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Te dynamic time warping algorithm (DTW) has problems such as high computational complexity and “ill-conditioned
matching.” Aiming at the above two main problems, this paper proposes an improved DTW algorithm for the fnal wave
recording of the primary and secondary deep fusion equipment detection platform. Te terminal recorded waveform and the
waveformwith non-Gaussian noise added as the research object, the two sets of waveforms are divided into frames and windowed,
and the short-term energy entropy ratio of the two sets of waveforms is input into the DTW as the test vector. Using the optimal
matching paths and distances of the two input vectors, the common substring lengths of the two sets of short-term energy entropy
ratio sequences are calculated. Ten, we defne the optimal matching coefcient and correct the waveform similarity. Te
experimental data show that the improved DTW algorithm can accurately quantify the similarity between terminal waveforms,
which can provide efective data support for the health status assessment of power distribution terminals.

1. Introduction

With the acceleration of distribution network construction,
the coverage rate of distribution terminals is also increasing
year by year. Te power distribution terminal is an im-
portant sensing unit, and its health status is evaluated. Te
staf can discover the potential safety hazards of the terminal
in time so as to arrange a reasonable maintenance plan to
ensure the safe operation of the power grid [1].Te sampling
waveform can refect the problems existing in the test system
during the actual recording process. In practical applica-
tions, the system will be disturbed by the electromagnetic
and noise signals of primary switch opening and closing. By
analyzing the waveform recorded by the terminal and the
standard waveform of the power source, the health status can
be evaluated [2–4]. Terefore, analyzing the waveform
characteristics is a key step in maintaining the normal
operation of the system.

Similarity measurement theory is used to compare the
similarity relationship between certain forms, images,

textual information, or various data. Based on the wide
application of similarity algorithms in various felds, it has
surpassed dozens of classical similarity calculations [5–10].
Waveform similarity measure inherits and develops the
similarity measure theory. Its application felds are very
wide, such as speech recognition, radar detection and rec-
ognition, electrocardiogram intelligent detection, traditional
Chinese medicine fngerprint identifcation, and other felds,
and the waveform similarity algorithm has been well applied
and developed [11, 12].

Dynamic time warping (DTW) is a classic optimization
algorithm. We use a time warping function that meets
specifc requirements to defne the relative time-to-moment
correlation between the test module and the reference
module. Tus, the minimum cumulative distance when the
two modules are matched is calculated [13]. When the two
sequences as a whole have very similar shapes, when the
sequences are not aligned on the x-axis, before comparing
the similarity, warping one (or both) of the sequences under
the time axis helps to achieve a better align efect. Te DTW
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algorithm is an efective method to achieve warping, which
calculates the similarity between two sequences by length-
ening and shortening the time series to obtain the shortest
distance between them [14, 15]. For a long time, scientifc
researchers and technicians in various felds have carried out
a lot of research on the DTW algorithm. Ran et al. [16]
introduced a weighting function to improve the DTW al-
gorithm to suppress the edge efect, but this method is only
optimized for the head and end, but it is not suitable for the
global alignment of the end waveform. Li et al. [17] proposed
a piecewise linear ftting dynamic time warping similarity
measure, using the DTW algorithm to measure the time
series after multidimensional piecewise ftting, which has a
relatively large data scale and continuous variable sequence.
It has a good efect, but the experimental results are greatly
afected by the choice of parameters. In terms of compu-
tational efciency and to improve the communication rate, it
utilizes the event-triggered schedule to relieve the com-
munication burden, which is between sensors and the re-
mote flter [18]. In article [19], it develops an event-triggered
strategy with a sampling scheme and an arrangement to
reduce data transmission signifcantly, in which it sends
measurements when it meets the event-triggered conditions.
It reduces the transmission cost of data to reduce the
communication burden and also reduces the burden of
sampling units to improve the computational efciency of
the algorithm.

