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Precise industrial control technology is constantly in need of accurate and strong control. Error convergence for a typical linear
system is very minimal when using a conventional iterative learning control strategy.­is study develops a quick iterative learning
control law to address this issue. We have presented a new PD iterative learning control approach which is basically grounded on
backward error and control parameter recti�cation for a class of linear discrete time-invariant (LDTI) systems. We have de-
liberated the repetitive system, which has constraint disturbance and measurement noise. First, we have developed a form of the
faster learning law along with a full explanation of the algorithm’s control factor generation process. And then, using the vector
method in conjunction with the theory of spectral radius, su�cient conditions for the algorithm’s convergence are introduced for
parameter estimation with no noise, parameter uncertainty but excluding the noise, parameter uncertainty with small per-
turbations, and noise in four di�erent scenarios. Eventually, results show that convergence depends on the control law’s learning
factor, the correction term, the factor of association, and the learning interval. Ultimately, the simulation results indicate that
suggested approach has a faster error convergence as compared with classical PD algorithm.

1. Introduction

Iterative learning control (ILC) [1, 2] is widely used con-
troller due to its simple arrangement, which do not require
precise model information. It can make the performance of
the executed object meet the expected signal only after
enough iterations in a partial interval. ­is learning pro-
cedure has been widely employed in the control of industrial
and commercial robotic applications [3], batch processes in
the process industry [4], aerodynamic systems [5], tra�c
control systems [6], electrical and power systems, and other
areas due to the characteristics as mentioned earlier.
However, most scholars focus on nonsystem control
problems, and research on system iterative learning control
problems is limited [7, 8].

In industrial applications, the controlled system pa-
rameters are usually time-varying, so the classical PID and in
a combination with other control schemes are particularly
�xed while controlling system with uncertain factors [9–11].

In addition, the analysis and design process of some existing
modern control schemes [12] is complex and di�cult. ­e
designed control algorithm and structure should be simple
enough and easy to implement to solve these problems. ­e
control scheme should contain the characteristics of non-
linearity, robustness, £exibility, and learning ability. With
the rapid development of intelligent control technology to
solve the uncertainty and complexity of the controlled
object, some neural network models and neural network
training schemes have been applied to the design of system
controllers [13, 14]. For example, as a feedforward con-
troller, Plett [15] discussed how neural networks learn to
imitate the inverse of the controlled object. However, the
neural network has the disadvantages of slow learning speed
and weak generalization ability, and there is no systematic
method to determine its topology. Suppose there is not a
timely manner sable control and compensation. In that case,
the system noise and random interference will appear in the
input end of the controller, which will greatly reduce the
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stability of the adaptive process and seriously affect the
control accuracy. Adaptive filtering has been widely de-
veloped [16, 17], and neural network is the most commonly
used in all kinds of nonlinear filtering. However, it is highly
nonlinear in terms of parameters [18–20].

Above mentioned scholars are studying the model un-
certainty in different fields such as model prediction, system
identification [21], fault detection [22], motor control [23],
and nonlinear control [24]. Still, there is no specific control
algorithm for satisfactory fast error convergence and specific
to consider the system coupling, uncertainty, time-varying
characteristics, measurement noise, and other factors.
Adaptive control strategy is proposed in these literatures
[25–27] which can compensate at some extent. An adaptive
control is mainly used to deal with complex nonlinear
systems with unknown parameters. H Tao and his team
proposed a novel PD scheme for the system with multiple
delays in literature [28] and also proposed point to point ILC
[29] as well as PD-type iterative learning control algorithm
for a class of discrete spatially interconnected systems [30].
Based on Lyapunov stability theory, parameter novelty law is
designed to achieve system stabilization and progressive
tracking of target trajectory [31, 32]. Both some special
nonlinear systems linearized to parameters [33, 34] and
nonlinear systems with general structures [35] have achieved
remarkable development. For systems that cannot be
modeled or contain unmodeled states, literatures [36, 37]
proposed the model-free adaptive control theory. However,
these adaptive control methods cannot solve the problem of
complete tracking over a finite time interval [38].

Arimoto [39] firstly proposed the D-type iterative
learning algorithm, and some scholars had further proposed
P-type, PD-type, and PID-type algorithms and higher-order
learning algorithms [40–43]. On the basis of linear learning
algorithms, some scholars have successively proposed a
series of nonlinear learning algorithms such as Newton type
and secant type [44], which can significantly accelerate the
convergence speed of the learning algorithm. In classical
control theory, we often analyze system stability and algo-
rithm characteristics from the perspective of frequency
domain, and iterative learning control is no exception. Some
scholars analyze and design iterative learning control al-
gorithms from the perspective of frequency domain [45].
Because in the frequency domain analysis method, the
convergence conditions of the system can be relaxed from
infinite frequency bands to limited frequency bands, which
is more robust to learning control. In the practical appli-
cation of analysis and iterative learning, analysis methods
based on the frequency domain are widely used. For a class
of linear systems with disturbances, Norrlof [45, 46] pro-
posed a new learning control method, using an analysis
method based on the frequency domain to obtain the
convergence conditions of the system and analyze the effects
of different filter choices on system stability. Influence and
the analysis of the robustness of the iterative learning al-
gorithm further need to be explored in the sense of practical
applications.

Most of the real systems are nonlinear systems. .ere-
fore, the application of iterative learning control in nonlinear

systems has very important theoretical significance and
practical foundation. Pi Daoying [47–50] and others have
done a lot of research work on the application of iterative
learning in nonlinear systems. Literature [47] first analyzed
the shortcomings of a single form of closed loop and open
loop and then focused on a class of discrete nonlinear
systems. For linear systems, an open-loop and closed-loop
P-type iterative learning control algorithm is proposed, and
the convergence of the algorithm is proved. Finally, it is
concluded that the open-loop and closed-loop algorithm is
better than the single closed-loop or open-loop algorithm.
Liu Changliang [51] proposed an open-closed-loop PD-type
iterative learning algorithm for general nonlinear discrete
systems and proved the convergence of the algorithm.

