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Fractional-order calculus has exclusive advantages in modeling the viscoelastic components with obvious fractional-order
characteristics such as air springs and metal rubbers in the pantograph structure. In this paper, the air spring is tested, and
fractional-order calculus is applied to the modeling of pantograph-catenary system of the high-speed train. �e parameter
identi�cation method of fractional-order derivative is analytically derived. �e traditional lumped mass model is improved and a
coupling two-degree-of-freedom model of the fractional-order pantograph-catenary system is established. �e fractional-order
derivative term in the pantograph-catenary model is approximately calculated by the Oustaloup �lter algorithm. Taking the time-
varying nature into consideration, the catenary is treated as an extended variable to obtain an augmented model. On this basis, the
system is linearized based on di�erential geometry theory, and an LQR controller is designed to control the pantograph-catenary
system.�e feedback linearized LQR control and PID control are used to control the same type of traditional pantograph, and the
results are compared. Meanwhile, the control e�ects of feedback linearized LQR control under di�erent pantograph parameters
and at di�erent train speeds are analyzed. �e results show that the feedback linearized LQR control can present a much better
control performance than PID control, and the pantograph-catenary contact force and pantograph head vibration amplitude are
both reduced obviously. Even at di�erent train speeds or under di�erent pantograph parameters, it can also e�ectively reduce
these control indexes and provide more robust control performance. �ese results help to put forward new control ideas and
theoretical basis for the vibration control of the pantograph-catenary or similar dynamical system.

1. Introduction

With the constant improvement of train speeds, the �uctu-
ation of the contact force between the pantograph and cat-
enary increases, which will result in unstable current receiving
quality. �erefore, higher requirements are put forward for
the current receiving performance of high-speed trains. As
the direct power supply equipment for electri�ed railway, the
power supply performance of the pantograph-catenary sys-
tem directly a�ects the safety and stability of the railway
operation. Due to the nonlinear and nonsmooth character-
istics of the pantograph structure, the vibration of the train
body, and the special excitation of the catenary, the actual
working conditions of the pantograph at the high speed are

very complicated. How to accurately describe the dynamic
behavior of the pantograph-catenary system of the high-speed
train, how to e�ectively control it, and how to improve the
current receiving quality and ensure the safe operation of the
high-speed train have become a hot research topic.

Since the 1950s, many studies on the dynamics of pan-
tograph, catenary, and pantograph-catenary interaction have
been carried out. A series of theoretical models of panto-
graph-catenary system have been established gradually, of
which the pantograph model and catenary model were
continuously improved and expanded [1–5]. Lee et al. [1]
established a three-dimensional catenary model considering
factors such as slackening of the dropper, pre-sag, and stagger,
and the reliability of the model was veri�ed. Massat et al. [2]
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coupled the finite element catenary model with the full
flexible multibody pantograph model for co-simulation,
which improved the simulation efficiency. Hu et al. [3]
studied the transient dynamic response of the whole dropper
under the interaction of pantograph and catenary based on
the simple chain-shaped suspension catenary. Zhang et al. [4]
established the models of train, line, and pantograph-cate-
nary, respectively, and then coupled them into a unified
system. .e pantograph models mainly include lumped mass
model, multirigid body model, rigid-flexible hybrid model,
and fully flexible model [6]. However, most of the lumped
mass models are integer-order ones, and the influences of
nonlinear devices such as air springs in the pantograph
structure are not considered enough. Vibration damping
devices such as air springs, metal rubbers, and intelligent
dampers all have memory characteristics. It is difficult for the
traditional integer-order models to accurately describe these
material characteristics. In contrast, fractional-order models
can better reflect the memory characteristics of materials.
Since the emergence of fractional calculus theory, scholars
have carried out extensive research on it [7–12]. Lopes et al.
[7] showed that fractional-order models could describe the
memory characteristics of materials more accurately than
integer-order models in electric engineering. Liu et al. [8]
established a fractional-order Bingham model for magneto-
rheological fluid damper, and the experimental results
showed that the fitting accuracy of the fractional-order
Bingham model was significantly higher than that of the
traditional Bingham model. Zhang et al. [9] proved that the
fractional-order Maxwell model could effectively describe the
whole creep process of asphalt mixture under different stress
levels through experiments. Peng et al. [10] applied fractional
calculus to the wellbore creep model. By comparing with the
classical model, it was found that the fitting accuracy of the
fractional-order model was higher for viscoelastic materials.
Obviously, in the pantograph-catenary system with visco-
elastic devices, the fractional-order model may achieve higher
fitting accuracy with fewer parameters.

