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We give some conditions on ordered Γ-semihypergroups under which their interior hyperideal is equal to the hyperideal. In this
paper, it is shown that in regular (resp., intraregular, semisimple) ordered Γ-semihypergroups, the hyperideals and the interior
hyperideals coincide. To show the importance of these results, some examples and conclusions are provided.

1. Introduction and Preliminaries

Heidari and Davvaz [1] gave the idea of an ordered semi-
hypergroup in 2011. Connection between ordered semi-
hypergroups was studied by Tang et al. [2]. For some works
on ordered Γ-semihypergroups, we may refer to Ref. [3].

Te general structure of factorizable ordered hyper-
groupoids is studied in Ref. [4]. Tang et al. [5] and Tipachot
and Pibaljommee [6] combined the fuzzy set with ordered
hyperstructures and proposed the concept of fuzzy interior
hyperideal and proved some results. Te notion of hyper-
groups was initially founded by F. Marty [7] in 1934.

Recently, many authors, for example, those in Refs.
[8, 9], have investigated on ordered hyperstructures. Te
paper given in Ref. [8] is a detailed study of interior
hyperflters in ordered Γ-semihypergroups. In Ref. [9],
w-pseudo-orders in ordered (semi)-hyperrings were de-
fned, and some important properties are investigated.

Te notion of uni-soft interior Γ-hyperideals is inves-
tigated in Ref. [10]. Motivated by these studies, this note
investigates the ordered Γ-semihypergroups that their in-
terior hyperideal is equal to the hyperideal. We prove that in
regular (resp., intraregular, semisimple) ordered Γ-semi-
hypergroups, the concepts of interior Γ-hyperideals and Γ
-hyperideals coincide.

Defnition 1 (see [11]). Let H and Γ be two nonempty sets.
Ten, H is called a Γ-semihypergroup if every c ∈ Γ is a
hyperoperation on H, i.e., xcy⊆H for every x, y ∈ H, and
for every α, β ∈ Γ and x, y, z ∈ H, we have
xα(yβz) � (xαy)βz.

Let A and B be two nonempty subsets of H. We defne

AΓB � ∪ aγb | a ∈ A, b ∈ B and γ ∈ Γ  � ∪
c∈Γ

AγB. (1)

Defnition 2. An ordered Γ-semihypergroup (H, Γ, ≤ ) is a Γ
-semihypergroup (H, Γ) together with a partial order re-
lation ≤ such that for any h, h′, x ∈ H and α ∈ Γ, we have

h≤ h′⇒
xαh⪯ xαh′,

hαx⪯ h′αx.

⎧⎨

⎩ (2)

Here, C⪯D means that for any c ∈ C, there exists d ∈ D

such that c≤ d, where ∅≠C, D⊆H.
Now, let
(K] ≔ h ∈ H | h≤ k for some k ∈ K{ }.
Ten, (H, Γ, ≤ ) can be called as follows:

(1) Regular (resp., intraregular) if K⊆(KΓHΓK] (resp.,
K⊆(HΓKΓKΓ H( ])) for every K⊆H
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(2) (H, Γ, ≤ ) is called semisimple if
K⊆(HΓKΓHΓKΓH] for every K⊆H

A nonempty subset K of H is called a Γ-hyperideal of H

if

(1) HΓK⊆K and KΓH⊆K

(2) (K]⊆K

Defnition 3 (see [5]). A sub Γ-semihypergroup K of H is
called an interior Γ-hyperideal (briefy, I-Γ-hyperideal) if

(1) HΓKΓH⊆K

(2) (K]⊆K

Remark 1. Note that each hyperideal of an ordered
hyperstructure H is an I-Γ-hyperideal, but an I-Γ-hyperideal
need not be hyperideal.

Example 1. Let H � a, b, c, d{ } and Γ � c . Defne the
hyperoperation c (as shown in Table 1) and (partial) order
relation ≤ on H as follows:

≤ ≔ (a, a), (a, b), (a, c), (a, d), (b, b), (c, c), (d, d){ }. (3)

Here, A � a, c{ } is an I-Γ-hyperideal of ordered
Γ-semihypergroup H but not a Γ-hyperideal of H. Indeed, as
ccd � a, b{ } and b ∉ A, A is not a Γ-hyperideal of H.

