
Research Article
Threshold Dynamics for a Time-Periodic Viral Infection
Model with Cell-to-Cell Transmission and Drug Treatments

Jinhu Xu and Guokun Huang

School of Sciences, Xi’an University of Technology, Xi’an 710048, China

Correspondence should be addressed to Jinhu Xu; xujinhu09@163.com

Received 10 January 2022; Accepted 21 February 2022; Published 21 March 2022

Academic Editor: Zahir Shah

Copyright © 2022 Jinhu Xu and Guokun Huang. -is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

In this study, a time-periodic viral infection model incorporating cell-to-cell infection and antiretroviral therapy has been
investigated. -e basic reproduction number R0 has been defined as a threshold parameter which governs whether or not the
disease dies out. -eoretical results indicate that the disease goes to extinction ifR0 < 1 and otherwise the disease will uniformly
persist. -e global stabilities of the equilibria for the corresponding autonomous model have been investigated by constructing
suitable Lyapunov functions. Moreover, numerical simulations have been carried out to validate the obtained results. -e results
show that cell-to-cell infectionmode may be a barrier to curing the viral infection and increasing the efficacy of protease inhibitors
for blocking cell-to-cell infection which will benefit to weaken the severity of the viral infection.

1. Introduction

Recently, much attention and great effort have been paid on
modelling of HIV, and many models have been proposed
and studied on HIV spreading. Many earlier models of HIV
infection models describe the interaction between virus and
target cells by assuming that the infected cells produce vi-
rions instantaneously [1, 2]. However, research studies have
been carried out to show that a latent period exists before the
infected cells are activated to produce virus [3–5]. -erefore,
it is reasonable to introduce the latent period into a model.
As we know, antiretroviral drugs can effectively suppress
viral replication to a low level, but cannot eradicate the virus
permanently. An important reason is that HIV provirus can
reside in latently infected CD4 + T-cells, which can live
longer and cannot be affected by antiretroviral drugs or
immune responses, but can be activated to produce virus by
relevant antigens [5]. -ereafter, motivated by this factor,
many viral infection models with latent cells have been
proposed and studied to describe this phenomena [6–13]
and references therein. For example, Pankavich [6] proposed
and studied the following viral infection model:

T′(t) � λ − dTT − k 1 − ηrt( TV,

L′(t) � p 1 − ηrt( kTV − α + dL( L,

I′(t) � (1 − p) 1 − ηrt( kTV + αL − dII,

VI
′(t) � 1 − ηp NdII − dVVI(t),

VNI
′(t) � ηpNdII − dVVNI(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where T, L, I, VI, and VNI represent the concentration of
uninfected target T-cells, latent cells, productively infected
T-cells, infectious virons, and noninfectious virons at time t,
respectively. λ, k, α, and p are the production rate of T-cells,
virus-to-cell infection rate, the activation rate of latent cells,
and the fraction of infections leading to latency.
dT, dL, dI, dV are the death rate of susceptible T-cells, latent
cells, actively infected T-cells, and virions, respectively. N

denotes the burst rate of actively infected cells. ηrt and ηp are
the efficacies of RTIs (reverse transcriptase inhibitors) and
PIs (protease inhibitors), respectively. -e global dynamics
of model (1) have been investigated in [6].

Notice that the drug efficacy in model (1) is assumed to
be a constant coefficient. In fact, drugs are often adminis-
tered for patients periodically. As we known, drug
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concentration will reach a peak value within a very short
time when a dose is administrated, and the concentration
down to a lower value as time goes and then reaches a peak
value again when another dose is administrated [14–16].
-erefore, drug concentration may vary periodically during
the dose interval. Moreover, only cell-free infection has been
considered in earlier work; the cell-to-cell transmission was
not considered in model (1). However, a recent research
work has shown that cell-to-cell transmission may be one of
the main infection mode which leads to a failed therapy and
potentially contribute to viral persistence [17]. Because a
better understanding of the viral dynamics is very significant
in terms of applications, thus motivated by these arguments
many viral infection models with cell-to-cell transmission

have been proposed and studied [18–29] and references
therein. Besides, drugs’ efficacy about cell-to-cell infection
was not taken into consideration in model (1). However, the
results obtained in [30] show that PIs can effectively block
cell-to-cell spread of HIV by preventing cleavage of viral
polyproteins into functional subunits leading to the for-
mation of immature noninfectious virus particles, while
RTIs are less effective inhibitors of HIV cell-to-cell spread
compared to virus-to-cell infection. To the best of our
knowledge, the time-periodic viral infection model with cell-
to-cell infection and latency have not been studied. Hence,
motivated by the abovementioned work and arguments, we
consider the following time-periodic model with two in-
fection modes:

T′(t) � λ − dTT(t) − 1 − ηrt(t)( 
k1TVI

1 + m1VI

− 1 − η(1)
p (t) 

k2TI

1 + m2I
,

L′(t) � p 1 − ηrt(t)( 
k1TVI

1 + m1VI

+ p 1 − η(1)
p (t) 

k2TI

1 + m2I
− α + dL( L,

I′(t) � (1 − p) 1 − ηrt(t)( 
k1TVI

1 + m1VI

+(1 − p) 1 − η(1)
p (t) 

k2TI

1 + m2I
+ αL − dII,

VI
′(t) � 1 − η(2)

p (t) NdII − dVVI(t),

VNI
′(t) � η(2)

p (t)NdII − dVVNI(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where k2 is the infection rate of productively infected T-cells.
Assume ηrt(t), η(1)

p (t), η(2)
p (t): R⟶ [0, 1] are the effi-

ciencies of RTIs and PIs, and we assume they are continuous
and periodic in time t with a same period ω. Here, we
considered two saturated incidence rates, where m1 and m2
are the saturation parameters and are positive constants.

Other parameters have the same meaning of model (1). For
convenience, we denote β1(t) � k1(1 − ηrt(t)),
β2(t) � k2(1 − η(1)

p (t)), and a(t) � (1 − η(2)
p (t)). Since the

last equation of model (2) is independent with the others.
-us, we will focus on the following reduced model:

T′(t) � λ − dTT(t) − β1(t)
TVI

1 + m1VI

− β2(t)
TI

1 + m2I
,

L′(t) � pβ1(t)
TVI

1 + m1VI

+ pβ2(t)
TI

1 + m2I
− α + dL( L,

I′(t) � (1 − p)β1(t)
TVI

1 + m1VI

+(1 − p)β2(t)
TI

1 + m2I
+ αL − dII,

VI
′(t) � NdIa(t)I − dVVI(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

-is study is organized as follows. In Section 2, pre-
liminary results and the definition of the basic reproduction
number are studied. In Section 3, global extinction of the

disease and the uniform persistence are investigated in terms
of the basic reproduction number. -e global asymptotic
stability of the infection equilibrium to the corresponding
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autonomous model are discussed by applying the method of
Lyapunov functions. In Section 4, some numerical simu-
lations are carried out. A brief conclusion and discussion
ends the paper.

2. The Basic Reproduction Number

In this section, we investigate the definition of the basic
reproduction number R0 for model (3) according to the
work [31, 32]. -e following result shows that solutions of
model (3) are bounded.

Theorem 1. #e solutions (T(t), L(t), I(t), VI(t)) of model
(3) are uniformly and ultimately bounded, i.e., there exist an
M1 > 0 and t∗ > 0 such that (T(t), L(t), I(t), VI(t))≤
(M, M, M, M), for t≥ t∗.

Proof. From model (3), we can obtain that

d(T + L + I)

dt
� λ − dTT − dLL − dII≤ λ − σ(T + L + I),

(4)

where σ � min dT, dL, DI .-us, there exists t1 > 0 such that
T + L + I≤ λ/σ, for t≥ t1. It follows from the last equation of
model (3); we have, for t≥ t1,
dVI/dt≤NdI · max

t∈[0,ω]
a(t){ } · λ/σ − dVVI, which implies that

there exist t∗ ≥ t1 such that
VI(t)≤NdI · max

t∈[0,ω]
a(t){ } · λ/σ1/dV, for t≥ t∗. Let

M � max λ/σ, NdI · max
t∈[0,ω]

a(t){ } · λ/σ1/dV . It then follows

that ((T(t), L(t), I(t), VI(t))) ≤ (M, M, M, M), for t≥ t∗.
Hence, the solutions of model (3) are uniformly and ulti-
mately bounded. -is finishes the proof.

Let (Rn,Rn
+) be the standard ordered n-dimensional

Euclidean space with a norm ‖ · ‖. For u, v ∈ Rn, we write
u≥ v if u − v ∈ Rn

+, u> v if u − v ∈ Rn
+/ 0{ }, and u≫ v if

u − v ∈ Int(Rn
+). Let A(t) be a continuous, cooperative, ir-

reducible, and ω-periodic n × n matrix function and ΦA(t)

be the fundamental solution matrix of the following linear
system:

dx

dt
� A(t)x. (5)

Let r(ΦA(ω)) be the spectral radius of ΦA(ω). It follows
from the Perron–Frobenius theorem that r(ΦA(ω)) is the
principal eigenvalue of ΦA(ω) in the sense that it is simple
and admits an eigenvector v∗ ≫ 0. -e following lemma
comes from [33] which will be used for the discussion in the
next section. □

Lemma 1 (see [33]). Let μ � 1/ωlnr(ΦA(ω)). #en, there
exists a positive ω -periodic function v(t) such that eμtv(t) is a
solution of (5).