In the research on vibration control of pantograph-cate-
nary system, in addition to improving the dynamic charac-
teristics of pantograph-catenary system by optimizing the
performance parameters of pantograph and catenary structure,
active control based onmodern control theory is also applied to
suppress the fluctuation of the contact force, and the current
receiving quality of pantograph-catenary system will be im-
proved. Optimal control [13–19], variable structure control
[20–23], and fuzzy control [24–28] are commonly used in
vibration control of pantograph-catenary system. LQR optimal
control takes the minimum system performance index as the
evaluation function [19], which can achieve the optimal control
effect with small control energy. Guo et al. [13] applied the LQR
control to the two-degree-of-freedom linear pantograph-cat-
enary model, obtained the optimal control law by solving the
Riccati equation, and compared the control effect of the active
control force acting on different positions. Due to the time-
varying stiffness of the catenary, there are limitations in directly
applying the control strategy of the linear system to the
pantograph-catenary system. If the algebraic Riccati equation is
used to solve the problem, the influence of the time-varying

stiffness of the catenary is not fully considered and then the
calculation accuracy decreased. From the perspective of con-
trolling the tracking error, Chen et al. [14] used the LQR
control algorithm to design the output tracker to adapt to the
time-varying stiffness of catenary and improve the calculation
accuracy. For the time-varying stiffness of catenary, the linear
pantograph-catenary model is transformed into a nonlinear
model [15, 17–19], and the controller based on feedback lin-
earization is designed. Ren et al. [29] designed a feedforward
controller for wind turbine based on feedback linearization
with sliding mode and fuzzy PID algorithm. Liu et al. [30]
applies the feedback linearization method to the state obser-
vation of a nonlinear quarter car model with an air spring. Xia
[31] designed controllers for two kinds of fractional-order T-S
fuzzy systems based on state feedback and achieved good
control effects. Accordingly, it is necessary and feasible to
establish the fractional-order pantograph-catenary system
model with an air spring and apply the feedback linear method
to design its controller.

In this paper, the viscoelastic characteristic of air springs
is studied experimentally. .e fractional-order model of the
air spring is established by using fractional calculus theory,
and then the traditional two-degree-of-freedom pantograph-
catenary model is improved. Compared with the traditional
integer-order pantograph-catenary model, a more accurate
fractional-order pantograph-catenary model is established.
.e time-varying stiffness of catenary is treated as the ex-
tended state variable to obtain the augmented model. .e
inner and outer state equations of the augmented model are
derived by using the theory of differential homeomorphic
transformation. On this basis, the LQR controller is designed
to actively control the pantograph-catenary system. .rough
numerical simulation, the effect of the LQR control designed
on the vibration control of the pantograph-catenary system is
analyzed under different pantograph parameters and at dif-
ferent speeds. At the same time, the PID controller is
designed. .e control effects and performance indicators of
the two active controllers are compared and analyzed when
the active control forces act on the frame.

2. Modeling of Fractional-Order Pantograph-
Catenary System

2.1. Fractional-Order Modeling of Air Springs. .e primary
experimental equipment is the HT-9711 material fatigue
testing machine produced by Taiwan Hongda Group Co.,
Ltd. .e test equipment and the ContiTech air spring used
are shown in Figure 1.

With different pressures, amplitudes, and frequencies for
experiments, it is found that the viscoelastic characteristics of
the air spring under dynamic load are more obvious. In order
to correct the difference between the model and the exper-
imental results, the fractional-order theory is introduced [32].
.e fractional-order model of the air spring is established as

Fa(t) � K D
α
t x(t)􏼂 􏼃, (1)

where Fa represents the force of the air spring. K is the
fractional-order differential coefficient, x(t) denotes the
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displacement, and Dα
t x(t) represents the α -order derivative

of x with respect to t (0< α <1).
.e forced excitation loaded in the experiment is a si-

nusoidal excitation, which is

x(t) � z sin(ωt + φ), (2)

where z is the excitation amplitude, ω is the angular velocity,
and φ is the phase.

We substitute (2) into (1), and through Laplace trans-
form, it can be obtained

L Fa(t)􏼂 􏼃 � KL D
α
t x(t)􏼂 􏼃 � Kz ω cosφ

S
α

S
2

+ ω2 + sinφ
S
α+1

S
2

+ ω2􏼢 􏼣.

