Prime Decomposition of Zero Divisor Graph in a Commutative Ring

A. Kuppan (1) and J. Ravi Sankar (ㄷ)
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
Correspondence should be addressed to J. Ravi Sankar; ravisankar.j@vit.ac.in

Received 14 July 2022; Accepted 26 August 2022; Published 24 September 2022
Academic Editor: Cenap Özel
Copyright © 2022 A. Kuppan and J. Ravi Sankar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let R be a commutative ring and let $\Gamma\left(Z_{n}\right)$ be the zero divisor graph of a commutative ring R, whose vertices are nonzero zero divisors of Z_{n}, and such that the two vertices u, v are adjacent if n divides $u v$. In this paper, we introduce the concept of prime decomposition of zero divisor graph in a commutative ring and also discuss some special cases of $\Gamma\left(Z_{3 p}\right), \Gamma\left(Z_{5 p}\right), \Gamma\left(Z_{7 p}\right)$, and $\Gamma\left(Z_{p q}\right)$.

1. Introduction

Let us consider the finite, simple, and undirected graphs to discuss about the prime decomposition in the form of zero divisor graphs [1].

Here, complete graph with n vertices is represented by K_{n} and the complete bipartite graph is represented by $K_{m, n}$. Also, a path of length k is by S_{k}. (ie) $S_{k}=K_{1, k}$. Let $K_{1, m_{i}}^{\beta}$, be the star graph of β copies where m be the prime number with I i t tupes. Let L be the family of all subgraph and L is an edge disjoint decomposition with α_{i} copies of H_{i}, where $i \in\{1,2, \ldots, r\}$ and α is a positive integer. Furthermore, if each $H_{i}(i \in\{1,2,3, \ldots, r\})$ is isomorphic to a graph H, then we say that G has an H - decomposition.

The zero divisor graphs play an important role in algebraic properties and algebraic structures such as a commutative ring. The concept of a zero divisor graph is a commutative ring was proposed by Beck's [2]. The general terminology and notation everything based on the papers [[3-7]]. In this paper, we investigate the prime decomposition of $\Gamma\left(Z_{p q}\right)$ into $K_{1, m_{i}}$ star graph with m_{i} edges and obtain the following results. We already investigated the concept of decomposition of zero divisor graph for some special cases $\Gamma\left(Z_{n}\right)$ where $n=p q, p^{2}, p^{2} q$ [8].

Let R be the ring and $G(R)$ be the graph of the ring. If two distinct vertices $r . s \in G(R)$ are adjacent then we can represent it as $r s=0$. Beck's initiated his work with a chromatic number of the graph. In this paper, we discuss the prime decomposition of $Z_{p q}$ into $K_{1, m_{i}}$ star graph with m_{i} edges.

2. Preliminaries

Definition 1 (see [4]). Let R be a commutative ring (with 1) and let $Z(R)$ be its set of zero-divisors. We associate a (simple) graph $\Gamma(R)$ to R with vertices $Z(R)^{*}=Z(R)-\{0\}$, the set of nonzero zero-divisor of R , and for distinct $x, y \in Z(R)^{*}$ the vertices x and y are adjacent if and only if $x y=0$. Thus, $\Gamma(R)$ is the empty graph if and only if R is an integral domain.

Definition 2. A graph G is decomposable into H_{1}, H_{2}, H_{3}, \ldots, H_{k} if G has subgraphs $H_{1}, H_{2}, H_{3}, \ldots, H_{k}$ such that
(1) Each edge of G belongs to one of the $H_{i^{\prime}} s$ for some $i=1,2,3, \ldots, k$
(2) If $i \neq j$, then H_{i} and H_{j} have no edges in common.

3. Prime Decomposition of Zero Divisor Graph

Theorem 1. If p is any prime number, $p>3$ and $r \geq 0$ then the graph $\Gamma\left(Z_{3 p}\right)$ admits a $\left\{K_{1, m_{i}}^{2\left|p-1 / m_{i}\right|}, K_{1, r}^{2}\right\}$ - prime decomposition if and only if $p-1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime less than p.

Proof 1. Suppose that p is any prime number, $p>3$ and $r \geq 0$, we have, $\Gamma\left(Z_{3 p}\right)$ be the nonzero zero divisor graph. The vertex set of $\Gamma\left(Z_{3 p}\right)$ is $\{3,6,9, \ldots, 3(p-1), p, 2 p\}$.

Case 1. Let us consider $p-1 \mid m_{i}$. If the graph $\Gamma\left(Z_{3 p}\right)$ is prime decomposition into $2\left\lfloor p-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$ then there exists $p-1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime number less than p.