Obviously, model (3) has a unique infection-free equi-
librium E0 � (T0, 0, 0, 0), where T0 � λ/dT. Linearizing (3)
at E0 yields that

L′(t) � pβ2(t)T0I + pβ1(t)T0VI − α + dL( L,

I′(t) � (1 − p)β2(t)T0I +(1 − p)β1(t)T0VI + αL − dII,

VI
′(t) � NdIa(t)I − dVVI(t).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Define

F �

0 pβ2(t)T0 pβ1(t)T0

0 (1 − p)β2(t)T0 (1 − p)β1(t)T0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

V �

α + dL 0 0

−α dI 0

0 −NdIa(t) dV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(7)

Then, system (6) can be written as

dx

dt
� (F(t) − V(t))x(t). (8)

Assume that Y(t, s), t≥ s, is the evolution operator of the
following system:

dy

dt
� −V(t)y. (9)

Then, the 3 × 3 matrix Y(t, s) satisfies

dY(t, s)

dt
� −V(t)Y(t, s), ∀t≥ s, Y(s, s)

� I is a3 × 3identity matrix.

(10)

Let Cω be the ordered Banach space of all ω-periodic
functions fromR toR3, which is equipped with the maximum
norm ‖ · ‖ and the positive cone C+

ω ≔ ϕ ∈ Cω:

ϕ(t)≥ 0,∀t ∈ R}. Suppose ϕ(s) ∈ Cω is the initial distribution
of infectious cells and virus in this periodic environment;
then, F(s)ϕ(s) is the rate of new infections produced by the
infected cells and virus who were introduced at time s, and
Y(t, s)F(s)ϕ(s) represents the distribution of those infected
cells and virus who were newly infected at time s and remain
in the infected compartments at time t, for t≥ s. Hence,

ψ(t) ≔ 
t

−∞
Y(t, s)F(s)ϕ(s)ds

� 
∞

0
Y(t, t − a)F(t − a)ϕ(t − a)da

(11)

is the distribution of accumulative new infections at time t

produced by all those infected cells and virus introduced
before t.

Define the linear operator L: Cω⟶ Cω as follows:

[Lϕ](t) � 
∞

0
Y(t, t − a)F(t − a)ϕ(t − a)da ,

∀t ∈ R, ϕ ∈ Cω.

(12)

It follows from the idea in [32] that the basic repro-
duction number R0 of system (3) is defined as the spectral
radius of L, i.e.,
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R0 � r(L). (13)

Moreover, the local asymptotic stability of the infection-
free equilibrium E0 follows from [32].

Theorem 2 (see [32]). #e following statements are valid:

(i) R0 < 1 if and only if r(Φ(F−V)(ω))< 1
(ii) R0 � 1 if and only if r(Φ(F−V)(ω)) � 1
(iii) R0 > 1 if and only if r(Φ(F−V)(ω))> 1

#us, infection-free equilibrium E0 of (3) is asymptotically
stable if R0 < 1 and unstable if R0 > 1.

3. The Threshold Dynamics

3.1. Stability andPersistence of theDisease. In this section, we
will investigate the global asymptotic stability of infection-

free equilibrium and the disease persistence by regardingR0
as a threshold parameter.

Theorem 3. IfR0 < 1, then the infection-free equilibrium E0
is globally asymptotically stable, and it is unstable forR0 > 1.

Proof. It follows from -eorem 2 that if R0 < 1, then E0 is
locally asymptotically stable and E0 is unstable whenR0 > 1.
Hence, it is sufficient to show that E0 is global attractive for
R0 < 1.

From the first equation of (3) and nonnegativity of the
solutions, we then have dT/dt≤ λ − dTT, which implies that
∀ε> 0; there exists t> 0 such that T(t)≤T0 + ε, t>t.

Consider the following auxiliary system:

L′(t) � pβ2(t) T0 + ε( I + pβ1(t) T0 + ε(  VI − α + dL( L,

I′(t) � (1 − p)β2(t) T0 + ε( I +(1 − p)β1(t) T0 + ε(  VI + αL − dI
I,

VI
′(t) � NdIa(t)I − dV

VI(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

which is equivalent to
L′

I′

VI
′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � (F − V)

L

I

VI

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + εM(t)

L

I

VI

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (15)

where

M(t) �

0 pβ2(t) pβ1(t)

0 (1 − p)β2(t) (1 − p)β1(t)

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (16)

It then follows from Lemma 1 that there exists a positive
ω-periodic function v(t) � (v1(t), v2(t), v3(t)) such that
eμtv(t) is a solution of (14), where μ � 1/ωlnr(ΦF−V+εM(ω)).
Choose t>t and a real number α1 > 0 such that
(L(t), I(t), VI(t))T ≤ α1v(0), which implies that