Te waveforms detected in this paper are generated by
the primary and secondary fusion equipment of State Grid
Corporation of China. At present, the primary and sec-
ondary equipment of the distribution network are still
independent of each other, but there have been distribution
switchgears with some secondary intelligent units in the
primary part. In order to continuously improve the lean
level and operational efciency of line loss management,
State Grid Corporation of China proposed a technical
solution for the integration of primary and secondary
equipment for power distribution. Te deep integration of
primary body equipment, high-precision sensors, and
secondary terminal equipment can achieve the goals of
“high reliability, miniaturization, platformization, versa-
tility, and economy.” Te primary and secondary deep
integration equipment can meet the requirements of in-
terface standardization and complete set of bidding and
procurement. In other words, the device can meet the
requirements of high integration, interchange, mainte-
nance, etc. Solve the problems of insulation coordination,
electromagnetic compatibility, and life matching of com-
plete sets of equipment. In the future, the intelligent
equipment composed of primary and secondary equipment
will not only have the main equipment body for trans-
mitting and distributing electric energy but also have
functions such as measurement, control, protection, and
metering. Te physical form of each function is embodied
in the form of intelligent components, and the traditional
division of primary and secondary equipment is no longer
emphasized. In the aspect of signal measurement, based on
the AC power fow model, the theory of admittance
weighted topology, and complex network centrality, it

proposes a sampling key node identifcation approach [20].
Te primary and secondary equipment of the distribution
network are involved in this paper, which takes the sam-
pling key node as the main point and selects 14 cycles in
total, which contains the frst fve and the last nine cycles in
the sampling period.

tIn order to solve the problem of the accuracy of the
sampling waveform at the terminal of the primary and
secondary fusion equipment, this paper proposes an im-
proved DTW algorithm combining common substring and
energy entropy ratio. Firstly, a method for preprocessing
waveforms is proposed to solve the problems of high
computational complexity and insufcient characteristic
events. Te method divides the terminal waveform and the
waveform with added non-Gaussian noise into frames and
calculates the short-term energy entropy ratio of the two
sets of waveforms as input. Ten, aiming at the problem of
“ill-conditioned matching” in the waveform comparison, a
method to correct the similarity is proposed, which is
achieved by calculating the penalty coefcient based on the
length of the longest common substring. Finally, the im-
proved DTW algorithm is verifed and applied, and Matlab
is used to compare the waveforms recorded by the terminal.
By comparing the terminal recording waveform with the
power source signal waveform, this algorithm can provide
data to evaluate the health status of the terminal. It can
improve the efciency and address the “ill-conditioned
matching” issue, which is too complicated to adjust
through the local adjustment of the waveform. Te ex-
periments show that the algorithm can efectively improve
the calculation efciency and accuracy of waveform
similarity.

2. Principle Analysis of an Improved
DTW Algorithm

2.1. Traditional DTW Algorithm. Te two waveform se-
quences that need to be judged for similarity are set as X and
Y, respectively, and the lengths are |X| and |Y|. Te shape of
the normalized path is W � w1, w2, . . . , wk, where max (|X|, |
Y|)≤K≤ |X|+ |Y|. Te shape of wk is (i, j), where i represents
the i coordinate system inX, and j represents the j coordinate
system in Y. Te normalization path starts from w1 � (1, 1)
and ends at wk � (|X|, |Y|), ensuring that W can contain all
positions in X and Y. In addition, the i and j values of w(i, j)

in the defaultW are monotonically increasing to ensure that
their curves do not cross. Monotonically increasing means
that

wk � (i, j), wk+1 � i′, j′( 􏼁i< � i′ < � i + 1j< � j′ < � j + 1. (1)

Te path with the least cost of regularization is

DTW �

�����

􏽘

K

k�1

wk

K

􏽶
􏽴⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (2)

Te goal regularization path takes the one with the
shortest relative distance as
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D(i, j) � Dist(i, j)

+ min[D(i − 1, j), D(i, j − 1), D(i − 1, j − 1)].