(3)

According to the inverse Laplace transform,equation (3)
becomes

Fa(t) � Kz ω cos βL
− 1 ∇1􏼂 􏼃 + sin βL

− 1 ∇2􏼂 􏼃􏽮 􏽯, (4)

where ∇1 � Sα/S2 + ω2 , ∇2 � Sα+1/S2 + ω2. .e singularity of
∇1 is S � ± iω . According to the residue theorem, the
inverse Laplace transform of ∇1 is

L
− 1 ∇1􏼂 􏼃 �

(iω)
α

i2ω
eiωt +

(− iω)
α

− i2ω
e− iωt

. (5)

We use the equation

iα � eiπ/2􏼐 􏼑
α

� eiαπ/2. (6)

We substitute equation (6) into (5), and simplify it

L
− 1 ∇1􏼂 􏼃 �

ωα

ω
sin(απ/2 + ωt). (7)

According to the same process, it can be obtained

L
− 1 ∇2􏼂 􏼃 � ωα sin(απ/2 + π/2 + ωt). (8)

We substitute (7) and (8) into (4), and simplify it

Fa(t) � Kzωα sin(απ/2 + ωt + φ). (9)

Selecting the experimental parameters as the pressure
P � 0.1 MPa, the excitation amplitude z � 6 mm, and the
frequency as 1Hz, the measured results of the displacement
and force are shown in Figure 2, represented by “∗ ”. .e
fractional-order α and coefficient K of (1) are obtained by the
least square method. .e force-displacement fitting curve is
also shown in Figure 2, represented by the solid red line.
.rough the data simulation and comparison, it is found
that the data simulated by the fractional-order model agrees
well with the experimental data. It shows that the fractional-
order model proposed in this paper can well reflect the
viscoelastic characteristics of the air spring.

2.2. Pantograph-Catenary Model. To study the complex
dynamics of pantograph-catenary system conveniently, the
pantograph and catenary are simplified into mathematical
models separately at first. .en, the pantograph model and
catenary model are coupled to obtain the dynamic model of
the pantograph-catenary system.

.e stiffness of the catenary varies continuously within
and between spans due to the different contact locations. In
the simplified analysis, the catenary is regarded as a variable
stiffness elastic system. In ref. [13], Guo et al. used the least
squares method to fit the actual stiffness curve calculated by
the finite element method and obtained the simplified
catenary stiffness formula. It can be described as

k(t) � k0 1 + α1f1 + α2f2 + α3f
2
1 + α4f

2
3 + α5f

2
4􏼐 􏼑. (10)

Among them, f1 � cos(2πvt/L), f2 � cos(2πvt/L1),

f3 � cos(πvt/L), f4 � cos(πvt/L1) , where v represents the
train speed, m/s. L represents the catenary span, m. L1
represents the distance between the adjacent hanging strings
of the catenary, m. k0 represents average stiffness, N/m.
αi(i � 1, 2, 3, 4, 5) represents stiffness difference coefficient.

In this study, the simple chain suspension is used
[13, 19]. For simple chain suspension catenary, there are k0 �

3684.5, α1 � 0.4665, α2 � 0.0832, α3 � 0.2603, α4 �

− 0.2801, α5 � − 0.3364 .
In the research of the vibration control of pantograph-

catenary system, the pantograph is usually simplified to a
lumped mass model composed of linear stiffness and linear
damping, as is shown in Figure 3. In this paper, a two-
degree-of-freedom pantograph model is chosen as the basis.
Take into consideration of the viscoelastic properties of
vibration damping devices in pantograph-catenary systems,
it is difficult to use the integer-order model to describe its
performance well with fewer parameters. .erefore, the
fractional-order model of the air spring is introduced into
the model of the pantograph-catenary system, as is shown in
Figure 4.

.e system dynamical equation is

m1€z1 + k1 z1 − z2( 􏼁 + c1 _z1 − _z2( 􏼁 + k(t)z1 � 0,

m2€z2 + k1 z2 − z1( 􏼁 + c1 _z2 − _z1( 􏼁 + c2 _z2 − _zr( 􏼁 + kD
p
t z2 − zr( 􏼁 � F,

􏼨 (11)

Figure 1: Air springs and experimental equipment.
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where m1, m2 are the mass of the collector and frames of a
pantograph, respectively. k1 represents the stiffness of the
collector. k represents the fractional differential term coef-
ficient. c1, c2 represent the damping of the collector and
frame, respectively. z1, z2 denote the vertical displacement of
each mass. zr is the locomotive body excitation. k(t) rep-
resents catenary stiffness. F is the active control force, which
consists of the control force u(t) and the static lifting forcef0.