L(t), I(t), VI(t)( 
T ≤ α1e

μ(t− t)
v(t − t), t≥ t. (17)

-e comparison principle yields that

L(t), I(t), VI(t)( 
T ≤ α1e

μ(t− t)
v(t − t), t≥ t. (18)

Recall -eorem 2 that R0 < 1 if and only if
r(ΦF−V(ω))< 1. Since the continuity of the spectrum for
matrices [34], then choose ε> 0 small enough such that
r(ΦF−V+εM(ω))< 1, which implies that μ< 0. -en, we have
(L(t), I(t), VI(t))T⟶ 0 as t⟶∞. Furthermore, it fol-
lows from the first equation of model (3) and the theory of
asymptotically periodic semiflows [35] that lim

t⟶∞
T(t) � T0.

-us, E0 is globally attractive. □

Theorem 4. IfR0 > 1, then there exists an ε> 0 such that any
solution (T(t), L(t), I(t), VI(t)) of model (3) with initial
values
(T(0), L(0), I(0), VI(0)) � (T0, L0, I0, V0

I) ∈ R+ × Int(R3
+);

the solution of (3) satisfies liminf
t⟶∞

(T(t), L(t), I(t),
VI(t))≥ (ε, ε, ε, ε) and admits at least one positive periodic
solution.

Proof. Let

X � R
4
+,

X0 � R+ × Int R
3
+ ,

zX0 �
X

X0
.

(19)

Define Poincaree
�

map P: R4
+⟶ R4

+, satisfying
P(x0) � u(ω, x0), ∀x0 ∈ R4

+, with u(t, x0) as the unique
solution of (3) satisfying u(0, x0) � x0.

We first show that P is uniformly persistent with respect
to (X0, zX0). It is easy to see that X and X0 are positively
invariant. Moreover, zX is a relatively closed set in X. Recall
-eorem 1 that the solutions of model (3) are uniformly and
ultimately bounded; thus, the semiflow P is point dissipative
on R4

+, and P: R4
+⟶ R4

+ is compact. Consequently, it
follows from [36] that the semiflow P admits a global
attractor, which attracts every bounded set in R4

+.
Define

Mz � T
0
, L

0
, I

0
, V

0
I  ∈zX0: P

m
T
0
, L

0
, I

0
, V

0
I  ∈zX0,∀m≥ 0 .

(20)
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-en, we claim that Mz � (T, 0, 0, 0): T≥ 0{ }. In fact, it is
obvious that (T, 0, 0, 0): T≥ 0{ }⊆Mz. For any
(T0, L0, I0, V0

I) ∈ zX0/ (T, 0, 0, 0): T≥ 0{ }, considering the
following cases: (1) L0 � 0, I0 > 0, V0

I > 0, (2)
L0 > 0, I0 � 0, V0

I > 0, (3) L0 > 0, I0 > 0, V0
I � 0, (4)

L0 � I0 � 0, V0 > 0, (5) L0 � V0
I � 0, I0 > 0, and (6)

L0 > 0, I0 � V0
I � 0. For case (1), we have

dL/dt|t�0 � pβ1(0)T(0)VI(0) + pβ2(0)T(0)I(0) > 0, which
implies that (T(t), L(t), I(t), VI(t)) ∉ zX0, for 0< t≪ 1;
then, (T(t), L(t), I(t), VI(t)) ∉Mz. Similarly, for the other
cases, it also has the same result; here, we omit the proof.
-us, for any (T0, L0, I0, V0

I) ∉ (T, 0, 0, 0): T≥ 0{ },
(T0, L0, I0, V0

I) ∉Mz, it indicates that
Mz⊆ (T, 0, 0, 0): T≥ 0{ }.

Clearly, E0 is one fixed point of P in Mz. If
(T(t), L(t), I(t), VI(t)) is a solution of model (3) from Mz,
it then follows from that model (3) that
T(t)⟶ T0, L(t)⟶ 0, I(t)⟶ 0, VI(t)⟶ 0 as
t⟶∞.

Next, we will show that if the invariant set E0 is isolated,
then E0  is an acyclic covering. To do this, it needs to prove
any solution of model (3) initiating from Mz will remain
into Mz, which can be obtained easily. -e isolated in-
variance of E0 will follow proof.