(3)

Te process of solving the twisted curve is to fnd a path
from the lower left corner to the upper right corner, which
minimizes the sum of the element values traversed by the
path [21]. In the process of calculating the DTW distance,
the sequence points need to be self-replicated before
alignment and matching. Tis approach can measure
nonequal-length series, which is benefcial to support the
bending and extension of time series [22–24].

Te planning of the path satisfes the constraints such as
from the previous square (i − 1, j − 1) or (i − 1, j) or (i, j − 1)
to the next square (i, j). If you start planning from (i − 1, j) or
(i, j − 1), the distance is d (i, j). If you start planning from
(i − 1, j − 1), the distance is 2d (i, j).

g(i, j) � min

g(i − 1, j) + d(i, j)

g(i − 1, j − 1) + 2 d(i, j)

g(i, j − 1) + d(i, j)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (4)

In the formula (4), g(i, j) means that both templates are
matched successively from the initial component, plan the
path to the i component in X and the j component in Y, and
calculate the distance between the two templates. Add d (i, j)
or 2d (i, j) to the result of the previous match and take the
minimum value Distm.

2.2. Short-Time Energy Entropy Ratio. Te short-term
analysis method is widely used in the feld of speech signal
processing. Te waveform signal and the speech signal have
the same characteristics as nonlinearity. When performing
short-term analysis, the analyzed signal needs to be divided
into frames, and several feature parameter time series
composed of “frames” are obtained.Ten, follow-up analysis
and processing is performed on the characteristic parameter
time series, which greatly reduces the computational com-
plexity of the computer.

Te short-term energy entropy ratio is a time-domain
analysis algorithm, which can improve the calculation
efciency by framing and windowing. Not only that, the
algorithm can also signifcantly improve the signal-to-
noise ratio, which is benefcial to distinguish abrupt
events in the waveform signal. Te DTW algorithm has
the problems of high computational complexity and low
computational efciency. It is necessary to preprocess the
waveform signal through the short-term energy entropy
ratio so as to reduce the complexity of the DTW algorithm
and improve the calculation efciency of the DTW
algorithm.

Its calculation process is as follows:

(1) Let the waveform sequence of length N be x (n),
n� 1, 2, . . ., N. Divide the DC component and
normalize the amplitude of the waveform sequence.

(2) Select the appropriate frequency and frame shift to
frame and window the processed waveform

sequence. Common windowing functions are as
follows:

Rectangular window:
ω(n) � 1. (5)

Haining window:

ω(n) � 0.5 − 1 − cos
2πn

(L − 1)
􏼠 􏼡􏼠 􏼡. (6)

Hamming window:

ω(n) � 0.54 − 0.46 cos
2πn

(L − 1)
􏼠 􏼡􏼡, (7)

where L is the length of the window, and
0≤ n≤ L − 1.
After the windowing function ω (n) is divided into
frames, the vibration signal of the ith frame is ob-
tained as yi (n), and then yi (n) satisfes

yi(n) � ω(n)x((i − 1)inc + n

1≤ n≤wlen, 1≤ i≤fn.
(8)

In the formula, yi (n) is the value of one frame; wlen is
the frame length; inc is the frame shift length; and fn is
the total number of frames after the signal is divided
into frames.

(3) After Fourier transform is performed on yi (n), the
energy spectrum of the frequency component fk of
the kth spectral line is Yi (k). Ten the normalized
spectral probability density function pi (k) of each
frequency component is defned as

pi(k) �
Yi(k)

􏽐
N/2
i�0 Yi(k)

. (9)

In the formula, pi (k) is the probability density
corresponding to the kth frequency component fk of
the ith frame.

(4) Te spectral entropy and energy of frame i areHi and
Ei, respectively, given as

Hi(k) � 􏽘
N/2

i�0
pi(k) ln pi(k),

Ei(k) � lg
1 + 􏽐

N
n�1 xi(n)

a
􏼠 􏼡. (10)

In the formula, a is a constant. It can be adjusted
according to diferent waveform energy change
degrees, which is conducive to analyzing the mu-
tation points in the waveform signal.