In the analysis of nonlinear systems, Lyapunov is a very
important analysis program. .is method is widely imple-
mented and explained in for the analysis of controllers of
nonlinear systems. When conducting theoretical analysis
and method design of nonlinear uncertain systems, this
method is the most important one. .e second method of
Lyapunov is a qualitative method. Instead of solving the
equation, it directly judges the stability of the system through
a Lyapunov energy function, which provides great conve-
nience for the analysis of nonlinear systems. Inspired by the
second method of Lyapunov, the energy function of the
iterative learning control scheme in the time domain and the
iterative domain has been studied [52, 53], which provides a
new research method for designing and analyzing its con-
vergence in the iterative domain. ILC based on the energy
function in the iterative domain is discussed in [54], and
some scholars have developed new robust control methods
[55] and adaptive learning control methods [56] on this
basis..ey can be used to solve problems with parameters or
the research and design of nonparametric uncertain non-
linear system controller. In recent years, a combined energy
function representing the energy of the system in the time
domain and in the iterative domain has also been applied in
iterative learning control [57]. .is method can ensure that
the tracking error signal in the iterative domain achieves
asymptotic convergence and is bounded in the time domain.
By using the point to point tracking performance and by
making the control input have monotonic convergence in
the entire iterative interval, this scheme is suitable for a class
of nonlinear systems that do not have globally uniform
Lipschitz characteristics. .rough the use and promotion of
the energy function method, many new control theories and
methods, such as nonlinear optimization methods [58] and
inversion design methods [59], have been applied to iterative
learning control as a new system design scheme.

.e iterative learning control algorithm is essentially a
process with two-dimensional characteristics: the time do-
main direction t and the iterative direction k. .ese two
directions are independent of each other, so the iterative
learning control system itself is a two-dimensional system.

Some scholars [60] analyzed the iterative learning
control algorithm by using the more mature two-dimen-
sional system theory and discussed and analyzed the stability
of iterative learning on the time axis and the dimensionality
of the iterative axis convergence issue. .e stability theory of
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the two-dimensional system provides a very effective
method for the design and convergence of the iterative
learning control algorithm. .e Roesser model in the two-
dimensional system theory has become the most basic
system in the iterative learning algorithm analysis. Aiming at
the application of the Roesser model of the two-dimensional
system in iterative learning control, Li Xiaodong, Fang Yong
[61–65], and others have done research on linear continuous
systems and linear discrete systems and put forward a large
number of attractive theoretical results in ILC filed. Liter-
atures [61–63] analyzed the convergence of the system
through the two-dimensional system theory for LDTI and
LTV systems and theoretically obtained the conditions for
the system to achieve complete tracking after one iteration.
However, this method cannot be directly applied in practice.
Instead, the corresponding estimated value is used to ap-
proximate. .e simulation results show that the method of
approximating estimated value also has better convergence
effect and speed. Literature [64] used a two-dimensional
continuous-discrete model to analyze the performance of
the linear continuous system and obtained some very
meaningful academic results. Literature [65] aimed at the
linear multivariable discrete system with uncertainty or
variable initial state value; through the analysis of the two-
dimensional system, the conditions for the convergence of
the system were obtained, so that even if the parameters of
the control system are subject to minor disturbances or even
when the initial state conditions in each iteration change, the
convergence of the iterative learning control algorithm can
still be guaranteed.

Cichy, Galkowski, and their team [66, 67] investigated
and designed iterative learning controllers based on the
theory of linear matrix inequalities in two-dimensional
systems. It not only analyzed the boundary value conditions
that make the system stable but also analyzed the conver-
gence and robustness of the iterative learning algorithm.
.ere are some theoretical problems in the optimal control
algorithm of the nonlinear dynamic system based on the
maximum value principle. It is proposed to apply the linear
matrix inequality method to the stability analysis and
controller of the iterative learning control algorithm of the
continuous-discrete system. .e scheme is under design.

.e iterative learning algorithms of the above scientific
research results are all linear structures, and basically all
adopt PID control methods. Is there a nonlinear learning law
that allows the system to converge? If there is a nonlinear
learning law, can it speed up the convergence of the system?
In response to these problems, some scholars have suc-
cessively proposed some nonlinear iterative learning control
algorithms.

Tian Senping [68–71] and others analyzed iterative
learning algorithms from a geometric perspective and
proposed three new nonlinear control algorithms in the
form of vector triangles, which opened up a new way of
thinking for the research of iterative learning control al-
gorithms. Togai [72] applied the optimization method to the
design of iterative learning control. For the performance
index function containing the square error term, the steepest
descent method, Newton—Raphson method, and

Gauss—Newton method were used to obtain three different
nonlinear learning laws. In addition, the nonlinear methods
of iterative learning control law include input penalty term
analysis [73], norm optimization method [74–76], param-
eter optimization method [77], and so on.

.e article can be divided in different sections in order to
demonstrate the contribution briefly..e main contribution
and results are comprised in the following sections. Problem
formulation is briefly described in Section 2. .e conver-
gence analysis, theory of hypervector, spectral radius, and
main conditions for the error convergence are elaborated in
Section 3. .en, Section 4 shows the numerical example for
the validity of the proposed algorithm. Finally, the results
summarization of this paper is described in Section 5.

2. Problem Formulation

In order to explain clearly, we can take a single input and
single output (SISO) linear discrete time-invariant (LDTI)
system. We have taken this system including with monot-
onous parameter perturbation and measurement noise over
a finite period:

x
ILC
k (t + 1) � A + ΔA(t)x

ILC
k (t) +(B + ΔB(t))u

ILC
k (t)􏼐 􏼑,

y
ILC
k (t + 1) � Cx

ILC
k (t + 1) + n

ILC
k (t + 1),

⎧⎪⎨

⎪⎩

(1)

in which t ∈ 0, 1, . . . , N − 1{ }, N ∈ Z+, the notation k is the
number of iterations, you can see in the above equation the
state is xk(t) ∈ Rn, and the control input is represented with
uk(t) ∈ R, while the output is taken as yk(t) ∈ R, respec-
tively. A, B, and C are constant matrices of the corre-
sponding dimension satisfying the condition. nk(t + 1) ∈ R

is the measurement noise of the system, and ΔA(t) and
ΔB(t) are the uncertainty matrix of the system and the
uncertainty input matrix at the time t, such that

ΔA(t) � E1P(t)F1

ΔB(t) � E2Q(t)F2,
(2)

Here, (E1, F1) and (E2, F2) are constant matrices of the
corresponding dimension satisfying the condition and de-
fine the structure of the uncertain state matrix and the
uncertain input matrix; P(t) and Q(t) are unknown ma-
trices, satisfying PT(t)P(t) ≤ I and QT(t)Q(t)≤ I.