2.3. Oustaloup Filter Approximation Algorithm for Fractional
Calculus. At present, there are three main forms of defi-
nitions for fractional calculus [12], i.e., Riemann–Liouville
definition, Grunwald–Letnikov definition, and Caputo
definition. In this paper, the Caputo definition is used as

D
p
t x(t) �

1
Γ(1 − p)

􏽚
t

0

_x(τ)

(t − τ)
p dτ, (12)

where Γ(y) is the Gamma function and p is the fractional
order.

For simulation, the Oustaloup filter algorithm [12] is
used in the approximate calculation of fractional calculus. In
the selected frequency band (ωb,ωh) , the approximate
substitution of fractional operators sp is obtained and the
Oustaloup filter is constructed as

s
p ≈ ωp

h 􏽙

M

i�1

s + ω∗i
s + ωi

, (13)

where M is the order of the filter, the zero point of the filter is
ω∗i � ωb(

�����
ωh/ωb

􏽰
)(2i− 1− p)/M, and the pole point is

ωi � ωb(
�����
ωh/ωb

􏽰
)(2i− 1− p)/M.

When the fractional operator is s0.5 , M is selected as 5, 7,
and 9, respectively, and the results are shown in Figure 5. In
the frequency range (0.001 rad/s, 1000 rad/s), the higher the
value of filter order M, the higher the approximate accuracy
of Oustaloup filter algorithm. Considering the computation
accuracy and complexity, the filter order M is selected as 9.

3. LQR Active Control Based on
Feedback Linearization

3.1. State Space Representation of Fractional Pantograph-
Catenary System. In order to analyze the control strategy,
the following state variables are defined as follows:

X � x1, x2, x3, x4􏼂 􏼃
T

� z1, _z1, z2, _z2􏼂 􏼃
T
. (14)

.e input variable is the active control force:

F � u(t) + f0, (15)

where u(t) is the control force and f0 is the static lifting
force.

Let w � _zr , the state space equation and output equation
of (11) are

_X � f(x) + g(x)F + Dw,

Y � h(x),
⎡⎣ ⎤⎦, (16)

3.2. Augmented Model of Fractional-Order Pantograph-Cat-
enary System. .e time-varying stiffness k(t) of the catenary
is treated as an extended variable to obtain an augmented
model. Let k(t) � k(t) − k0 , and the extended state variables
are x5 � k(t), x6 �

_
k(t), _x6 �

€
k(t). .en, the expanded state

variables are

X � x1, x2, x3, x4, x5, x6􏼂 􏼃
T

� z1, _z1, z2, _z2, k(t),
_
k(t)􏼔 􏼕

T
.

(17)

.e augmented nonlinear affine model is
_X � f(x) + g(x)F + Dw,

Y � h(x),
⎡⎣ ⎤⎦. (18)

Figure 3: Lumped mass model of pantograph.
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Figure 4: Two-degree-of-freedom model of pantograph-catenary.
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3.3. Feedback Linearization of Fractional Pantograph-Cate-
nary System. For an n -order nonlinear system with r-order
relative order, where r≤ n , the system can be transformed
into the form of internal and external state equations
through differential homeomorphic transformation, so that
the controller can be designed [33, 34].

According to Lie derivative, when k � 0 , there is

LgL
0
fh(x) �

zL
0
fh(x)

zX
T g(x) �

zh(x)

zX
T g(x) � 0, (19)

when k � 1, there is

LgL
1
fh(x) �

L
1
fh(x)

zX
T g(x) �

z zL
0
fh(x)/zX

T
􏼐 􏼑f(x)􏽨 􏽩

zX
T g(x) � 0,

(20)

when k � 2, there is

LgL
2
fh(x) �

z L
2
fh1(x)􏽨 􏽩

zX
T

g(x) �
c1 x5 + k0( 􏼁

m1m2
≠ 0. (21)

From this, it can be found that the relative order of the
system is r � 3 , and the dimension of the system is n � 6 ,
.ere is r≤ n , so the system can be linearized by using
homeomorphic differentiation [34].