(5) Calculate the value of the energy-entropy ratio to
complete the preprocessing of the signal:

Ri �

������

1 +
Ei

Hi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽳

. (11)
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Te short-term energy entropy ratios of the two groups
of waveforms are input into the DTW in turn, and the
corresponding dynamic paths and similarity are obtained.

2.3. Similarity Correction Method. In the process of data
similarity matching operation based on the DTW algorithm,
the waveform has the phenomenon of time series fuctuation
and amplitude variation, and the curve direction and the
monotonic transition speed are diferent. When calculating
the distance of the time curve, it is easy to produce the
phenomenon of “ill-conditioned matching” in which the
peaks and valleys are not in the same direction. In the
generalization process of step mode operation, the path
direction can only maintain a short-term monotonic
characteristic, but the adjustment process of ill-conditioned
matching is complicated. Considering that the voltage
amplitude during the recording process may have a large
sudden change and the terminal is disturbed by noise sig-
nals, this paper optimizes the algorithm in a targeted
manner. Assuming a moderate shift in the waveform phase,
it is possible to achieve regional trend similarity, thereby
eliminating the negative impact of “ill-conditioned match-
ing” on similarity. Te length of the longest common
substring of the two waveform sequences has a greater
impact on the similarity; that is, the longer the longest
common substring of the two waveform sequences, the
smaller the error and the smaller the required adjustment
range. In order to facilitate the adjustment of ill-conditioned
matching, a coefcient of optimal matching is defned as a
penalty coefcient. Use the penalty coefcient to adjust the
spacing of the waveform and multiply the penalty coefcient
by the distance to obtain a new distance.

2.4. Te Specifc Method

(1) Calculate the maximum standard deviation sdmax.
Let x be the average of all digital sequences X, and n
be the number of digital sequences X, then calculate
the value of the standard deviation sd as

sdX �

������������

􏽐
n
i− 1 xi − x( 􏼁

2

n

􏽳

, (12)

sdY �

������������

􏽐
n
i− 1 yi − y( 􏼁

2

n

􏽳

. (13)

Temaximum standard deviation is the one with the
larger standard deviation of the data in the two time
series:

sdmax � max sdX, sdY( 􏼁. (14)

(2) Te longest common substring to be solved and its
length l: Since X and Y are both numerical sequences,
when fnding the longest common substring, the
maximum standard deviation can be set as ofset
tolerance; that is, both numbers are within this

maximum standard deviation and can be considered
to be part of the male substring.
Let the length of the sequence X be a, and let the
length of the sequence Y be b. Defne matrix
dq[i][j](0 ≤ i< a), (0≤ j< b) as

dq[i][j] �

0X[i] − Y[i]≥ sdmax,

1X[i] − Y[i]≥ sdmax,

dq[i − 1][j − 1] + 1X[i] − Y[j]< sdmaxi, j> 0.

⎧⎪⎪⎨

⎪⎪⎩

(15)

Trough the principle of dynamic programming, the
optimal path from the lower left corner to the upper
right corner in the matrix can be obtained. Find the
longest common substring and its length l.

(3) Defne the penalty coefcient a as

α � 1 −
l

min(len(X), len(Y))
. (16)

(4) According to formulas (17) and (18), the distance
algorithm is optimized as

Distn � α × Distm, (17)

ωn �
1

1 + Distn
. (18)

Under the improved DTW algorithm, waveform
matching can be regionalized, reducing the similarity dis-
tance of common parts. Te minimum distance is adjusted
by the proportion of common substrings in the overall
sequence, which efectively solves the impact of “ill-condi-
tioned matching” on the overall accuracy.Tus, the accuracy
of waveform similarity calculation is improved.