In the iterative learning process of system (1), the ex-
pected trajectory is set as yd(t + 1), the iteration is un-
changed, the corresponding expected state is xd(t), and the
corresponding predicted control input is ud(t). Following
assumptions are made.

Assumption 1. We can assume that the ideal initial state is
the state which is initially equal to the desired state such that
xk(0) � xd(0).

Assumption 2. It can be supposed that the required tra-
jectory yd(t + 1) for the whole period t ∈ 0, 1, . . . , N − 1{ } is
given in advance, which is independent of the number of
iterations.
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Assumption 3. It can be noted that any random given de-
sired value yd(t + 1), there is an expected signal yd(t) and
an expected control ud(t), so that

xd(t + 1) � Axd(t) + Bud(t),

yd(t + 1) � Cxd(t + 1), t ∈ 0, 1, · · · N − 1{ }.
􏼨 (3)

Based on system (1), define A � A + ΔA(t),
B � B + ΔB(t), and output signal of k iteration at time [1, N]

could be represented as follows:

yK(1) � Cxk(1) + nk(1) � CAxk(0) + CBuk(0) + nk(1),

yK(2) � Cxk(2) + nk(2) � CA
2
xk(0) + CABuk(0) + CBuk(1) + nk(1),

⋮

yK(N) � Cxk(N) + nk(N) � CA
N

xk(0) + CA
N− 1

Buk(0) + CA
N− 2

Buk(1) + · · · + CBuk(N − 1) + nk(N).

(4)

For ease of description, write the above expression in the
form of a hypervector, introduce a hypervector as follows:

U
ILC
k � uk(0), uk(1), . . . , uk(N − 1)􏼂 􏼃

T
,

Y
ILC
k � yk(1), yk(2), . . . , yk(N)􏼂 􏼃

T
,

N
ILC
k � nk(1), nk(2), . . . , nk(N)􏼂 􏼃

T
.

(5)

.e above equation can be described as

Yk � (G + ΔG)Uk + Vxk(0) + nk, (6)

where

G �

CB 0 0 · · · 0

CAB CB 0 · · · 0

CA
2
B CAB CB · · · ⋮

⋮ ⋮ ⋮ ⋱ 0

CA
N− 1

B CA
N− 2

B · · · CAB CB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ΔG �

CΔB(0) 0 0 · · · 0

∗ CΔB(1) 0 · · · 0

∗ ∗ CΔB(2) · · · ⋮

⋮ ⋮ ⋮ ⋱ 0

∗ ∗ ∗ · · · CΔB(N − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V � CA, CA
2
, CA_

3
, · · · CA

N
􏼔 􏼕

T

.

(7)

∗ represents an uncertain value by the dynamics and
uncertain parameters of system (1).

System (1), under the condition that Assumption 1–3
satisfied, considers a control rule of error backward asso-
ciation and subsequent control quantity correction.

.e correction of the error before time t to the control
quantity at the current time t is as follows:

􏽥u
ILC
k (t) � u

ILC
k (t) + L

ILC
􏽘

t

i�0

�������������������

ek(i + 1)􏼂 􏼃
2
e

K(i− t+1/N)2
􏽱

,

t ∈ 0, 1, . . . , N − 1{ }.

(8a)

.e learning control rule of PD-type iterative is as
follows:

u
ILC
k+1(t) � 􏽥uk(t) + βek(t) + cek(t + 1). (8b)

It can be clearly observed from Figure 1 that the cor-
rection of control magnitude (8a) is clarified in detail. .e
learning procedure of the k th iteration can be elaborated as
follows.

Firstly, we can see that the error ek(1) for the particular
point 1 can be taken as the control amount of N moments
for this process of the k + 1 th iterations while the control
value of this particular iteration and N parameters is rep-
resented in Table 1.

.e error correction term ek(2) at 2 modified the control
amount for the N − 1 instants for the cumulative k + 1 th
iteration. It can be clearly seen in Figure 2. For this particular
iteration number, the rectification magnitude is presented in
Table 2.

According to this method for a given trial as shown in
Figure 2, we can see that the term error is ek(Ν) and its
respective rectified control amount for a particular N in the
k + 1 iteration is given in detail. Furthermore, the conver-
gence is also displayed in Figure 3. .e corrected factor of
control input is LILCek(N)eK(1/N)2 .

According to the above analysis, the correction
quantity of each error to the control quantity of following
moments can be plotted. .e correction 􏽥uk(t) is the
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accumulation of the correction for all previous moments
(see Table 3) as

􏽥uk(0) � uk(0) + Lek(1)e
K(1/N)2

,

􏽥uk(1) � uk(1) + Lek(1)e
K(0/N)2

+ Lek(2)e
K(1/N)2

,

􏽥uk(2) � uk(2) + Lek(1)e
K(1/N)2

+ Lek(2)e
K(0/N)2

+ Lek(3)e
K(1/N)2

,

⋮

􏽥uk(N − 1) � uk(N − 1) + Lek(1)e
K(N− 2/N)2

+ Lek(2)e
K(N− 3/N)2

+ · · · + Lek(N)e
K(1/N)2

,

(9)

1 2 3 4 N

1 2 3 4 N

kth

(k+1)th

t

Figure 1: ek(1) correction for a certain time in the progression of the k + 1 iteration.

Table 1: .e amount of association correction of ek(1) to the control input.

1 2 3 · · · N − 1 N

LILCek(1)eK(1/N)2 LILCek(1)eK(0/N)2 LILCek(1)eK(1/N)2 · · · LILCek(1)eK(N− 3/N)2 LILCek(1)eK(N− 2/N)2

1 2 3 4 N

1 2 3 4 N

kth

(k+1)th

t

Figure 2: ek(2) at point 2 corrected the control quantity of N − 1 moments in the process of the k + 1 iteration.

