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Anisotropic in situ ground stress is an objective stress state of rock mass that should be taken into account when calculating the
plastic zone of the circular hole surrounding rock. �e point stress method and approximate plastic condition method for
calculating plastic zone are derived, and the �nite element numerical calculation is carried out. Di�erent analytical and �nite
element approaches are employed for calculation based on the representative parameters. �e outcomes of the calculations are
thoroughly examined. �ere are four shapes of plastic zone, among which the butter�y plastic zone can be obtained only by
approximate plastic condition method and �nite element method. �e distribution of plastic zone calculated by using the point
stress method and the Ruppneyt formula is identical, with only small deviations.�emodi�ed Fenner formula should not be used
to calculate the plastic zone under in situ stress anisotropy since it would result in an underestimation of the maximum plastic
radius. �e detailed calculation and results comparison of this paper can provide a reference for more comprehensive and
reasonable evaluation of the surrounding rock plastic zone.

1. Introduction

�e in situ stress state of surrounding rock changes as a
result of the excavation of circular hole (e.g., roadway and
tunnel). When the redistributed stress meets the yield
condition, the surrounding rock enters the plastic state [1, 2].
�e distribution shape and size of the plastic zone serve as
the foundation for evaluating the stability of the surrounding
rock, as well as an essential basis for supporting design [3, 4].

�e in situ stress �eld was simpli�ed to uniform dis-
tribution in early elastic-plastic analyses of surrounding
rock, and the theory represented by the modi�ed Fenner
formula was proposed. Many scholars later optimized and
improved this method in combination with the physical and
mechanical properties of geotechnical materials, resulting in
the development of a series of analytical calculation methods
[5–8]. It is able to obtain a detailed analytical calculation

theory of stress, strain, displacement, and plastic zone dis-
tribution. �e plastic zone of circular hole surrounding rock
is axisymmetric under isotropic stress conditions.

�e true in situ stress �eld, on the other hand, is gen-
erally anisotropic. Due to the stress redistribution e�ect, it is
di�cult to solve the exact mechanical �eld under the con-
dition of anisotropic in situ stress after the surrounding rock
enters the plastic state. Obviously, the distribution of the
plastic zone is axi-asymmetric, and researchers have pro-
posed some approximate solutions [9–13]. �e shape and
size of the plastic zone obtained by di�erent methods di�er
due to di�erent assumptions and mathematical solutions.

In practice, the choice of calculation methods is cur-
rently subjective, and there is a lack of comparative analysis
of di�erent methods. Considering anisotropic in situ stress
state, the point stress method and approximate plastic
condition method for plastic zone calculation are derived.
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Based on the representative parameters, calculation is per-
formed using four analytical methods: modified Fenner
formula, Ruppneyt solution, point stress method, and ap-
proximate plastic condition method. Moreover, the non-
linear finite element software ABAQUS is used for
comprehensive calculations in this paper.

2. Analytical Solution

)e analytical solution is based on the reasonable me-
chanical model which is an idealized analysis model based
on practical engineering problems that grasps the me-
chanical essence and major principles while making ap-
propriate assumptions and simplifications. )e basic
assumptions for elastic-plastic analysis of circular hole
surrounding rock are as follows: the cross section of hole is
circular, the length of hole is much larger than its diameter,
and the mechanical model is simplified to plane strain

problem; geotechnical materials are homogeneous and
isotropic; they are infinite boundary media; the gravity stress
gradient is not considered, and in situ stress is regarded as
the initial pressure acting on the boundary. )e
Mohr–Coulomb strength criterion is adopted as the con-
dition for judging plastic yield. )e basic mechanical model
is shown in Figure 1.

Kirsch was the first to investigate the elastic stress dis-
tribution of a tensile-stressed infinite plate, while other
scholars updated and revised it, which later became well-
known as the Kirsch equation [14–16]. Airy function trial
methodology or the complex variable approach can be used
to obtain Kirsch equation; detailed solution process is given
in references [17, 18].

)e stress distribution of the hole surrounding rock in
the elastic state is as follows based on Kirsch equation:

σr �
1
2
σv 1 + K0(  1 −

R

r
 

2
  − 1 − K0(  1 − 4

R

r
 

2
+ 3

R

r
 

4
 cos(2θ)  + Pi

R

r
 

2
,

σθ �
1
2
σv 1 + K0(  1 +

R

r
 

2
  + 1 − K0(  1 + 3

R

r
 

4
 cos(2θ)  − Pi

R

r
 ,

τrθ �
1
2
σv 1 − K0(  1 + 2

R

r
 

2
− 3

R

r
 

4
 sin(2θ) .

(1)

2.1. Modified Fenner Formula. It is the elastic solution of
isotropic stress condition when the lateral pressure coeffi-
cient in Kirsch equation is equal to 1. If the actual support
force is less than the critical support force, the surrounding
rock becomes plastic, and the radius of the plastic zone is
[16]

Rp � R
σv + c cotφ( (1 − sinφ)

Pi + c cotφ( 
 

(1− sinφ)/(2 sinφ)

. (2)

)emodified Fenner formula, also known as the Kastner
formula, is shown above. )is approach is widely used and

has a straightforward calculation. )is assumption of in situ
stress isotropy, on the other hand, is clearly incompatible
with actual situations.