2.5. Algorithm Flow. To sum up, this paper proposes an
optimization method of DTW combining energy entropy
ratio and common substring.Te algorithm fow is shown in
Figure 1. Te specifc steps are as follows:

(1) Select the appropriate window function and frame
length to calculate the energy-entropy ratio sequence
of the two sets of waveforms, and complete the
preprocessing of the waveform sequence

(2) Input the two sets of energy entropy ratio sequences
into DTW, construct a matrix, and obtain the dis-
tance and similarity of the two sets of waveforms

(3) Calculate the common substring of the energy-en-
tropy ratio sequence, obtain the optimal matching
coefcient, complete the correction of the waveform
similarity, and output the result

3. Simulations Analysis

3.1. Modeling of Non-Gaussian Noises. Tere are many
sources of noise. In practical application, the rain-in-
duced corona, switching pulse and lightning,
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communication channel noise, ambient temperature
variation, and other reasons may make the process noise
and measurement noise to follow non-Gaussian or even
unknown distributions [19]. For non-Gaussian noise, it is
modeled according to the widely used ε-contaminated
model:

P � (1 − ε)N(0, k1) + εN(0, k2), (19)

where P is the probability distribution of the noise, ε ∈ (0, 1)
denotes the pollution degree, and N (μ, κ) represents the
Gaussian distribution of mean μ and covariance.

Te modeling simulation of non-Gaussian noise under
Matlab is shown in Figure 2, where the black curve repre-
sents the probability distribution of noise in the case of white
noise, and the red curve is the probability distribution of
non-Gaussian noise.

retrieve data

Whether the calculation is over

begin

Waveform Framing and Windowing

Calculate the energy entropy ratio sequence

DTW algorithm to calculate the similarity 
between two sequences

Calculate the common substring length of two 
waveforms

Get the penalty coefficient and calculate the 
optimal matching coefficient

Optimize and correct the similarity of two 
waveforms

output result

N

Y

Figure 1: Algorithm fowchart.

Mathematical Problems in Engineering 5



3.2. Waveform Comparison Based on the Traditional DTW
Algorithm. Tewaveform was fetched from the actual tested
terminal in this paper. Figure 3(a) shows the waveform
collected by the terminal in the healthy state, and Figure 3(b)
shows the waveform of the terminal after adding non-
Gaussian noise signal. Te purpose of adding non-Gaussian
noise is to simulate the background noise of the system. Due
to the background noise and other related problems of
electromagnetic interference, the collected data contain
noise or outliers. Background noise can afect the similarity
between waveforms. A total of 14 cycles from the frst fve
cycles and the last nine cycles were selected as sampling
periods, and the feasibility of the algorithm was verifed by
comparing the waveforms under diferent noise intensity.

Figure 4(a) shows the point matching diagram of the
terminal waveform in the ideal state and the two original
waveform sequences after adding the non-Gaussian noise
signal. Figure 4(b) is the dynamic path planning diagram of
the original waveform sequence of the two waveforms. In the
process of dynamic path planning, abrupt events of time
cannot be highlighted.

3.3. Waveform Comparison Based on the Improved DTW
Algorithm. For the problems of low matching efciency and
high computational complexity, the short-term energy en-
tropy ratio can efectively extract the features contained in
the original signal. Te method can remove the character-
istics of redundant components in the original signal, reduce
the complexity of input features, and improve computa-
tional efciency.