Table 2: Autorectification ek(2) for a control factor of the following moments.

2 3 4 · · · N − 1 N

LILCek(2)eK(1/N)2 LILCek(2)eK(0/N)2 LILCek(2)eK(1/N)2 · · · LILCek(2)eK(N− 4/N)2 LILCek(2)eK(N− 3/N)2

1 2 3 4 N

1 2 3 4 N

kth

(k+1)th

t

Figure 3: Correction factor ek(Ν) for the input of the moment N at (k + 1)th iteration.
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which is consistent with Equation (8a).

3. Convergence Analysis

Lemma 1. Let Ak, B ∈ Cn×n, (k � 0, 1, 2, · · ·), lim
k⟶+∞

Ak � B

en lim
k⟶+∞

‖Ak‖ � ‖B‖.

Proof. With the triangle inequality of norm,
0≤ |‖Ak‖ − ‖B‖|≤ ‖Ak − B‖, when k⟶ +∞,
lim

k⟶+∞
Ak � B, so from the squeeze criterion,

lim
k⟶+∞

|‖Ak‖ − ‖B‖| � 0, so lim
k⟶+∞

‖Ak‖ � ‖B‖, where ‖•‖ is
the norm of matrices on Cn×n. Particularly, when
lim

k⟶+∞
Ak � 0, we have lim

k⟶+∞
‖Ak‖ � 0. □

Lemma 2. Let A ∈ Cn×n, if lim
k⟶+∞

Ak � 0, then A is called
convergent matrix; the necessary and sufficient condition of its
convergence is ρ(A)< 1.

Proof. (necessity). Let A be a convergencymatrix; because of
properties spectral radius, (ρ(A))k � ρ(Ak)≤ ‖Ak‖ where
‖•‖ is the norm of matrices on Cn×n. So, lim

k⟶+∞
(ρ(A))k � 0

and ρ(A)< 1.

Sufficiency. Since ρ(A)< 1, there exists a positive number ϑ,
such that ρ(A) + ϑ< 1. .erefore, there exists a norm of
matrices on Cn×n say·m, such that ‖Am‖≤ ρ(A) + ϑ< 1. Since

‖Ak‖m ≤ ‖A‖k
m, it can imply that lim

k⟶+∞
‖Ak‖m � 0, so

lim
k⟶+∞

Ak � 0. □

3.1. Case of a Determined Model without Measurement Noise

Theorem 1. Deliberating a LDTI SISO system (1) for which
Assumptions 1–3 are fulfilled, the systemmodel is determined,
and no measurement noise is obtained; ΔB(t) � 0 and nk � 0,
when PD-type fast ILC law (5) with respective improvement is
implemented, if the nominated learning constraint matrix
satisfies the following:

ρ � 1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, t ∈ 0, 1, . . . , N − 1{ }.

(10)

.en, the output of the system significantly tracks the
reference signal. We can observe that when k⟶∞, the
system also closely tracks the desired value such that yk(t +

1) approaches to yd(t + 1) for the particular time interval
t ∈ 0, 1, . . . , N − 1{ }.

Proof. Rendering to the ILC algorithm (5), in the k + 1 it-
eration, the control quantity at each moment in the interval
[0, N − 1] can be represented as follows:

u
ILC
k+1(0) � uk(0) + L

ILC
ek(1)e

K(1/N)2
+ cek(1),

u
ILC
k+1(1) � uk(1) + L

ILC
ek(1)e

K(0/N)2
+ ek(2)e

K(1/N)2

􏼔 􏼕 + cek(2) + βek(1),

u
ILC
k+1(2) � uk(2) + L

ILC
ek(1)e

K(− 1/N)2
+ ek(2)e

K(0/N)2
+ ek(3)e

K(1/N)2

􏼔 􏼕 + cek(3) + βek(2)

⋮

u
ILC
k+1(N − 1) � u

ILC
k (N − 1) + L

ILC
ek(1)e

K(N− 2/N)2
+ ek(2)e

K(N− 3/N)2
+ · · · + ek(N − 1)e

K(0/N)2
+ ek(N)e

K(1/N)2

􏼔 􏼕

+ cek(N) + βek(N − 1).

(11)

Table 3: Momentary correction factor for the particular control.

t + 1 1 2 3 · · · N − 1 N

ek(1) Lek(1)eK(1/N)2 Lek(1)eK(0/N)2 Lek(1)eK(1/N)2 · · · Lek(1)eK(N− 3/N)2 Lek(1)eK(N− 2/N)2

ek(2) 0 Lek(2)eK(1/N)2 Lek(2)eK(0/N)2 · · · Lek(2)eK(N− 4/N)2 Lek(2)eK(N− 3/N)2

ek(3) 0 0 Lek(3)eK(1/N)2 · · · Lek(3)eK(N− 5/N)2 Lek(3)eK(N− 4/N)2

⋮ 0 0 ⋮ ⋮ ⋮ ⋮
ek(Ν) 0 0 0 0 0 Lek(N)eK(1/N)2

uk(t) uk(0) uk(1) uk(2) · · · uk(N − 2) uk(N − 1)

􏽥uk(t) 􏽥uk(0) 􏽥uk(1) 􏽥uk(2) · · · 􏽥uk(N − 2) 􏽥uk(N − 1)
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If we introduce the following hypervector:

Ek � ek(1), ek(2), · · · ek(N)􏼂 􏼃
T
, (12)

then we have

U
ILC
K+1 � U

ILC
k +(LH + Γ)Ek, (13)

where

Γ �

c

β c

β c

⋱ ⋱

β c

β c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Since the model is determined and has no measurement
noise, the system matrix ΔA(t) � 0 and also ΔB(t) � 0 and
nk � 0. We can observe from (4) that it can be written as
Yk � GUk + Vxk(0). Combining xk+1(0) � xk(0) � xd(0)

(Assumption 1) and equation (13), the‘‘ error sequence can
be derived as

Ek+1 � Yd − Yk+1

� Yd − GU
ILC
k+1 + Vxk+1(0)􏼐 􏼑

� Yd − G Uk +(LH + Γ)Ek􏼂 􏼃 − Vxk+1(0)

� Yd − GU
ILC
k − Vxk(0) − G(LH + Γ)Ek

� Ek − G(LH + Γ)Ek

� IN×N − G(LH + Γ)􏼂 􏼃Ek � IN×N − G(LH + Γ)􏼂 􏼃
2
Ek− 1 � · · ·

� IN×N − G(LH + Γ)􏼂 􏼃
k+1

E0.