Now, we need to prove that Ws(E0)∩X0 � ∅. Denote
x0 � (T0, L0, I0, V0

I) ∈ X0. Since the continuity of solutions
with respect to the initial values, thus for ∀ε> 0, there exists
δ0 > 0 such that, for all x0 ∈ X0 with ‖x0 − E0‖≤ δ0, yields

u t, x
0

  − u t, E0( 
�����

�����≤ ε, ∀t ∈ [0,ω]. (21)

-en, we claim that

limsup
m⟶∞

d Pm x0 ,E0 ≥ δ0. (22)

If it is not true, then we have

limsup
m⟶∞

d Pm x0 ,E0 < δ0. (23)

For some x0 ∈ X0, without loss of generality, we suppose
that limsup /limits_t⟶∞d(Pm(x0),E0)< δ0, ∀m> 0.
-en, we can obtain that

u t, P
m

x
0

   − u t, E0( 
�����

����� ‖ ≤ ε, ∀t ∈ [0,ω]. (24)

For any t≥ 0, let t � mω + t1, where t1 ∈ [0,ω] and
m � [t/ω], which is the greatest integer less than or equal to
t/ω. -en, we have

u t, P
m

x
0

   − u t, E0( 
�����

����� � u t1, P
m

x
0

   − u t1, E0( 
�����

�����≤ ε,

∀t ∈ [0,ω].

(25)

Set (T(t), L(t), I(t), VI(t)) � u(t, x0); then, we have
T0 − ε≤T≤T0 + ε, 0≤L≤ ε, 0≤ I≤ ε, and 0≤VI ≤ ε, for
t≥ 0. -en, T/1 + m1VI ≥T0 − ε/1 + m1ε �

T0 − ε(1 + m1T0)/ 1 + m1ε≥T0 − ε(1 + m1T0) and
T/1 + m2I≥T0 − ε/1 + m2ε � T0 − ε (1 + m2T0)/1 + m2ε≥
T0 − ε(1 + m2T0). It follows from model (3) that

L′(t)≥pβ1(t) T0 − ε 1 + m1T0( ( VI + pβ2(t) T0 − ε 1 + m2T0( ( I − α + dL( L,

I′(t)≥ (1 − p) β1(t) T0 − ε 1 + m1T0( ( VI + β2(t) T0 − ε 1 + m2T0( ( I  + αL − dII,

VI
′(t) � NdIa(t)I − dVVI(t).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

Set

Mε �

0 ε 1 + m2T0( pβ2(t) ε 1 + m1T0( pβ1(t)

0 ε 1 + m2T0( (1 − p)β2(t) ε 1 + m1T0( (1 − p)β1(t)

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (27)

It follows from-eorem 2 that r(ΦF−V(ω))> 1; then, we
can select ε> 0 small enough such that r(ΦF−V−Mε

(ω))> 1. It
follows from Lemma 1 and the standard comparison
principle that there exists a positive ω-periodic function
v(t) � (v1(t), v2(t), v3(t))T such that Q(t)≥ v(t)eμ1t, where
Q(t) � (L(t), I(t),VI(t))T and μ1 � 1/ωlnr(ΦF−V−Mε

(ω))>0,
which implies that lim/limits_t⟶∞(L(t), I(t),

VI(t)) �∞; this is a contradiction in Mz which converges to
E0, and hence, E0 is acyclic in Mz. By -eorem 1.3.1 and
Remark 1.3.1 in [35], we obtain that P is uniformly persistent

with respect to (X0,zX0). It then follows from-eorem 3.1.1
in [35] that the solution of (3) is uniformly persistent.

Moreover, it follows from-eorem 1.3.6 in [35] that the
Poincaree

�
map P has a fixed point

(T(0), L(0), I(0), VI(0)) ∈ X0. -en, we see that T(0)> 0. If
not, suppose T(0) � 0, from the first equation of model (3),
where T(t) satisfies

dT

dt
≥ λ − dT

T − β1(t)VI + β2(t)I( T. (28)
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It follows from the comparison theorem that

T(t)≥ e
− 

t

0
a(s)ds

T(0) + λ
t

0
e

− 
s

0
a(τ)dτ

ds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ � λe
− 

t

0
a(s)ds


t

0
e

− 
s

0
a(τ)dτ

ds , ∀t> 0, (29)

where a(t) � dT + β1(t)VI(t) + β2(t)I(t). -en, we have

T(nω)≥ λe
− 

nω

0
a(s)ds


ω

0
e

− 
s

0
a(τ)dτ

ds > 0,

n � 1, 2, 3, . . . .

