than those of Case 2. -is difference leads to
significant variations of the surrounding stress fields al-
though the initial and final positions of the ellipse were set
as the same in these two solutions. Specifically, with given
displacements normal to the initial ellipse, tensile zones
are concentrated around vertices of the major axis. -e
plate around the ellipse seems to be stretched in the di-
rection paralleling the minor axis of the ellipse (Figure 8).

On the contrary, tensile zones emerged from vertices of
the minor axis when the boundary points were set to move
along radial directions (Figure 9). -e plate seems to be
stretched in the direction paralleling the major axis of the
ellipse. In addition, the magnitude and concentration
degree of the stresses caused by different types of dis-
placement boundary conditions are distinctly different as
well.
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5. Conclusions

Analytical solutions for the calculation of stresses and dis-
placements caused by specified deformation of an elliptical
cavity in an infinite plane with biaxial far-field stresses are
developed using the complex variable theory for plane
elasticity in this paper. A general method dealing with
displacement boundary conditions is presented by means of
the combined use of the conformal mapping technique and
Fourier series in complex form, and the Kolosov-Muskhe-
lishvili complex potentials were obtained using Cauchy’s
integral formula. Two typical displacement-controlled
boundary conditions (i.e., normal to the inner cavity and
outwards from the centre of the inner cavity) are analysed
with the proposed method, and it is found that stresses and
displacements induced by inner cavity deformation depend

both on the magnitude and the direction of soil particle
movement. -e new solutions may be useful in many en-
gineering problems such as analysis of stress concentration/
strain localisation around an elliptical hole/opening in linear
elastic materials and interaction between soils and man-
made penetrometers (e.g., flat dilatometer) and living or-
ganisms in nature (e.g., plant roots and earthworms).
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