Case 2. Let us consider $p-1 \mid / m_{i}$ then their exists a remainder r. If the graph $\Gamma\left(Z_{3 p}\right)$ is prime decomposition into $2\left\lfloor p-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$ and (copies of $K_{1, r} \cong r$ copies of $\left.K_{1,2}\right)$ then there exists $p-1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime number less than p. Above-given case 1 and case 2 clearly show that the prime decomposition of $\Gamma\left(Z_{3 p}\right)$ into $\left\{K_{1, m_{i}}^{2\left|p-1 / m_{i}\right|}, K_{1, r}^{2}\right\}$ then $p-1 \equiv r\left(\bmod m_{i}\right)$.

Conversely, suppose that $p-1 \equiv r\left(\bmod m_{i}\right)$ where m is any prime less than p.

Let us consider $p=5$ and $m=2$, 3 . If $4 \equiv 0(\bmod 2)$ then there exists 4 copies of $K_{1,2}$. If $4 \equiv 1(\bmod 3)$ then there exists 2 copies of $K_{1,3}$ and (2 copies of $K_{1,1} \cong$ one copy of $K_{1,2}$).

Let us take $p=7$ and $m=2,3,5$. If $6 \equiv 0(\bmod 2)$ then there exists 6 copies of $K_{1,2}$. If $6 \equiv 0(\bmod 3)$ then there exists 4 copies of $K_{1,3}$. If $6 \equiv 1(\bmod 5)$ then there exists 2 copies of $K_{1,5}$ and (2 copies of $K_{1,1} \cong$ one copy of $K_{1,2}$).

In general, take p is any prime number $p>3$ and m_{i} is prime numbers less than p. Clearly, If $p-1 \equiv r\left(\bmod m_{i}\right)$ then $\Gamma\left(Z_{3 p}\right)$ is a prime decomposition into $2\left\lfloor p-1 / m_{i}\right\rfloor$ copies of $K_{1, m}$ and (2 copies of $K_{1, r} \cong r$ copies of $K_{1,2}$). Hence the proof (see Figure 1).

Example 1. Let us take $p=7$ and $q=11$ the graph $\Gamma\left(Z_{15}\right)$ as the example of Theorem 1.

Theorem 2. If pis any prime number, $p>5$ and $r \geq 0$ then the graph $\Gamma\left(Z_{5 p}\right)$ admits a $\left\{K_{1, m_{i}}^{4\left\lfloor p-1 / m_{i}\right\rfloor}, K_{1, r}^{4}\right\}$ - prime decomposition if and only if $p-1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime less than p.

Proof 2. Suppose that p is any prime number, $p>5$, we have, $\Gamma\left(Z_{5 p}\right)$ be the nonzero zero divisor graph with isomorphic to $K_{4, p-1}$. The vertex set of $\Gamma\left(Z_{5 p}\right)$ is $\{5,10,15, \ldots, 5(p-1), p, 2 p, 3 p, 4 p\}$.

Case 3. Let us take $p-1 \mid m_{i}$. If the prime decomposition of $\Gamma\left(Z_{5 p}\right)$ into $4\left\lfloor p-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$ then there exists $p-$ $1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime numbers less than p.

Case 4. Let us take $p-1 \mid / m_{i}$. If the prime decomposition of $\Gamma\left(Z_{5 p}\right)$ into $4\left\lfloor p-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$. Clearly, the

Figure 1: $\Gamma\left(Z_{15}\right)$.
remaining edges are (r copies of $K_{1,4} \cong 4$ copies of $K_{1, r}$) where r is the remainder of $\left\{p-1, m_{i}\right\}$. Then, there exists $p-1 \equiv r\left(\bmod m_{i}\right)$. Clearly, shows that the above cases prime decomposition of $\Gamma\left(Z_{5 p}\right)$ into $\left\{K_{1, m_{i}}^{4\left[p-1 / m_{i}\right]}, K_{1, r}^{4}\right\}$ then $p-1 \equiv r\left(\bmod m_{i}\right)$.

Conversely, suppose that $p-1 \equiv r\left(\bmod m_{i}\right)$ where m is any prime numbers less than p.

Let us take $p=7$ and $m_{i}=2,3,5$. If $6 \equiv 0(\bmod 2)$ then 12 copies of $K_{1,2}$. If $6 \equiv 0(\bmod 3)$ then 8 copies of $K_{1,3}$. If $6 \equiv 1(\bmod 5)$ then 4 copies of $K_{1,5}$ and (4 copies of $K_{1,1} \cong$ one copy of $\left.K_{1,4}\right)$.