(15)

Finally, we can drive Lemma 2, for which the particular
and necessary condition of lim

k⟶∞
[IN×N − G(LH + Γ)]k+1 �

0 is ρ[IN×N − G(LH + Γ)] � max
i

|λi|< 1, where ρ(M) is the

spectral radius of M and λi are eigenvalues of
IN×N − G(LH + Γ). IN×N − G(LH + Γ) is a lower triangle
matrix as follows:

IN×N − G(LH + Γ)

�

1 − L
ILC

e
K(1/N)2

+ c􏼔 􏼕CB

∗ 1 − L
ILC

e
K(1/N)2

+ c􏼔 􏼕CB

∗ ∗ ⋱

∗ ∗ ∗ 1 − L
ILC

e
K(1/N)2

+ c􏼔 􏼕CB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(16)

.en, we can get the error convergence from the above
derivation:

ρ � 1 − L
ILC

e
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, t ∈ 0, 1, . . . , N − 1{ }.

(17)

Hence, the theorem is completely proved.
In the above formula t ∈ [0, T] , K is the number of

repeated operations of the system. x(t) ∈ Rn, y(t) ∈ Rm, and
u(t) ∈ Rr, respectively, represent the state vector, output
vector, and input vector of the system. CB is vector functions
with appropriate dimensions. In iterative learning control,

Mathematical Problems in Engineering 7



generally use xd(t), ud(t), and yd(t) to represent the ex-
pected state, expected output, and expected input of the
system. □

3.2. Case of the Undetermined Model without Measurement
Noise

Theorem 2. Consider a linear discrete time-invariant (SISO)
system (1). For which Assumptions 1–3 are satisfied, the
system model is uncertain but there is no measurement noise,
such that ΔA(t)≠ 0, ΔB(t)≠ 0, and nk � 0. When PD-type
fast ILC law (5) with association correction is adopted, the
following parameters must be satisfied:

ρ2 � max
t

1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, t ∈ 0, 1, · · · , N − 1{ },

(18)

for which input signal completely tracks the desired signal. It
can be observed that whenever the iterations increase like
k⟶∞, we can see the respective output obtained as
yk(t + 1)⟶ yd(t + 1), for the time interval t ∈ 0, 1,{

· · · , N − 1}. And consider B � B + ΔB(t).

Proof. .e control rule equation (13) is still available. Since
the system model is determined and there is no measure-
ment noise, i.e., ΔA(t)≠ 0, ΔB(t)≠ 0, nk � 0. Equation (5)
can be written as Yk � (G + ΔG)Uk + Vxk(0). Combining
xk+1(0) � xk(0) � xd(0) (Assumption 1) and equation (13),
the error sequence can be derived as

Ek+1 � Yd − Yk+1

� Yd − (G + ΔG)Uk+1 + +Vxk+1(0)􏼂 􏼃

� Yd − (G + ΔG) Uk +(LH + Γ)Ek􏼂 􏼃 − Vxk+1(0)

� Yd − (G + ΔG)Uk − Vxk(0) − (G + ΔG)(LH + Γ)Ek

� Ek − (G + ΔG)(LH + Γ) Ek � IN×N − (G + ΔG)(LH + Γ)􏼂 􏼃Ek

� IN×N − (G + ΔG)(LH + Γ)􏼂 􏼃
2
Ek− 1 � · · ·

� IN×N − (G + ΔG)(LH + Γ)􏼂 􏼃
k+1

E0.

(19)

It can be obtained and derived from Lemma 2 that the
necessary and sufficient conditions are expressed as follows:

lim
k⟶∞

[IN×N − (G + ΔG)(LH + Γ)]k+1 � 0 is
ρ[IN×N − (G + ΔG)(LH + Γ)] � max

i
|λi|< 1 where ρ(M) is

the spectral radius of M and λi are eigenvalues of matrix
IN×N − (G + ΔG)(LH + Γ). .e matrix
IN×N − (G + ΔG)(LH + Γ) is a lower triangular matrix as
follows:

IN×N − (G + ΔG)(LH + Γ)

�

1 − Le
K(1/N)2

+ c􏼔 􏼕CB

∗ 1 − Le
K(1/N)2

+ c􏼔 􏼕CB

∗ ∗ ⋱

∗ ∗ ∗ 1 − Le
K(1/N)2

+ c􏼔 􏼕CB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(20)

.e necessary and sufficient condition for the conver-
gence of the system is
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ρ2 � max
t

1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, t ∈ 0, 1, · · · , N − 1{ }.

(21)

.e theorem is proved. □

3.3. Case of the Determined Model with Measurement Noise.
If the model is determined and has measurement noise, i.e.,
ΔA(t) � 0, ΔB(t) � 0, nk ≠ 0. Equation (5) can be written as
Yk � GUk + V + nk. Combining xk+1(0) � xk(0) � xd(0)

(Assumption 1) and equation (13), the error sequence can be
derived as

Ek+1 � Yd − Yk+1 � Yd − GUk+1 + Vxk+1(0)( 􏼁 + nk+1􏼂 􏼃

� Yd − G Uk +(LH + Γ)Ek􏼂 􏼃 − Vxk+1(0) − nk+1

� Yd − GUk − Vxk(0) − nk − G(LH + Γ)Ek + nk − nk+1

� Ek − G(LH + Γ) Ek + nk − nk+1

� IN×N − G(LH + Γ)􏼂 􏼃Ek + nk − nk+1.

(22)

Let P � IN×N − G(LH + Γ), then we have
Ek+1 � PEk + nk − nk+1.