Te frame length is the determinant of the short-term
energy entropy ratio resolution. When the signal sampling
frequency is constant, the smaller the frame length is, the
higher the temporal resolution of the short-term energy
entropy ratio is, but too short frame length is not conducive
to exerting the advantage of short-term energy entropy ratio
to improve the signal-to-noise ratio. Terefore, the selection

of the frame length should take into account the sampling
frequency of the signal, the time resolution requirements,
and the signal-to-noise ratio requirements to select an ap-
propriate value. By observing the collected waveform signal,
it can be found that the vibration signal within 30ms is
relatively stable. When the frame length is small, the
smoothing efect of the short-term analysis processing
method is not obvious. When the frame length is larger, its
smoothing efect is better, which is benefcial to the DTW
algorithm for path regulation. Setting the frame length to
25ms preserves characteristic events well. Set the frame
length wlen � 25ms and frame shift inc � 20. Figure 5(a)
shows the energy-entropy ratio curve of the terminal
wave recording waveform in the ideal state, and Figure 5(b)
shows the energy-entropy ratio curve of the waveform
disturbed by noise. By processing the short-time energy
entropy ratio of the two sets of waveform sequences, the
short-time energy entropy ratio characteristic sequence is
obtained.

Figure 6(a) is the point matching diagram of the terminal
waveform under the ideal state and the terminal waveform
after adding the non-Gaussian noise signal after short-term
energy entropy ratio processing under the DTW algorithm.
Combined with the analysis in Figure 4(a), the terminal wave
recording will produce an instantaneous mutation, the
mutation point is around the seventh cycle of sampling, and
the corresponding sampling point is around 100. Te dif-
ference between the original waveform and the middle
position of the stretched waveform is obvious, indicating
that there are shock events and sudden changes in the
waveform. Using the short-term energy entropy ratio to
process the signal can efectively extract the characteristics of
the events with small shocks contained in the waveform
signal and can better represent the sudden change of the
waveform.

Figure 6(b) is a dynamic path planning diagram of the
energy-entropy ratio sequence of the two waveforms. In the
process of dynamic path planning, there is a situation of ill-
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conditioned matching. When the sampled point of the
disturbed waveform is 100, there is a situation where one
point matches with multiple consecutive points. Te same
problem exists when the sampling point of the terminal is 2,
and the sampling point of the disturbed waveform is 173.
Terefore, the similarity is modifed in combination with the
penalty coefcient based on the common substring.

Te data of parameters and results in the operation
process of the improved DTW algorithm are shown in
Table 1:

Distm and ωm are the distance and similarity pre-
processed by the energy entropy ratio. Distn and ωn are the
distance and similarity of the waveform under the DTW
algorithm based on the common substring after pre-
processing by the energy entropy ratio. By analyzing the
distance and similarity, the DTW algorithm combining
energy entropy ratio and common substring can efectively
improve the accuracy of waveform similarity calculation. As

the variance of the noise signal increases, its similarity de-
creases step by step, but when the variance is 0.2 and 0.3, the
similarity before optimization is 0.0796 and 0.0809. Te “ill-
conditioned matching” situation of the waveform sequence
is corrected by means of a common substring, and the
corrected similarity is 0.1391 and 0.1359, which are in line
with expectations.

3.4. Algorithm Performance Analysis. In the process of path
planning, there is an “ill-conditioned matching” phe-
nomenon in point matching. Te common substring can
make the waveform phase shift moderately so that the
characteristics of the waveform’s area toward similarity can
be corrected. Te ratio of “ill-conditioned matching” is
used as the criterion for evaluating the quality of the al-
gorithm, and the accuracy of the algorithm is verifed by a
numerical value as
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rate �
ln c − (ff − xx)

ln c
× 100%. (20)

In the formula (20), lnc is the total length of matching
points, f is the original “ill-matched” point length, and xx is
the length of the “ill-conditioned matching” point corrected
under the common substring algorithm.

Te three diferent algorithms are compared experi-
mentally in diferent non-Gaussian noise environments, and
the accuracy results are shown in Table 2. Tese three al-
gorithms are the traditional DTW algorithm, the DTW
based on the energy entropy ratio, and the improved DTW
algorithm.

By comparing the accuracy of diferent algorithms, the
accuracy of the traditional DTW algorithm is about 80%.