Let us take $p=11$ and $m_{i}=2,3,5,7$. If $10 \equiv 0(\bmod 2)$ then 20 copies of $K_{1,2}$. If $10 \equiv 1(\bmod 3)$ then 12 copies of $K_{1,3}$ and (4 copies of $K_{1,1} \cong$ one copy of $K_{1,4}$. If $10 \equiv 0(\bmod 5)$ then 8 copies of $K_{1,5}$. If $10 \equiv 3(\bmod 7)$ then 4 copies of $K_{1,7}$ and (4 copies of $K_{1,3} \cong 3$ copies of $K_{1,4}$).

In general, take p is any prime number $p>5$ and m_{i} is prime numbers less than p. Clearly, If $p-1 \equiv r\left(\bmod m_{i}\right)$ then $\Gamma\left(Z_{5 p}\right)$ is a prime decomposition into $4\left\lfloor p-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$ and (4 copies of $K_{1, r} \cong r$ copies of $K_{1,4}$). Hence the proof (see Figure 2).

Example 2. Let us take $p=7$ and $q=11$ the graph $\Gamma\left(Z_{15}\right)$ as the example of Theorem 2

Theorem 3. Ifp is any prime number, $p>7$ and $r \geq 0$ then the graph $\Gamma\left(Z_{7 p}\right)$ admits a $\left\{K_{1, m_{i}}^{6\left\lfloor p-1 / m_{i}\right\rfloor}, K_{1, r}^{6}\right\}$ - prime decomposition if and only if $p-1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime less than p.

Proof 3. Suppose that p is any prime number, $p>7$, we have, $\Gamma\left(Z_{7 p}\right)$ be the nonzero zero divisor graph with isomorphic to $K_{6, p-1}$. The vertex set of $\Gamma\left(Z_{6 p}\right)$ is $\{7,14,21, \ldots, 7(p-1), p, 2 p, 3 p, 4 p, 5 p, 6 p\}$.

Case 5. Let us take $p-1 \mid m_{i}$ the prime decomposition of $\Gamma\left(Z_{7 p}\right)$ into $6\left\lfloor p-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$ then there exists $p-$ $1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime numbers less than p.

Case 6. Let us take $p-1 \mid / m_{i}$ the prime decomposition of $\Gamma\left(Z_{7 p}\right)$ into $6\left\lfloor p-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$. Clearly, the remaining edges are (r copies of $K_{1,6} \cong 6$ copies of $K_{1, r}$) where r is the remainder of $\left\{p-1, m_{i}\right\}$. Then, there exists $p-1 \equiv r\left(\bmod m_{i}\right)$. Clearly, shows that the above-given

cases prime decomposition of $\Gamma\left(Z_{7 p}\right)$ into $\left\{K_{1, m_{i}}^{6\left\lfloor p-1 / m_{i}\right\rfloor}, K_{1, r}^{6}\right\}$
then $p-1 \equiv r\left(\bmod m_{i}\right)$.
Conversely, suppose that $p-1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime numbers less than p. Let us take $p=11$ and $m_{i}=2,3,5,7$. If $10 \equiv 0(\bmod 2)$ then 30 copies of $K_{1,2}$. If $10 \equiv 1(\bmod 3)$ then 18 copies of $K_{1,3}$ and (6 copies of $K_{1,1} \cong$ one copy of $\left.K_{1,6}\right)$. If $10 \equiv 0(\bmod 5)$ then 12 copies of $K_{1,5}$. If $10 \equiv 3(\bmod 7)$ then 6 copies of $K_{1,7}$ and (6 copies of $K_{1,3} \cong 3$ copies of $K_{1,6}$). Let us take $p=13$ and $m_{i}=2,3,5,7,11$. If $12 \equiv 0(\bmod 2)$ then 36 copies of $K_{1,2}$. If $12 \equiv 0(\bmod 3)$ then 24 copies of $K_{1,3}$. If $12 \equiv 2(\bmod 5)$ then 12 copies of $K_{1,5}$ and (6 copies of $K_{1,2} \cong 2$ copies of $K_{1,6}$). If $12 \equiv 5(\bmod 7)$ then 6 copies of $K_{1,7}$ and (6 copies of $K_{1,5} \cong 5$ copies of $K_{1,6}$). If $12 \equiv 1(\bmod 11)$ then 6 copies of $K_{1,11}$ and (6 copies of $K_{1,1} \cong$ one copy of $K_{1,6}$). In general, take p is any prime number $p>7$ and m_{i} is prime numbers less than p. Clearly, If $p-$ $1 \equiv r\left(\bmod m_{i}\right)$ then $\Gamma\left(Z_{7 p}\right)$ is a prime decomposition into $6\left\lfloor p-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$ and 6 copies of $K_{1, r} \cong r$ copies of $K_{1,6}$. Hence the proof (see Figure 3).