When k � 0, E1 � PE0 + n0 − n1.
When k � 1, E2 � PE1 + n1 − n2 � P2E0 + (n1 − n2) +

P(n0 − n1).
When k � 2, E3 � PE2 + n2 − n3 � P3E0+ (n2 − n3) +

P(n1 − n2) + P2(n0 − n1).

Ek+1 � P
k+1

E0 + 􏽘

k

i�0
P

k− i
ni − ni+1( 􏼁. (23)

For the repetitive perturbation,
ni+1 − ni � 0(i � 0, 1, 2, · · ·),
Ek+1 � [IN×N − G(LH + Γ)]k+1E0, we can obtain from
Lemma 2, the necessary and sufficient condition of
lim

k⟶∞
Pk+1 � 0 is ρ(P) � max

i
|λi|< 1. ρ(M) represents the

spectral radius of matrix M, and λi are eigenvalues of matrix
IN×N − G(LH + Γ). Referring to the proving process of
.eorem 1, it can be obtained that the necessary and suf-
ficient condition of the system convergence is

ρ3 � 1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<1, t ∈ 0,1, · · · ,N − 1{ }. (24)

When k⟶∞, the system output uniformly converges.
Hence, it means the error ‖EK+1‖⟶ 0.

For nonrepetitive perturbations, assume that the two-
interval perturbations are bounded; there is a positive real
number ε<∞ so that the perturbations in the two iterations
satisfy ‖nk+1 − nk‖≤ ε<∞.

Theorem 3. "Considering a SISO linear discrete time in-
variant system (1), first three assumption must be satisfied for
this SISO system including nonrepetitive measurement noise
nk(t + 1). If the chosen learning variable vector meets the
following conditions, the PD-type accelerated iterative
learning control method (7) with association correction is
used.

ρ4 � 1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<1, t ∈ 0,1, · · · ,N − 1{ }. (25)

Then, the system’s output converges to a certain
neighborhood of the expected trajectory; that is, when
k⟶∞, ‖EK+1‖⟶ mε, t ∈ 0, 1, · · · , N − 1{ }.

Proof. Equation (24) is still valid. For the nonrepeatable
perturbations, there is a positive real number ε<∞ for the
perturbations in the two iterations satisfying
‖nk+1 − nk‖≤ ε<∞.

Take the norm of both sides of equation (24) as

Ek+1
����

����≤ P
k+1

�����

����� E0
����

���� + 􏽘

k

i�0
P

k− i
�����

�����ε. (26)

If ρ(P) � max
i

|λi|< 1, according to Lemmas 1 and 2,
lim

k⟶∞
Pk+1 � 0, lim

k⟶∞
‖Pk+1‖ � 0. Define m � 􏽐

k
i�0 ‖Pk− i‖,

since lim
k⟶∞

‖Pk+1‖ � 0, m<∞ is bounded. .us, we obtain
the above inequality as ‖EK+1‖⟶ mε.

According to the above analysis, the sufficient condition
for system convergence is

ρ4 � 1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, (27)

and the error will converge to a boundary, which is mε.
.eorem 3 is proved. □

3.4. Case of Undetermined Model with Measurement Noise.
If the system model is not determined and contains mea-
surement noise, for which the system matrix all are con-
sidered not zero, equation (5) can be written as
Yk � (G + ΔG)Uk + Vxk(0) + nk. Combined with equation
(13), the error sequence can be derived as

Ek+1 � Yd − Yk+1

� Yd − (G + ΔG)Uk+1 + Vxk+1(0) + nk+1􏼂 􏼃

� Yd − (G + ΔG) Uk +(LH + Γ)Ek􏼂 􏼃 − Vxk+1(0) − nk+1

� Yd − (G + ΔG)Uk − Vxk(0) − nk − (G + ΔG)(LH + Γ)Ek + nk − nk+1

� Ek − (G + ΔG)(LH + Γ) Ek + nk − nk+1

� IN×N − (G + ΔG)(LH + Γ)􏼂 􏼃Ek + nk − nk+1.

(28)
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Defining W � IN×N − (G + ΔG)(LH + Γ), then we have
Ek+1 � WEk + nk − nk+1.

When k � 0, E1 � WE0 + n0 − n1;
When k � 1, E2 � WE1 + n1 − n2 � W2E0 + (n1 − n2) +

W(n0 − n1);
When k � 2, E3 � WE2 + n2 − n3 � W3E0+ (n2 − n3) +

W(n1 − n2) + W2(n0 − n1).
⋮

Ek+1 � W
k+1

E0 + 􏽘

k

i�0
W

k− i
ni − ni+1( 􏼁. (29)

For the repetitive perturbation nk+1 − nk � 0,
Ek+1 � [IN×N − (G + ΔG)(LH + Γ)]k+1E0, consider Lemma
2, for which the sufficient condition of lim

k⟶∞
Pk+1 � 0 is

ρ(P) � max
i

|λi|< 1. ρ(M). We can see that M and λi are
eigenvalues of matrix IN×N − (G + ΔG)(LH + Γ). For which
we can see that the necessary and sufficient condition of the
system convergence is

ρ5 � max
t

1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, t ∈ 0, 1, · · · , N − 1{ }.

(30)

For nonrepetitive perturbations, assume that the two-
interval perturbations are bounded; that is, there is a
positive real number ε<∞, so that the perturbations in
the two iterations satisfy ‖nk+1 − nk‖≤ ε<∞.
‖nk+1 − nk‖≤ ε<∞. In all cases, noise is expressed as nk,
that is, nk(0) � 0 at the initial and added to the system for
particular case.

Theorem 4. It is SISO example for a linear discrete time-
invariant system (1). A nonrepetitive measurement noise
nk(t + 1) must be present in order to meet Assumptions 1–3.
Assume that the chosen learning parameter matrix meets the
requirements of the accelerated iterative learning control
method (7) when it is used:

ρ6 � max
t

1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, t ∈ 0, 1, · · · , N − 1{ }.

(31)

Then, the output of the system converges to a certain
neighborhood of the expected trajectory; that is, when
k⟶∞, ‖EK+1‖⟶ pε, t ∈ 0, 1, · · · , N − 1{ }.