Te accuracy of the DTW algorithm after processing the
energy entropy ratio is only about 70%. Te accuracy of the
DTW algorithm combining the energy entropy ratio and the
common substring can reach about 95%. It shows that the
energy entropy ratio and common substring proposed in
this paper can have higher accuracy, and the DTW algorithm
combined with the two algorithms can efectively solve the
problem of “ill-conditioned matching.”

4. Experiments

4.1. Experiment Platform. Tis paper takes the primary and
secondary deep fusion equipment detection platform built
by the Electric Power Research Institute of State Grid Jiangsu
Electric Power Co., Ltd. as the research object. Figure 7
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Figure 6: Energy entropy ratio sequence analysis diagram. (a) Point matching graph of energy-entropy ratio sequences. (b) Path planning of
energy-entropy ratio sequences.
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Figure 5: Schematic diagram of energy entropy ratio. (a) Terminal waveform energy entropy ratio. (b) Disturbed waveform energy entropy
ratio.

8 Mathematical Problems in Engineering



shows the feld application of a complete set of automatic
detection devices for primary and secondary fusion
equipment. Te equipment was tested in the Electric Power
Research Institute of State Grid Jiangsu Electric Power
Company and successfully connected with the quality in-
spection and control system. Te system can have terminal
detection, transformer detection, and primary and sec-
ondary complete detection functions.

Te terminal wave recording system is shown in Fig-
ure 8: Te PC sends the waveform to the electronic signal
source through the protocol, and the electronic signal source
outputs the waveform to the terminal. Te PC reads the
waveform data through the 104 protocol, and the sampling
rate is set to 200 kS/s. When the trigger mode of the recorder
is set on the PC, the recorder automatically collects the
waveform output from the electronic signal source. After
reading the waveform data of the recorder and 104, the PC
generates the time series of the waveform. Te waveform of
the power source is compared with the sampled waveform of
the terminal to obtain the similarity of the two waveforms so
as to provide data support for measuring the health status of
the terminal.

5. Results and Discussion

Based on the above experimental platform, the source signal
waveform recorded by the wave recorder and the terminal
sampling waveform are played back through the software on

the PC side, and the terminal waveform disturbed by noise is
fltered and decomposed. Te playback waveforms are
shown in Figures 9 and 10.

Figure 9 is the playback waveform of the source signal
which is sampled by the wave recorder in the software of the
PC side. Te experimental site determines the benchmark
comparison window according to the sampling point of the
test waveform, and the benchmark comparison window of
the test waveform is the sampling period. Figure 10 shows
the actual noise signal which is obtained by fltering the
sampling waveform from the actual terminal waveform,
which contains noises. Te noise signal is detected by the
power distribution terminal. After the PC terminal com-
pletes the sampling and the playback of the waveform signal,
a discrete time series is obtained. Finally, the time series of
the source signal waveform and the terminal sampling
waveform obtained on the PC terminal benchmark com-
parison window are extracted for Matlab waveform
comparison.

Select four groups of waveforms for on-site testing. After
sampling is completed, compare the two waveform time
series of each group in Matlab; that is, the source signal
waveform sequence and the terminal sampling waveform
sequence. Figures 11 and 12 are schematic diagrams of
energy entropy ratios of frst two groups of waveforms
sampled on-site. Figure 13 shows the matching path, and
Table 3 shows parameters obtained by each group of
waveforms under the algorithm of this paper.

Table 2: Comparing the accuracy of diferent algorithms.

Noise variance Traditional DTW DTW based on energy entropy ratio Improved DTW
0.1 80.9 70.2 95.4
0.2 77.5 72.7 98.2
0.3 80.6 71.2 97.2
0.5 80.0 70.0 95.8

Table 1: Waveform similarity of DTW algorithm combining common substring and energy entropy ratio.