A differential homeomorphic transformation is per-
formed on the system, and the transformed state is w, which
consists of the external state ξ and the internal state η . It is

w � W(x) � ξT ηT􏽨 􏽩
T
, (22)

where ξT
� w1 w2 w3􏼂 􏼃 � h(x) Lfh(x) L

2
fh(x)􏽨 􏽩, ηT �

w4 w5 w6􏼂 􏼃 � x4 x5 x6􏼂 􏼃, w1 � h(x) � k0x1 + x5x1,

w2 � Lfh(x) � x2(k0 + x5) + x1x6,w3 � L2
fh(x) � 2x2x6−

(k0 + x5/m1)(k1(x1 − x3) + c1(x2 − x4) + k0x1 + x5x1) +

x1 _x6.

Take a derivative of w, and we can get its Jacobi matrix

zw

zx
T �

k0 + x5 0 0 0 x1 0

x6 k0 + x5 0 0 x2 x1

① 2x6 −
k0 + x5( 􏼁c1

m1

k0 + x5( 􏼁k1

m1

k0 + x5( 􏼁c1
m1

① 2x2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(23)

where ① � _x6 − ((k0 + x5)/m1)(k1 +k0 + x5),② � − 1/m1
(k1 (x1 − x3) + c1(x2 − x4) + 2k0x1 + 2x5x1).

It can be seen that this matrix is nonsingular, so it can be
proved that the transformation w is a homeomorphic dif-
ferential transformation that satisfies the requirements.
After the transformation, the following state feedback
control law is imposed on the system

u(t) � LgL
2
fh(x)􏽨 􏽩

− 1
− L

3
fh(x) + v􏽨 􏽩. (24)

After differential homeomorphism transformation, the
dynamic equation of the system is obtained, which is
composed of the internal state equation, the external state
equation, and the output equation as

_η � q(w) + p(w)u,

_ξ � Acξ + Bcv,

y � Ccξ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

whereq(w) � j2(x) w6 _w6􏼂 􏼃
T
, p(w) � 1/m2 0 0􏼂 􏼃

T
,

Ac �

1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, Bc � 0 0 1􏼂 􏼃

T
, Cc � 1 0 0􏼂 􏼃

T.

3.4. Design of LQR Controller. In order to improve the
working performance of pantograph, reduce the fluctuation
of contact force, and improve the receiving quality, the
vibration amplitude of pantograph head should be reduced
as much as possible. .e linear quadratic optimal control
strategy is adopted to design the controller in the external
state equation. .e performance index function of the
controller is determined as

J � lim
T⟶∞

􏽚
T

0
X

T
QX + v

T
Rv􏼐 􏼑dt, (26)
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Figure 5: Bode fitting curve of oustaloup filter.
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where R is the control energy weighting coefficient, and Q is
the state weight matrix. Here, R � 10− 7 and
Q � diag 1000 0 0􏼂 􏼃.

.e optimal control law that satisfies (26) is

v � − KX,

K � R
− 1

B
T
P
T
,

􏼨 (27)

where K � K1 K2 K3􏼂 􏼃 is the solution of the Riccati
equation

A
T
P + PA − PBR

− 1
B
T
P + Q � 0. (28)

Solving the Riccati equation and we can get
K � 100000 4310 90􏼂 􏼃 . .erefore, the optimal control
force of LQR is

v � 105w1 + 4310w2 + 90w3. (29)

Substitute (29) into (24), and the LQR optimal control
force of the fractional-order pantograph-catenary system
based on feedback linearization can be obtained

u(t) � LgL
2
fh(x)􏽨 􏽩

− 1
105w1 + 4310w2 + 90w3 − L

3
fh(x)􏽨 􏽩.

(30)

4. Simulation Study

.e pantograph will be affected by external excitation from
the locomotive body in train operation. In this paper, the
locomotive body excitation is approximated as a Gaussian
white noise signal. .e passive control simulation model,
PID control simulation model, and feedback linearized LQR
active control simulation model are established in Simulink,
respectively. .e following simulation results are all in a
steady state, and the blue line represents passive control, the
red line represents the feedback linearized LQR active
control, and the green line represents PID control.

4.1. Simulation of Different Pantograph Parameters. In order
to prove that the LQR active control method in this paper
can be applied to different types of pantographs, two types of
traditional pantograph parameters [16, 23] are selected, and
the specific parameters are shown in Table 1.