(30)

-e periodicity of T(t) implies T(0) � T(nω) � 0, which
is a contradiction. -us, T(0)> 0. Hence,
(T(0), L(0), I(0), VI(0)) is a positive ω-periodic solution of
model (3). □

3.2. Analysis of the Autonomous Model. If there no drug
therapies, i.e., ηrt(t) � η(1)

p (t) � η(2)
p (t) � 0 or drug thera-

pies are constants, then model (3) becomes an autonomous
model. Without loss of generality, we assume drug therapy is
constant.-en, model (3) leads to the following autonomous
model:

T′(t) � λ − dTT(t) −
β1TVI

1 + m1VI

−
β2TI

1 + m2I
,

L′(t) � p
β1TVI

1 + m1VI

+ p
β2TI

1 + m2I
− α + dL( L,

I′(t) � (1 − p)
β1TVI

1 + m1VI

+(1 − p)
β2TI

1 + m2I
+ αL − dII,

VI
′(t) � NdI 1 − η(2)

p I − dVVI(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

where β1 � k1(1 − ηrt) and β2 � k2(1 − η(1)
p ). Clearly, model

(31) has an infection-free equilibrium E0 � (T0, 0, 0, 0) with
T0 � λ/dT. Furthermore, we can obtain the basic repro-
duction number of model (31):

R0 � (1 − p) +
αp

α + dL

 
N 1 − η(2)

p β1T0

dV

+ (1 − p) +
αp

α + dL

 
β2T0

dI

� R01 + R02.

(32)

Next, we will show that there exists a unique infection
equilibrium E∗ � (T∗, L∗, I∗, V∗I ). For convenience, let
f(T, VI) � TVI/1 + m1VI and g(T, I) � TI/1 + m2I. It is

easy to see that (T∗, L∗, I∗, V∗I ) satisfies the following
equations:

λ − dTT
∗

� β1T
∗
f T
∗
, V
∗
I(  + β2g T

∗
, I
∗

( ,

pβ1T
∗
f T
∗
, V
∗
I(  + pβ2g T

∗
, I
∗

(  � α + dL( L
∗
,

(1 − p)β1T
∗
f T
∗
, V
∗
I(  +(1 − p)β2g T

∗
, I
∗

(  + αL
∗

� dII
∗
,

N 1 − η(2)
p dII

∗
� dVV

∗
I ,

(33)
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-en, we can obtain

T
∗

�
1

dT

λ −
α + dL

p
L
∗

 ,

I
∗

�
α + dL − pdL

dIp
L
∗
,

V
∗
I �

N 1 − η(2)
p  α + dL − pdL( 

pdV

L
∗
.

(34)

And L∗ satisfies the following equation:

β1f
1

dT

λ −
α + dL

p
L
∗

 ,
N 1 − η(2)

p  α + dL − pdL( 

pdV

L
∗⎛⎝ ⎞⎠+

β2g
1

dT

λ −
α + dL

p
L
∗

 ,
N 1 − η(2)

p  α + dL − pdL( 

pdV

L
∗⎛⎝ ⎞⎠ �

α + dL

p
L
∗
.

(35)

Since T∗ > 0, which implies 0<L∗ < λp/α + dL, for
L ∈ (0, λp/α + dL), let

H(L) � β1f
1

dT

λ −
α + dL

p
L ,

N 1 − η(2)
p  α + dL − pdL( 

pdV

L⎛⎝ ⎞⎠

+ β2g
1

dT

λ −
α + dL

p
L ,

N 1 − η(2)
p  α + dL − pdL( 

pdV

L⎛⎝ ⎞⎠ −
α + dL

p
L,

(36)

-en, we have

H(0) � 0,

H
λp

α + dL

  � −λ< 0,

H′(0) �
α + dL

p
R0 − 1( > 0 forR0 > 1.

(37)

-us, there exists a L∗ ∈ (0, λp/α + dL). Consequently,
model (31) admits an infection equilibrium
E∗ � (T∗, L∗, I∗, V∗I ). Furthermore, by calculation, we have

H′ L
∗

(  � −
α + dL

pdT

β1
zf T

∗
, V
∗
I( 

zT
+

N 1 − η(2)
p  α + dL − pdL( 

pdV

β1
zf T

∗
, V
∗
I( 

zVI

−
α + dL

pdT

β2
zg T
∗
, I
∗

( 

zT
+
α + dL − pdL

pdI

β2
zg T
∗
, I
∗

( 

zI
−
α + dL

p

� −
α + dL

pdT

β1
zf T

∗
, V
∗
I( 

zT
+

V
∗
I

L
∗β1

zf T
∗
, V
∗
I( 

zVI

−
α + dL

pdT

β2
zg T
∗
, I
∗

( 

zT

+
I
∗

L
∗β2

zg T
∗
, I
∗

( 

zI
−

1
L
∗ β1f T

∗
, V
∗
I(  + β2g T

∗
, V
∗
I( ( 

� −
α + dL

pdT

β1V
∗
I

1 + m1V
∗
I

+
β2I
∗

1 + m2I
∗  −

m1β1T
∗

V
∗
I( 

2

L
∗ 1 + m1V

∗
I( 

2 −
m2β2T

∗
I
∗

( 
2

L
∗ 1 + m2I

∗
( 

2 < 0,

(38)
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which implies that H(L) is decreasing at each of its root. If
there exists more than one root of H(L) � 0, then it must
exists a root L such that H′(L)≥ 0, which leads to a con-
tradiction. Hence, we claim that there exists a unique in-
fection equilibrium E∗ � (T∗, L∗, I∗, V∗I ) for R0 > 1.