Noise variance Distm sdmax l α Distn ωm ωn

0.1 9.5484 0.1692 86 0.570 5.4426 0.0948 0.1552
0.2 11. 672 0.1759 93 0.535 6.188 0.0796 0.1391
0.3 11.3 67 0.1404 88 0.560 6.3 98 0.0809 0.1359
0.5 15.5511 0.1673 86 0.570 8.8641 0.0604 0.1014

Electronic signal sourceTerminal detection
device

High speed
recorder

Switch box
channel

Figure 7: Field application of complete sets of automatic detection devices for primary and secondary fusion equipment.
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Since the longest common substring is an optimization
of the original algorithm in terms of data, Table 3 records the
four groups of waveforms with the longest distance before
and after the common substring algorithm processing and
related parameters, where Distm and ωm are the waveform
distance and similarity before correction, sdmax and l are the
maximum standard deviation and length obtained under the
longest common substring algorithm, α is the penalty

coefcient based on sdmax and l, the waveform distance and
similarity are corrected by α, and the obtained Distn and ωn
are the corrected waveform distance and similarity.

Experiments show that the improved DTW algorithm
can efectively measure the similarity between the terminal
waveform and the source signal waveform and provide
efective data for the health status assessment of power
distribution terminals.
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Figure 10: Te noise interference waveform attached to the terminal sampling waveform in practical application.
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Figure 8: Terminal wave recording system.
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Te comparison between the energy entropy ratio and the
response time of the DTW algorithm of the common sub-
string is shown in Figure 14.Temain time diference is in the
calculation of the energy entropy ratio. Te overall perfor-
mance increases with the number of nodes because the

response time difers very little after the data are preprocessed.
Tere is no signifcant change in response time, and the
advantage is more obvious. It shows that the preprocessing of
the waveform through the short-term energy entropy ratio
can efectively improve the calculation efciency.
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Figure 12: Schematic diagram of energy entropy ratio of the second set of waveforms sampled in the feld. (a) Source waveform energy
entropy ratio. (b) Disturbed terminal waveform energy entropy ratio.
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Figure 11: Schematic diagram of energy entropy ratio of the frst set of waveforms sampled in the feld. (a) Source waveform energy entropy
ratio. (b) Disturbed terminal waveform energy entropy ratio.
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Figure 13: Continued.
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6. Conclusions

It is also of great signifcance to study the similarity theory of
voltage and current waveforms for the feld of electrical
science research. In this paper, the similarity data analysis of
the time series of the terminal waveform under diferent
noises and sampling periods is carried out, and the efects
achieved after optimization are as follows:

(1) Using the short-term energy entropy ratio to ef-
fectively extract the features contained in the original
signal, the waveform data are preprocessed, and the
characteristic events are highlighted

(2) Te complexity of input features is reduced, and the
similarity matching operation efciency in waveform
data processing is improved
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Figure 14: Response time of the algorithm.

Table 3: Experimental waveform similarity under the improved DTW algorithm.

Distm sdmax l α Distn ωm ωn

20.9409 0.1325 70 0.6500 13.6116 0.0456 0.0684
8.6882 0.1973 67 0.6550 5.7777 0.1032 0.1475
9.1907 0.2015 69 0.6550 6.0199 0.0981 0.1425
5.6425 0.2733 87 0.5650 3.1880 0.1505 0.2388
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Figure 13: Dynamic paths of four groups of feld measured waveforms. (a) Path planning of the frst set of waveforms sampled in the feld.
(b) Path planning of the second set of waveforms sampled in the feld. (c) Path planning of the third set of waveforms sampled in the feld. (d)
Path planning of the fourth set of waveforms sampled in the feld.
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(3) By adopting the matching method of the longest
common substring, the DTW optimized distance is
calculated, which overcomes the “ill-conditioned
matching” problem in the distance calculation of
periodic phase mismatch and improves the accuracy
of the algorithm

Tis method provides data support and decision-making
basis for terminal health status assessment. Te algorithm
analyzes massive data, explores the diference in waveform
similarity under diferent interference conditions, and can
realize the function of preliminarily judging the fault type. It
has certain reference signifcance for realizing terminal
health status assessment.
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