When train speed is 250 km/h, the simulation results of
Type I pantograph under passive control and active control
are shown in Figure 6, and the simulation results of Type II
pantograph are shown in Figure 7. .e comparison of
pantograph-catenary contact force and pantograph head
displacement in the steady state are shown in Tables 2 and 3,
respectively. It can be seen that feedback linearized LQR
active control can achieve good control effects for the two
types of pantographs, and the active control force fluctuates
are controlled within the range of (70–100) N and (50–90) N,
respectively. It can be seen from Table 2 that for Type I
pantograph, the feedback linearization LQR control reduces
the mean and the standard deviation of the contact force by
14% and 23% respectively, and the mean and the standard
deviation of pantograph head displacement are reduced by

17% and 31%, respectively. It can be seen from Table 3 that
for Type II pantograph, the feedback linearization LQR
control reduces respectively the mean and the standard
deviation of the contact force 26% and 49%, respectively, and
the mean and the standard deviation of pantograph head
displacement are reduced by 28% and 50%, respectively. It
can be concluded that the feedback linearized LQR active
control can effectively reduce the pantograph-catenary
contact force and the vibration amplitude of the pantograph
head, and make more stable for different types of
pantographs.

4.2. Compared with PID Control Simulation. In order to
verify the control effect of feedback linearization LQR active
control, PID active control and feedback linearization LQR
active control are used for simulation and comparison.

We take the performance index of the pantograph-
catenary contact force as the control quantity, and a PID
controller is designed to control the pantograph-catenary
system. .e expected value of the pantograph-catenary
contact force is set to 100N, and the parameter optimization
objective function of the PID controller is constructed as
follows:

J � lim
T⟶∞

􏽚
T

0
F
2
dt, (31)

where F is the actual pantograph-catenary contact force.
.e input signal of the PID controller is

e(t) � FN − F, (32)

where FN is the expected value of pantograph-catenary
contact force, and F is same as above.

.e output signal of the PID controller is the active
control input force by the nonlinear fractional-order pan-
tograph-catenary system

u(t) � Kpe(t) + KI 􏽚 e(t)dt + KD

de(t)

dt
, (33)

where Kp, KI, KD are the proportional, integral, and dif-
ferential coefficients of the PID active controller,
respectively.

For Type I pantograph, when train speed is 250 km/h, the
response curve of the pantograph-catenary system is con-
tinuously analyzed through the trial and error method, and
the optimal PID control parameters that meet the control
requirements are selected after multiple comparisons. .ere
are Kp � 4.5 , KI � 0.5 , and KD � 0.01 . .e two control
methods are simulated with Type I pantograph. When train
speed is 250 km/h, the comparison of the results of the two
control methods is shown in Figure 8, and the statistical
comparison of the performance indicators is shown in
Table 4.

From Figure 8 and Table 4, it can be seen that when train
speed is 250 km/h, both PID control and feedback linearized
LQR control can effectively improve the dynamic perfor-
mance of the pantograph-catenary system, and the feedback
linearized LQR control effect is slightly better than the PID
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Table 1: Pantograph parameters [16, 23].

Parameters Type I Type II
m 1/kg 8 12
m 2/kg 12 13
k 1/N·m 10000 4740
c 1/N·s·m− 1 120 70
c 2/N·s·m− 1 30 70
k/N·m 100 100
f 0/N 100 100
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Figure 6: .e results of Type I pantograph. (a) Comparison of contact force. (b) Comparison of pantograph head displacement. (c)Active
control force response.
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Figure 7: Continued.
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Table 2: Performance index of type I pantograph.

(a) Statistical comparison of pantograph-catenary contact force
Control modes Max/N Min/N Mean/N STD
Passive control 167.14 46.20 98.46 20.73
Feedback linearized LQR active control 131.60 42.29 85.11 15.97

(b) Statistical comparison of pantograph head displacement
Passive control 0.064 0.013 0.036 0.013
Feedback linearized LQR active control 0.051 0.011 0.030 0.009

Table 3: Simulation performance index of type II pantograph parameters.