In this note, we investigate on the ordered Γ-semi-
hypergroups that their interior hyperideal is equal to the
hyperideal.

2. Main Results

Tis section aims to outline sufcient conditions for an I-Γ
-hyperideal to be a Γ-hyperideal.We continue our study with
the characterization of regular (resp., Intraregular, semi-
simple) ordered Γ-semihypergroup in terms of I-Γ
-hyperideals.

Theorem 1. Let (H, Γ, ≤ ) be regular. Ten, every I-Γ
-hyperideal of H is a Γ-hyperideal.

Proof. Assume that K is an I-Γ-hyperideal of S and a ∈ K.
By hypothesis, there exist h ∈ H and μ, λ ∈ Γ such that
a⪯ aμhλa. It means that K⊆(KΓHΓK]. If x ∈ H and c ∈ Γ,
then

acx⪯ (aμhλa)cx,

� aμ(hλa)cx,

⊆KΓHΓKΓH,

� KΓ(HΓKΓH),

⊆KΓK,

⊆K.

(4)

Tus, KΓH⊆ (K] � K. Similarly, HΓK⊆K. □

Example 2. Consider the Γ-semihypergroup (H, Γ) [12] (see
Tables 2 and 3).

Now, we set

≤ : � (a, a), (b, a), (b, b), (b, c), (c, c), (d, d), (d, e){ }. (5)

Clearly, (H, Γ, ≤ ) is regular. Te only I-Γ-hyperideals of
H are K1 � d, e{ } and K2 � H. Both the I-Γ-hyperideals are
Γ-hyperideal.

Theorem 2. Let (H, Γ, ≤ ) be intraregular.Ten, we get those
as follows:

(1) Every I-Γ-hyperideal of H is a Γ-hyperideal
(2) Every I-Γ-hyperideal of H is idempotent

Proof

(1) Assume that K is an I-Γ-hyperideal of H and a ∈ K.
By hypothesis, there exist h, h′ ∈ H and μ, λ, δ ∈ Γ
such that a⪯ hμaλaδh′. It means that
K⊆ (HΓKΓKΓH]. If x ∈ H and c ∈ Γ, then

acx⪯ hμaλaδh′( cx,

� hμaλaδ h′cx( ,

⊆HΓKΓKΓH,

⊆HΓKΓH,

⊆K.

(6)

So, KΓH⊆(K] � K. Similarly, HΓK⊆K.
(2) Assume that K is an I-Γ-hyperideal of H. Ten, we

have

K⊆(HΓKΓKΓH],

⊆(HΓ(HΓKΓKΓH]Γ(HΓKΓKΓH]ΓH],

⊆(((HΓH)ΓKΓ K( ΓH)]Γ((HΓK)ΓKΓ H( ΓH)],

⊆((HΓKΓH]Γ(HΓKΓH]],

⊆(KΓK].

(7)

Now, let a ∈  KΓK ]. Ten, a⪯ kck′ for some k, k′ ∈ K

and c ∈ Γ. By hypothesis, there exist h, h′ ∈ H and μ, λ, δ ∈ Γ
such that a⪯ hμaλaδh′. We have

Table 1: Table of c for Example 1.

c a b c d

a a a a a

b a a a a

c a a a a, b{ }

d a a a, b{ } a, b, c{ }
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a⪯ hμaλaδh′,

⪯ hμ kck′( λ kck′( δh′,

⊆HΓKΓH,

⊆K.

(8)

Tus, a ∈ (K] and so (KΓK]⊆K. □

Example 3. Consider the Γ-semihypergroup (H, Γ) [13] (see
Tables 4 and 5).

Now, we set

≤ :� (a, a), (a, b), (a, c), (b, b), (b, c), (c, c), (d, d), (e, e)cs{ }.