2.2. Ruppneyt Solution. Due to the stress redistribution ef-
fect, it is difficult to compute the exact mechanical field when
in situ stress anisotropy exists. )ere are some approximate
answers available at present, among which the Ruppneyt
solution is a representative calculating approach [19]:

Rp � R
σv 1 + K0(  + 2c cotφ(  (1 − sinφ)

2Pi + 2c cotφ
 

(1− sinφ)/(2 sinφ)

× 1 +
σv 1 − K0( (1 − sinφ)cos 2θ3
σv 1 + K0(  + 2c cotφ sinφ

 . (3)

Ruppneyt equation considering anisotropic in situ stress
conditions has an explicit expression and has been widely
applied in engineering [20].

2.3. Point Stress Method. A plastic radius equation was
proposed by Cai and Cai [21], and the results of the original
literature are modified in this study.

Assume that the circular hole surrounding rock is an
axisymmetric plane strain solution after entering the plastic
state, and the circumferential stress equation is as follows:

σθp � A Pi + c cotφ( 
r

R
 

A−1
− c cotφ. (4)

)e Kirsch equation is satisfied by the stress solution in
the elastic region. )e radial stress at the elastic-plastic
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interface is utilized to replace the support force, and the
boundary radius of the plastic zone is used to replace the
hole radius. )e following equation can be obtained:
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)e radius of the plastic zone is calculated using si-
multaneous (4) and (5):

Rp � R
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)is approach is called point stress method since it is
based on the equal circumferential stress of individual
points.

2.4. Approximate Plasticity Condition Method. Kastner
proposed to ignore the stress redistribution caused by
elastic-plastic deformation, i.e., the stress field of the hole
surrounding rock is still the same as Kirsch equation during
plastic deformation, and the boundary line equation of
approximate plastic zone is obtained based on the geometric
relationship of stress Mohr circle [22]. )is method has

recently been used in the stability analysis of roadway
surrounding rock [23–28]. Taking the supporting force into
account, the boundary line equation is rederived in this
study.

)e following equation can be obtained after a series of
operations such as the combination of similar terms and the
transformation of trigonometric functions (the specific
calculation and simplification process are omitted):
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Figure 1: Basic mechanical model.
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)e issue with this method is that the stress distribution
in the plastic stage is identical to that in the elastic stage,
making it a rough estimating method. )erefore, it is called
approximate plastic condition method.

2.5. Calculation Results of Analytical Methods. Typical cal-
culation parameters are adopted [29]: R� 2m, c � 25 kN/m3,
H� 600m,� 30°, and c� 1MPa. )e plastic zone boundary
lines are depicted in Figures 2–4 using the Ruppneyt so-
lution, point stress technique, and approximated plastic
condition method, respectively.

3. Finite Element Method

Finite element software ABAQUS is used for numerical
calculation in order to evaluate the accuracy of the analytical
solutions derived by various ideas and methodologies. )ere
are two stages of the numerical simulation: in situ stress
balance and hole excavation [30].

)e calculation parameters are identical to those used in
the previous analytical calculations. )e model’s width and
height are both 40m, and the hole is located in the center.
)e horizontal displacement at the left and right sides of the
model is zero, and the vertical displacement at the bottom is
also zero. )e gravity of the rock mass is taken into account
in the numerical simulation. As a result, a pressure of
14.5MPa is applied on the top boundary, and the pressure
on the left and right sides is determined according to lateral
pressure coefficient.)e element type of surrounding rock in
the model is CPE4 solid element. To achieve excellent

precision, the model has a total of 201,550 elements. Eight
groups of numerical simulation are carried out in this re-
search, with the calculated plastic zone distribution illus-
trated in Figure 5.

4. Comparison and Analysis

)e numerical results clearly show that the plastic zone has
four shapes: butterfly, curved rectangle with concave hori-
zontal direction and convex vertical direction, approximate
ellipse, and circle. Specifically, the plastic zone is butterfly
when K0 � 0.3∼0.5; when K0 � 0.6, it is a curved rectangle
with concave horizontal direction and convex vertical di-
rection; when K0 � 0.7∼0.9, the plastic zone is approximate
ellipse; and when K0 �1, it is round.

Among various analytic approaches, only the approxi-
mate plastic condition method can calculate the butterfly-
shaped plastic zone. At K0 � 0.3∼0.4, there is an obvious
butterfly plastic zone which is not noticeable at K0 � 0.5.
Ruppneyt solution and point stress method, although
considering the anisotropy of in situ stress, cannot reflect the
distribution characteristics of butterfly plastic zone.

When K0 � 0.7∼0.9, the plastic zone obtained from the
two analytical methods (Ruppneyt solution and point stress
method) and numerical simulation are approximate ellip-
tical. Specifically, when K0 � 0.7, the plastic radius calculated
by Ruppneyt solution is 3.45∼4.72m and the result of the
point stress method is 2.99∼4.77m; the numerical simula-
tion solution is 3.24∼4.73m. When K0 � 0.8, the plastic radii
calculated by these three methods (Ruppneyt solution, point
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stress method, and finite element method) are 3.78∼4.61m,
3.52 ∼ 4.65m, and 3.67∼4.66m, respectively. )ese three
methods are 4.09∼4.50m, 3.98∼4.52m, and 4.03∼4.59m,
respectively, at K0 � 0.9. Obviously, the results of these three
methods are very close.