(a) Statistical comparison of pantograph-catenary contact force.
Control modes Max/N Min/N Mean/N STD
Passive control 146.60 45.38 98.25 20.72
Feedback linearized LQR active control 116.27 43.24 72.84 10.67

(b) Statistical comparison of pantograph head displacement
Passive control 0.060 0.014 0.036 0.012
Feedback linearized LQR active control 0.040 0.013 0.026 0.006
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Figure 7: .e results of Type II pantograph. (a) Comparison of contact force. (b) Comparison of pantograph head displacement. (c) Active
control force response.
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control. Compared with the passive control, the feedback
linearized LQR control reduces the mean and the standard
deviation of contact force by 14% and 23%, respectively.
Compared with the PID control, the active control force
fluctuation range of the feedback linearized LQR control is
smaller, the mean value is reduced by 8%, and the standard
deviation is much smaller than the PID control force. It is
shown that, compared with PID control, feedback linearized
LQR control can achieve a better control effect with rela-
tively stable and smaller control force, which is beneficial to
reduce the energy consumed by the active control of pan-
tograph. At the same time, the smaller fluctuation range can
also reduce the adverse effects of time delay.

4.3. Simulation Analysis at Different Train Speeds. In reality,
train speed is not a constant value, and it is always changing
according to real-time acceleration and deceleration.
.erefore, analyzing the response of the pantograph at
different train speeds is helpful to better understand the

control effect of the control method. Type I pantograph is
adopted, and the train speed is increased from 200 km/h to
350 km/h and the step length is 50 km/h. Passive control
simulation and feedback linearization LQR control simu-
lation are carried out. .e simulation results are shown in
Figure 9. Figures 9(a) and 9(b) show the comparison of the
maximum, minimum, and average values of contact force
and pantograph head displacement at different speeds,
respectively. Figure 9(c) shows the maximum, minimum,
and average value of the control force for active control. As
can be seen from Figure 9, with the increase of train speed,
the statistical values of pantograph-catenary contact force
and pantograph head displacement under passive control
gradually increase, while feedback linearization LQR active
control can effectively reduce the pantograph-catenary
contact force and pantograph head displacement at dif-
ferent train speeds. At the same time, the average value of
the active control force also increases with the increase of
speed, and the fluctuation remains within a reasonable
range.

Table 4: Statistical comparison between the two control methods (v� 250 km/h).

(a) Statistical comparison of pantograph-catenary contact force.
Control modes Max/N Min/N Mean/N STD
Passive control 167.14 46.21 98.46 20.74
Feedback linearized LQR active control 131.59 42.29 85.10 15.97
PID control 137.24 63.69 92.40 14.25

(b) Statistical comparison of pantograph head displacement.
Passive control 0.064 0.013 0.035 0.013
Feedback linearized LQR active control 0.051 0.012 0.030 0.009
PID control 0.051 0.016 0.033 0.010

(c) Statistical comparison of active control force.
Feedback linearized LQR active control 99.02 66.48 86.49 6.47
PID active control 202.98 -92.92 93.07 64.27
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Figure 8: Comparison of control effects between the two control methods. (a) Comparison of contact force. (b) Comparison of pantograph
head displacement. (c) Comparison of active control force.
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5. Conclusion

In this paper, considering the influence of fractional-order
devices such as air springs between the pantograph and the
locomotive body, a two-degree-of-freedom fractional-order
pantograph-catenary model is established. Its dynamic
equation is given, and the fractional-order differential term is
approximated by the Oustaloup filter algorithm..e extended
variable method is used to deal with the time-varying stiffness
of the catenary, the extendedmodel of pantograph-catenary is
linearized by the differential geometry method, and the LQR
active controller was designed based on state feedback.
.rough simulation analysis, the control effect of feedback
linearized LQR active control is analyzed and compared with
the PID control. Furthermore, the control effect of feedback
linearized LQR active control at different train speeds is
analyzed. .e main conclusions can be drawn as follows: (1)
For different types of pantographs, although the feedback
linearization LQR active control has different effects, but it can
still effectively reduce the vibration amplitude of the panto-
graph head and the contact force between the pantograph and
the catenary. (2) Compared with PID control, feedback lin-
earized LQR active control has a similar effect in decreasing
pantograph head vibration amplitude and pantograph-cate-
nary contact force. However, considering the control force
size, frequency, and peak value, feedback linearized LQR
active control can achieve better control effects with relatively
stable control force fluctuations. From the perspective of time

delay and energy, it believes that feedback linearized LQR
active control is better than PID control. (3) As train speed
increases, the time-varying stiffness frequency of the catenary
also increases. Feedback linearized LQR active control can
play a better control effect at different train speeds.
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