(9)

Clearly, (H, Γ, ≤ ) is an intraregular ordered Γ-semi-
hypergroup. Te only I-Γ-hyperideals of H are K1 � d, e{ }

and K2 � H. Both the I-Γ-hyperideals are Γ-hyperideal and
idempotent.

Theorem 3. Let (H, Γ, ≤ ) be a semisimple ordered Γ-sem-
ihypergroup. Ten, every I-Γ-hyperideal of H is a Γ
-hyperideal.

Proof. Assume that K is an I-Γ-hyperideal of H and a ∈ K.
By hypothesis, there exist x, y, z ∈ H and α, β, c, δ ∈ Γ such
that a⪯xαaβycaδz. It means that K⊆(HΓKΓHΓKΓH]. If
h ∈ H and λ ∈ Γ, then

aλh⪯ (xαaβycaδz)λh,

� xαaβycaδ(zλh),

⊆HΓKΓHΓKΓ(HΓH),

� HΓKΓ(HΓKΓH)ΓH,

⊆HΓKΓKΓH,

⊆HΓKΓH,

⊆K.

(10)

So, KΓH⊆(K] � K. Similarly, HΓK⊆K. □

Theorem 4. (H, Γ, ≤ ) is semisimple if and only if every Γ
-hyperideal of H is idempotent.

Proof. (Necessity). Let K be a Γ-hyperideal of H. By hy-
pothesis, we have

K⊆(HΓKΓHΓKΓH],

� ((HΓK) ΓHΓ(KΓH)],

⊆ (KΓ(HΓK)],

⊆ (KΓK].

(11)

Also,

(KΓK]⊆(SΓK],

⊆(K],

� K.

(12)

So, K � (KΓK], and it completes the proof.
Sufciency. Let a ∈ H. We denote by IH(a) the Γ-hyperideal
of H generated by a. Ten, we get IH(a) �

(a∪HΓa∪ aΓH∪HΓaΓH].
By hypothesis, we have

a ∈ IH(a) � IH(a)ΓIH(a)( ,

� ((a∪HΓa∪ aΓH∪HΓaΓH]Γ(a∪HΓa∪ aΓH∪HΓaΓH]],

⊆ (HΓaΓHΓaΓH].

(13)

Terefore, H is semisimple. □

Example 4. In Example 2,

≤ :� (a, a), (a, b), (b, b), (c, b), (c, c), (d, d), (d, e), (e, e){ },

(14)

is a partial order relation. Clearly, (H, Γ, ≤ ) is semisimple.
Te only I-Γ-hyperideals of H are K1 � d, e{ } and K2 � H.
Both the I-Γ-hyperideals are Γ-hyperideal and idempotent.

Table 2: Table of c for Example 2.

c a b c d e

a a, c{ } b a, c{ } d, e{ } e

b b b b d, e{ } e

c a, c{ } b c d, e{ } e

d d, e{ } d, e{ } d, e{ } d e

e e e e e e

Table 3: Table of β for Example 2.

β a b c d e

a a b a, c{ } d, e{ } e

b b b b d, e{ } e

c a, c{ } b a, c{ } d, e{ } e

d d, e{ } d, e{ } d, e{ } d e

e e e e e e

Table 4: Table of c for Example 3.

c a b c d e

a a, b{ } b, c{ } c d, e{ } e

b b, c{ } c c d, e{ } e

c c c c d, e{ } e

d d, e{ } d, e{ } d, e{ } d e

e e e e e e

Table 5: Table of β for Example 3.

β a b c d e

a b, c{ } c c d, e{ } e

b c c c d, e{ } e

c c c c d, e{ } e

d d, e{ } d, e{ } d, e{ } d e

e e e e e e
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3. Conclusions

Tis paper gives some conditions under which the I-Γ
-hyperideals are Γ-hyperideals. By Teorems 1–3, we prove
that in a regular (resp., intraregular, semisimple) ordered
hyperstructure H, every interior hyperideal of H is a
hyperideal. ByTeorems 3 and 4, H is a semisimple ordered
hyperstructure if and only if every interior hyperideal of H is
idempotent. Our future work will concentrate on some
results which are related with the fuzzy interior hyperideals
of ordered hyperstructures.
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