Example 3. Let us take $p=7$ and $q=11$ the graph $\Gamma\left(Z_{15}\right)$ as the example of Theorem 3,

Theorem 4. If p and q are any distinct prime numbers, $q>p$ and $r \geq 0$ then the graph $\Gamma\left(Z_{p q}\right)$ admits a $\left\{K_{1, m_{i}}^{p-\left\lfloor q-1 / m_{i}\right\rfloor}, K_{1, r}^{p-1}\right\}$ - prime decomposition if and only if q $1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime less than p.

Proof 4. Suppose that p and q are any distinct prime numbers, $q>p$, we have, $\Gamma\left(Z_{p q}\right)$ be the nonzero zero divisor graph with isomorphic to $K_{p-1, q-1}$. The vertex set of $\Gamma\left(Z_{p q}\right)$ is $\{p, 2 p, 3 p, \ldots, p(q-1), q, 2 q, 3 q, \ldots, q(p-1)\}$.

Case 7. Let us take $q-1 \mid m_{i}$. If prime decomposition of $\Gamma\left(Z_{p q}\right)$ into $(p-1)\left\lfloor q-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$ then there exists $q-1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime numbers less than p.

Case 8. Let us take $q-1 \mid / m_{i}$ the prime decomposition of $\Gamma\left(Z_{p q}\right)$ into $(p-1)\left\lfloor q-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$. Clearly, the remaining edges are (r copies of $K_{1, q-1} \cong q-1$ copies of $K_{1, r}$) where r is the remainder of $\left\{q-1, m_{i}\right\}$. Then, there exists $q-1 \equiv r\left(\bmod m_{i}\right)$. Clearly, shows that the above cases prime decomposition of $\Gamma\left(Z_{p q}\right)$ into $\left\{K_{1, m_{i}}^{(p-1)\left\lfloor q-1 / m_{i}\right\rfloor}, K_{1, r}^{p-1}\right\}$ then $q-1 \equiv r\left(\bmod m_{i}\right)$.

Conversely, suppose that $q-1 \equiv r\left(\bmod m_{i}\right)$ where m_{i} is any prime numbers less than p.

Let us take p and q are any distinct prime numbers and m_{i} is any prime less than q. Clearly, the above-given theorems show. If $q-1 \equiv r\left(\bmod m_{i}\right)$ then $\Gamma\left(Z_{p q}\right)$ is a prime decomposition into $(p-1)\left\lfloor q-1 / m_{i}\right\rfloor$ copies of $K_{1, m_{i}}$ and $p-1$ copies of $K_{1, r} \cong r$ copies of $K_{1, p-1}$. Hence the proof.

4. Conclusion

In this paper, we have defined the Prime Decomposition of the Zero Divisor Graph of a commutative ring. Also, some special cases of $\Gamma\left(Z_{3 p}\right), \Gamma\left(Z_{5 p}\right), \Gamma\left(Z_{7 p}\right)$, and $\Gamma\left(Z_{p q}\right)$ are established. In the future, we will study some more properties and applications of Prime Decomposition of Zero Divisor Graph. [9].

Data Availability

The data utilized for the model development of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, London, 1976.
[2] I. Beck, "Coloring of commutative ring," Journal of Algebra, vol. 116, pp. 208-226, 1998.
[3] A. D. Akwu and D. O. A. Ajayi, "Sunlet decomposition of Certain Equipartite graphs," International Journal of Combinatorics, vol. 2013, pp. 1-4, 2013.
[4] S. Arumugam, I. Sahul Hamid, and V. M. Abraham, "Decomposition of graphs into paths and Cycles," Journal of Discrete Mathematics, vol. 2013, pp. 1-6, 2013.
[5] R. Hammack and O. Puffenberger, "A prime factor theorem for bipartite graphs," European Journal of Combinatorics, vol. 47, pp. 123-140, 2015.
[6] H. Richard, "Hammack, on uniqueness of prime bipartite factors of graphs," Discrete Mathematics, vol. 313, pp. 10181027, 2012.
[7] U. S. Rajput and B. G. Shukla, "P_(4k+1) Factorization of complete bipartite graphs," Discrete Mathematics, vol. 45, pp. 7893-7897, 2012.
[8] A. Kuppan and J. Ravi Sankar, "Decomposition of zero divisor graph in a commutative ring," Advances in Mathematics: Scientific Journal, vol. 9, no. 8, pp. 6385-6396, 2020.
[9] D. F. Anderson and P. S. Livingston, "The zero-divisor graph of a commutative ring," Journal of Algebra, vol. 217, no. 2, pp. 434-447, 1999.