Proof. Equation (31) still holds and takes the norm to both
sides of the equation:

Ek+1
����

����≤ W
k+1

�����

����� E0
����

���� + 􏽘
k

i�0
W

k− iε. (32)

If ρ(W) � max
t

|λi|< 1, according to Lemmas 1 and 2,
lim

k⟶∞
W(K+1) � 0, so lim

k⟶∞
‖W(K+1)‖ � 0. Define p � 􏽐

k
i�0

‖WK− i‖，since lim
k⟶∞

‖Pk+1‖ � 0, p is bounded, p<∞. .us,

we obtain the above inequality as ‖EK+1‖≤pε.
We can get the condition as convergence such that

ρ6 � max
t

1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, t ∈ 0, 1, · · · , N − 1{ },

(33)

and the error will converge to a boundary, which is pε.
.eorem 4 is proved.
Depicting people’s association thinking, this paper

proposes a new type of the association iterative learning
control algorithm, which, with the help of kernel function (a
monotonically decreasing function), uses the information of
the present time to make prediction and correction of the
future control input in the current iterative process. .e
information of the current time corrects the subsequent
unlearned time, the closer the current time, the greater the
influence, the smaller the opposite. Obviously, the kernel
function makes the association iterative learning algorithm
more reasonable. In the process of theoretical proof of
convergence analysis, the kernel function is eliminated, so it
is not reflected in the convergence condition. It is proved
that the association algorithm and the traditional ILC have
circumstances, but the simulation result of the fourth part of
the paper shows that the algorithm does have much better
convergence speed than the traditional iterative learning
algorithm. □

4. Simulation of Numerical Examples

.e validation of the associative correction learning rule
proposed in this article is carried out for a discussion of
LDTI (1) SISO systems with repetitive parameter pertur-
bation, and measurement noise in a finite time period is
deliberated:

x
ILC
k (t + 1) � (A + ΔA(t))x

ILC
k (t) +(B + ΔB(t))u

ILC
k (t),

y
ILC
k (t + 1) � Cx

ILC
k (t + 1) + n

ILC
k (t + 1),

⎧⎨

⎩

(34)

in which t ∈ 0, 1, · · · , N − 1{ },

A �
1 0

0.2 − 0.1
􏼢 􏼣,

B �
0

1
􏼢 􏼣,

C − 0.2 1􏼂 􏼃.

(35)

4.1. Case of Determined Model without Measurement Noise.
If the system model is determined and there is no mea-
surement noise, i.e., ΔA(t) � 0, ΔB(t) � 0, nk � 0 according
to .eorem 1, the sufficient and necessary condition of
system convergence is

ρ � 1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1. (36)

Let the iterative proportional gain β � 0.15, the differ-
ential gain c � 0.25, the association factor k � 2, the cor-
rection factor L � 0.25, and the discrete time N � 40. .e
calculation results show that
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ρ � 1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0.5< 1, (37)

satisfies the convergence condition.
For L � 0, the mentioned algorithm degenerates to a

typical PD-type ILC algorithm, whose convergence condi-
tion is ρ′ � |1 − cCB| � 0.75< 1, ρ< ρ′. An iterative learning
algorithm converges more quickly when its spectral radius is
lower, as per hypothesis.

We can take the expected trajectory for this particular
system which is yd(t + 1) � sin(8t/25) as shown in Figure 4,
for the interval of t ∈ 0, 1, · · · , 39{ }. Also, it can be denoted
that the state is represented as xk(0) � 0, ∀k ∈ Z+, primary
control input is u1(1) � 0. While using the accelerated PD-
type learning rule proposed in this paper, the variation trend
of ‖EK‖∞ first learning iteration to the 50th learning iteration
is shown in Figure 5. .e process can guarantee that ‖EK‖∞
converges to 0. Figure 6 shows the system output for dif-
ferent iterations such as first, fourth, seventh, and 11th,

respectively, and the convergence of the algorithm can be
seen in more detail.

Allow the iterative learning rate and differential gain β �

0.15 to keep unaltered throughout the learning process when
the typical PD-type learning rule is used. .e variance trend
‖EK‖∞ is given in Figure 7 from the first to the fifth learning
iteration. Additionally, the image depicts the variation trend
‖EK‖∞ associated with the acceleration method described in
this study. When the permitted error ε � 0.01 is specified,
the typical PD-type approach requires 13 iterations, but the
accelerated PD-type iterative learning process requires just
six. Given the allowable error ε � 0.001, the standard PD-
type technique requires 25 iterations, but the accelerated
PD-type iterative learning approach requires just 11. It is
straightforward to observe that applying the PD-type
accelerated ILC method suggested in this research greatly
accelerates the system’s convergence rate.

4.2.Caseof theUndeterminedModelwithMeasurementNoise.
If the system model is not determined and contains mea-
surement noise, for that particular system, we consider that
ΔA(t)≠ 0 as well as other parameters are nonzero too.
According to .eorem 4, the sufficient condition for the
system output to converge to a neighborhood of the ex-
pected trajectory is

ρ6 � max
t

1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, t ∈ 0, 1, · · · , N − 1{ }.

(38)

.e matrix pairs (E1, F1) and (E2, F2) are selected as

E1 �
0.2 0

0 0.2
􏼢 􏼣,

F1 �
1 0

0 1
􏼢 􏼣,

E2 �
0.1 0

0 0.1
􏼢 􏼣,

F2 �
0

1
􏼢 􏼣.