By constructing suitable Lyapunov functions, we can
show that the corresponding infection-free equilibrium E0
and infection equilibrium E∗ of model (31) are globally
asymptotically stable.

Theorem 5. IfR0 ≤ 1, then the infection-free equilibrium E0
of model (31) is globally asymptotically stable.

Proof. Define

U(t) � Υ T − T0 − T0ln
T

T0
  +

α
α + dL

L + I +
1 − R02

N 1 − η(2)
p 

VI,

(39)

where Υ � (αp/α + dL + (1 − p)).
By a tedious computation, we have

U′(t) � Υ dT0 1 −
T

T0
  1 −

T0

T
  +

Υβ1T0VI

1 + m1VI

+
Υβ2T0I

1 + m2I
− R02dII −

1 − R02

N 1 − η(2)
p 

dVVI

≤Υ dT0 1 −
T

T0
  1 −

T0

T
  + Υβ1T0VI + Υβ2T0I − R02dII −

1 − R02

N 1 − η(2)
p 

dVVI

� Υ dT0 1 −
T

T0
  1 −

T0

T
  +

dVVI

N 1 − η(2)
p 

R0 − 1( .

(40)

Clearly, ifR0 ≤ 1, then U′(t)≤ 0. Moreover, by LaSalle’s
invariance principle, one can easy to show that the infection-
free equilibrium E0 is globally asymptotically stable. □

Theorem 6. If R0 > 1, then the infection equilibrium E∗ of
model (31) is globally asymptotically stable.

Proof. Define

G(t) � Υ T − T
∗

− T
∗ln

T

T
∗  +

α
α + dL

L − L
∗

− L
∗ln

L

L
∗ 

+ I − I
∗

− I
∗ln

I

I
∗ + Υ

β1f T
∗
, V
∗
I( 

N 1 − η(2)
p dII

∗ VI − V
∗
I − V
∗
I ln

VI

V
∗
I

 ,

(41)

where Υ � (αp/α + dL + (1 − p)). -en, combining (33) and
by a tedious computation yields

G′(t) � dTT
∗Υ 1 −

T
∗

T
  1 −

T

T
∗  +

αp

α + dL

β1f T
∗
, V
∗
I( 

× 4 −
T
∗

T
−

LI
∗

L
∗
I

−
IV
∗
I

I
∗
VI

−
f T, VI( L

∗

f T
∗
, V
∗
I( L

−
VI

V
∗
I

+
T
∗
f T, VI( 

Tf T
∗
V
∗
I( 

 

+(1 − p)β1f T
∗
, V
∗
I(  3 −

T
∗

T
−

V
∗
I I

VII
∗ −

I
∗
f T, VI( 

If T
∗
, V
∗
I( 

+
T
∗
f T, VI( 

Tf T
∗
, V
∗
I( 

−
VI

V
∗
I

 

+
αp

α + dL

β2g T
∗
, I
∗

(  3 −
T
∗

T
−

LI
∗

L
∗
I

−
L
∗
g(T, I)

Lg T
∗
, I
∗

( 
+

T
∗
g(T, I)

Tg T
∗
, I
∗

( 
−

I

I
∗ 

+(1 − p)β2g T
∗
, I
∗

(  2 −
T
∗

T
−

g(T, I)I
∗

g T
∗
, I
∗

( I
+

T
∗
g(T, I)

Tg T
∗
, I
∗

( 
−

I

I
∗ ,
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� dTT
∗Υ 1 −

T
∗

T
  1 −

T

T
∗  + Υβ1f T

∗
, V
∗
I(  φ

T
∗

T
  + φ

Tf T
∗
, V
∗
I( VI

T
∗
f T, VI( V

∗
I

  + φ
V
∗
I I

VII
∗  −

m1 VI − V
∗
I( 

2

V
∗
I 1 + m1V

∗
I(  1 + m1VI( 

 

+
αp

α + dL

β1f T
∗
, V
∗
I(  φ

I
∗
L

IL
∗  + φ

f T, VI( L
∗

f T
∗
, V
∗
I( L

   +(1 − p)β1f T
∗
, V
∗
I( 

× φ
I
∗
f T, VI( 

If T
∗
, V
∗
I( 

  + Υβ2g T
∗
, I
∗

( φ
T
∗

T
  + φ

Tg T
∗
, I
∗

( I

T
∗
g(T, I)I

∗  −
m2 I − I

∗
( 

2

I
∗ 1 + m2I(  1 + m2I

∗
( 

 

+
αp

α + dL

β2g T∗ , I
∗

(  φ
g(T, I)L

∗

g T
∗
, I
∗

( L
  + φ

LI
∗

L
∗
I

  