Although the approximate plastic condition method can
also obtain the elliptical plastic zone when K0� 0.8 ∼ 0.9, the
plastic radius is significantly smaller than the results of the
previous three calculation methods. When K0� 0.8, the plastic
radius is 2.59 ∼2.73m and it is 2.64∼2.70m when K0� 0.9.

)e distribution of the plastic zone calculated using the
point stress method and the Ruppneyt solution is nearly
identical, with only minor differences. Specifically, when
K0 � 0.3, the vertical direction of the inner boundary of

circular hole has an elastic range (85°∼ 95°and 25°∼275°)
according to Ruppneyt solution.

When K0 � 0.3∼0.5, there are elastic zones in this po-
sition calculated by the point stress method, and the range is
larger than results of Ruppneyt solution. When K0 � 0.3, the
range is 59°∼121°and 239°∼301°. )e range is 64°∼ 116°and
244°∼296°when K0 � 0.4; the range is 73°∼ 107°and 253°∼
287°when K0 � 0.5.

When the lateral pressure coefficient is equal to 1, the
boundary line of the plastic zone is circular. )e plastic radii
calculated using the modified Fenner formula, Ruppneyt
solution, point stress method, and finite element method are
4.39m, 4.40m, 2.68m, and 4.32∼4.51m, respectively. )e
plastic radius computed by other methods is quite close, with
the exception of the approximate plastic condition method.
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Figure 2: Boundary lines of plastic zone based on Ruppneyt
solution.
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Figure 3: Boundary lines of plastic zone based on the point stress
method.

Mathematical Problems in Engineering 5



0

30

60
90

120

150

180

210

240
270

300

330

0

30

60
90

120

150

180

210

240
270

300

330

-8

-6

-4

-2

0

2

4

6

8

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8 10-10

-8 -6 -4 -2 0 2 4 6 8 10-10

K0 = 0.3
K0 = 0.5

K0 = 0.7 
K0 = 0.9 

K0 = 0.4
K0 = 0.6 

K0 = 0.8 
K0 = 1

Figure 4: Boundary lines of plastic zone based on the approximate plastic condition method.
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Figure 5: Distribution of plastic zone based on the finite element method: (a) K0 � 0.3; (b) K0 � 0.4; (c) K0 � 0.5; (d) K0 � 0.6; (e) K0 � 0.7;
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When the anisotropy of in situ stress is strong, the
maximum plastic radius calculated by numerical simulation
is much larger than the result of modified Fenner formula
which is based on the assumption of in situ stress isotropic.

5. Conclusions

In this research, the plastic zone of circular hole surrounding
rock is calculated and compared using four analytical ap-
proaches (modified Fenner formula, Ruppneyt solution,
point stress method, and approximate plasticity condition
method) and finite element method. Some key conclusions
are reached through in-depth comparison and analysis with
various methods.

(1) Four shapes of plastic zone (butterfly, curved rect-
angle with concave horizontal direction and convex
vertical direction, approximate ellipse, and circle)
can be obtained by using the finite element method
and approximate plastic condition method. Other
analytic approaches cannot get butterfly shape.
)erefore, the approximate plastic condition method
has advantages in describing the shape of plastic
zone.

(2) In the distribution and evolution of the plastic zone,
the degree of in situ stress anisotropy is critical. )e
butterfly distribution appears when the horizontal
stress differs significantly from the vertical stress
(when K0< 0.5 or K0> 2), which is the key shape of
the plastic radius with a significant abrupt change.
)e modified Fenner formula will severely under-
estimate the plastic zone range at this time.

(3) When lateral pressure coefficient is close to 1,
Ruppneyt solution, point stress method, and finite
element method calculation results are similar. )e
shape of the plastic zone calculated by the approx-
imate plastic condition method is similar to that
calculated by other methods, but the plastic radius is
significantly underestimated.

(4) In the supporting design, the anisotropic in situ
stress conditions need to be carefully considered.
While using an anchor, the length of anchor should
be greater than themaximumplastic radius.When in
situ stress anisotropy is considerable, the appropriate
plastic zone calculation method and support scheme
must be carefully chosen.

Notation

R: Radius of circular hole
Rp: Radius of plastic zone of surrounding rock
r: )e distance between any point in the surrounding

rock and the circular roadway’s center
Pi: Support force
σv: Vertical in situ stress
σh: Horizontal in situ stress
θ: Angle, starting horizontally to the right and increasing

counterclockwise
K0: Lateral pressure coefficient

σr: Radial stress
σθ: Circumferential stress
τrθ : Shear stress
σθp: Circumferential stress of plastic zone
φ: Friction angle of rock mass
c: Cohesion of rock mass
c: Unit weight of rock mass
H: Depth of underground hole.
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