(39)

Assume P(t) and Q(t) are

P(t) � Q(t) �
Φ1(t) 0

0 Φ2(t)
􏼢 􏼣, (40)

where |Φi(t)|< 1, t ∈ 0, 1, · · · , N − 1{ }, i � 1, 2. We can
simulate the process, for which Φi(t) and Φ2(t) are gen-
erated by random function rand(∗) and measurement noise
nk � 0.08 cos(rand(∗)) is randomly generated. .e param-
eters of algorithm (5) are as follows: iterative proportional
gain β � 0.15, differential gain c � 0.25, association factor
k � 2, correction factor L � 0.25, and discrete time N � 40.
.e result of the simulation indicates that

ρ6 � max
t

1 − Le
K(1/N)2

+ c􏼔 􏼕CB

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0.4990< 1, (41)
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iteration; (d) tracking of 11th iteration.
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Figure 9: Comparison of system output and desired trajectory. (a) Particular output for k� 1. (b) Particular output for k� 4. (c) Particular
output for k� 7. (d) Particular output for k� 11.
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meets the convergence condition, while ΔB(t) �

(0< 0.0013)T.
.e desired signal is taken the same as previous, for the

time particular period of t ∈ 0, 1, · · · , 39{ }. Also, we have
taken other parameters same such as system states
xk(0) � 0, ∀k ∈ Z+, as well as the input is taken as u1(1) � 0
as previous. We have deployed a faster PD-type ILC which is
designed in this article; the changing trend of ‖EK‖∞ from
the first iteration to the 50th iteration is shown in Figure 8.
.e algorithm can ensure that ‖EK‖∞ converges to 0.

In order to observe of the convergence process of the
output trajectory, Figure 9 shows the comparison plots
between the output and desired trajectory for the first,
fourth, seventh, and 11th iterations.

If we take L � 0, the aforementioned law is reduced into
the traditional PD-type ILC law, the convergence condition
for ρ′ � max

t
|1 − cCB| � 0.7497< 1, and ρ< ρ′. In a view of

spectral radius concept, the convergence is very faster for the
particular law. .erefore, we can see that an association
correction ILC law proposed in this paper converges faster.
Changing trend of ‖EK‖∞ from first iteration to 50th iter-
ation in two algorithms is shown in Figure 10.

We can easily observe from Figure 10 that the system
tracking error does not converge to 0, but it is bounded.
.eorem 4 described the bounded error such as
‖EK+1‖⟶ pε, t ∈ 0, 1, · · · , N − 1{ }. As illustrated in Fig-
ure 10, the system’s convergence performance is greatly
boosted when the PD-type enhanced ILC method developed
in this study is used.

According to Table 4, the error value for P, D, PD, and
expedited suggested PD-type ILC regulations is 1.1217316

during first iteration. After 15 rounds, the P-type algorithms
error is 0.062823, typical D-type law’s error is 0.07538, and
the PD algorithm error is 0.024335, where the error of the
suggested faster PD algorithm is 0.003683 and the tracking
error of all ILC laws decreases progressively as the iteration
number increases. However, based on the horizontal data in
Table 4, the suggested accelerated PD law has the lowest
tracking error when contrasted to other ILC laws (P, D, PD)
with the same iteration number [34]. As a result, it is clear
from Table 4 that the suggested accelerated PD law in this
article has a substantially faster convergence rate than other
standard algorithm.

.e autoassociative ILC is established for the typical ILC,
specifically, utilizing the current knowledge to make accu-
rate predictions input. In contrast with typical ILC, it can be
described as follows: in specific trial, the prelearning time is
precorrected utilizing the present data. .e approach may
minimize the number of trials which also increase con-
vergence speed. .e method suggested in this paper may
differ due to the following reasons:

(1) Particular method in this paper even though re-
sembles the standard closed loop iterative learning
technique by design, the idea is fundamentally dis-
tinct from the original typical PD-type. .e typical
closed-loop ILC law alters the current control input
directly error from previous trial. .is technique
suggested in this study leverages the current time
error to predict the amount of control required to
ensure that it does not occur at all times, therefore
serving as a precorrection.
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Figure 10: Comparison of error convergence rate between traditional PD-type learning rule and accelerated learning rule.

Table 4: ILC laws comparison in different iterations.

Iteration number P-type ILC law D-type ILC law PD-type ILC law Proposed accelerated PD-type ILC law
1st 1.1217316 1.1217316 1.1217316 1.1217316
5th 0.521928 0.549819 0.39804 0.232084
10th 0.181079 0.203581 0.098419 0.029238
15th 0.062823 0.07538 0.024335 0.003683
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(2) .ough the correlated ILC law suggested in this
study is operationally alike to the standard higher-
order discrete time control, there is a modification.
In contrast with this, a novel iterative learning
method offered in this paper corrects control input
value of the corresponding time in the same trials.

5. Conclusions

.e problem of discrete linear time-invariant systems with
parameter perturbation and measurement noise is investi-
gated in this paper. It proposes sufficient conditions for
convergence of a PD-type ILC law with relative adjustment
under the circumstances of parameter determined without
measurement noise, parameter undetermined without noise,
parameter determined with measurement noise, and pa-
rameter undetermined with measurement noise, respec-
tively. We have proven that the traditional PD-type ILC
algorithm has the small convergence radius as compared
with proposed law for the same simulation conditions. We
have also proven the convergence theoretically with the help
of hypervector and spectral radius theory. Numerical sim-
ulation shows the efficiency of the proposed control. Ulti-
mately, results depict that the control is able to track the
expected trajectory completely within finite intervals when
there are uncertain system parameters. In the case of
measurement noise existing, the system’s output will con-
verge to a neighborhood of the expected trajectory using the
algorithm proposed in this paper. In future studies, it can
also be considered that the same method is adopted for the
nonlinear discrete systems with parameter perturbations
andmeasurement noises. Also, we can drive the convergence
of arbitrary bounded changes of initial conditions.

Data Availability

Data are cited in the main manuscript.

Conflicts of Interest

.e authors confirm that there are no conflicts of interest
existing in submitting this manuscript.

Authors’ Contributions

All authors approved the manuscript for publication in your
jour�inal.

Acknowledgments

.is particular work was financially supported by Foun-
dation for Advanced Talents of Xijing University grant
number XJ17B03.

References

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering op-
eration of robots by learning,” Journal of Robotic Systems,
vol. 1, no. 2, pp. 123–140, 1984.

[2] S. Riaz, H. Lin, M. Mahsud, D. Afzal, A. Alsinai, and
M. Cancan, “An improved fast error convergence topology for

PDα-type fractional-order ILC,” Journal of Interdisciplinary
Mathematics, vol. 24, no. 7, pp. 2005–2019, 2021.

[3] J. Liu, Y. Wang, H. T. Ting, and R. P. S. Han, “Iterative
learning control based on radial basis function network for
exoskeleton arm,” in Advanced Materials ResearchTrans Tech
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