+(1 − p)β2g T
∗
, I
∗

( φ
g(T, I)I

∗

g T
∗
, I
∗

( I
 ≤ 0,

(42)
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Figure 1: -e results show that the infection-free equilibrium E0 is globally asymptotically stable when R0 < 1.
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where φ(x) � 1 + lnx − x with maximum value φ(1) � 0 for
x> 0. -en, it follows from the LaSalle’s invariance principle
that one can show E∗ is globally asymptotically stable. -is
completes the proof. □

Remark 1. It follows from the above analysis of the model
that the saturated incidence rates VI/1 + m1VI and
I/1 + m2I can be extended to a more general form f(V) and
g(I) with some conditions as in [27]. -us, the saturated
incidence rates of model (3) can be regarded as a special case.

4. Numerical Simulations

In this section, some numerical simulations are carried out
to explain the obtained theoretical results. Most of these
parameter values are taken from [6, 13].

Case 1. Let λ � 100, dT � 0.02, k1 � 2.4 × 10−6,
k2 � 1.5 × 10−4, α � 0.1, N � 1500, p � 0.01, dV � 23,
dI � 0.4, dL � 4 × 10−3, m1 � 0.01, m2 � 0.01,
ηrt � 0.6 − 0.3cos(πt/12), η(1)

p � 0.7 − 0.2cos(πt/12), and
η(2)

p � 0.6 − 0.25cos(πt/12); then, we can obtain
R0 � 0.7875< 1. -e simulation shows that the infection-
free equilibrium E0 � (5000, 0, 0, 0) is globally asymptoti-
cally stable, which implies disease dies out. Figure 1 validates
the above analysis.

Case 2. Let λ � 100, dT � 0.02, k1 � 2.4 × 10−4,
k2 � 1 × 10− 4, α � 0.1, N � 2000, p � 0.01, dV � 23,
dI � 0.4, dL � 4 × 10−3, m1 � 0.01, m2 � 0.01,
ηrt � 0.6 − 0.3cos(πt/12), η(1)

p � 0.7 − 0.2cos(πt/12), and
η(2)

p � 0.6 − 0.25cos(πt/12); then, we haveR0 � 17.0641> 1.
-e theoretical results show that the model admits a positive
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Figure 2: -e results shows that model (3) exists as a periodic solution when R0 > 1.
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periodic solution and disease keeps persistent in the host.
Figure 2 confirms this conclusion.

Figure 3 shows the impact of cell-to-cell transmission
(k2) on the dynamics of the model, and the other parameters
are the same with Figure 2. -e results imply that the peak
level of the density of latent cells, infected cells, and viral load
increase as k2 increases. Hence, cell-to-cell transmission
existing may contribute to viral persistence and under-
evaluate the risk of disease spreading for without consid-
ering cell-to-cell transmission. -us, cell-to-cell
transmission will be a barrier to curing the viral infection.

Figure 4 shows that the effects of PIs on the dynamics of
the model by blocking cell-to-cell transmission, and the
other parameters are the same with Figure 2. By varying the
drug efficacy η(1)

p of PIs for blocking cell-to-cell transmission
from the baseline value (η(1)

p � 0.7 − 0.2cos(πt/12)) to 50%
and 0%, the numerical results imply that the peak level of the
density of latent cell, infected cells, and viral load decrease
under PIs’ blocking cell-to-cell transmission. -is implies
that increase of the efficacy of PIs for blocking cell-to-cell
transmissionmay contribute to weakening the severity of the
viral infection.
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Figure 3: -e effect of cell-to-cell transmission (k2) on the dynamics of model (3). -is shows that the existence of cell-to-cell transmission
is benefit for viral infection.
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5. Summary and Discussion

In this study, a time-periodic viral infection model with
cell-cell transmission was investigated. We have shown that
the infection-free equilibrium E0 is globally asymptotically
stable if R0 < 1 which implies that infection will be erad-
icated, and the infection will persistent when R0 > 1.
Furthermore, for the corresponding autonomous model,
we have shown that the corresponding equilibria are
globally asymptotically stable by applying the method of
Lyapunov function. -e results imply that cell-to-cell
transmission existing may contribute to viral persistence
and be a barrier to curing the viral infection. At the same
time, increasing the efficacy of PIs for blocking cell-to-cell
transmission is beneficial to weakening the severity of the
viral infection.

Note that only a constant recruitment of uninfected
T-cells has been considered in our model. However, T-cells
can also be created by proliferation of existing T-cells with a
logistic form instead of a constant recruitment [19] and the

incidence rates can be a more general form f(V) and g(I)

[27], which formulated a further work. Furthermore, im-
mune response and dynamics of the drug are also a good
choice to extend the current work, which will be another
future work.
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