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As the development of smart grids is increasing, accurate electric load demand forecasting is becoming more important for power
systems, because it plays a vital role to improve the performance of power companies in terms of less operating cost and reliable
operation. Short-term load forecasting (STLF), which focuses on the prediction of few hours to one week ahead predictions and is
also bene�cial for unit commitment and cost-e�ective operation of smart power grids, is receiving increasing attention these days.
Development and selection of an accurate forecast model from di�erent arti�cial intelligence (AI)-based techniques and meta-
heuristic algorithms for better accuracy is a challenging task. Deep Neural Network (DNN) is a group of intelligent computational
algorithms which have a viable approach for modeling across multiple hidden layers and complex nonlinear relationships between
variables. In this paper, a model for STLF using deep learning neural network (DNN) with feature selection is proposed. A wide
range of intelligent forecast models was designed and tested based on multiple activation functions, such as hyperbolic tangent
(tanh), di�erent variants of recti�er linear unit (ReLU), and sigmoid. Among the others, DNN with leaky ReLu produced the best
forecast accuracy. Regarding the precision of the methods used in this research work, certain output measures, such as absolute
percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) are used.  ere was also a reliance on
multiple parametric and variable details to determine the capability of the smart load forecasting techniques.

1. Introduction

Load forecasting strengthens utility corporations’ ability to
model and anticipate power loads in order to maintain a
balance between supply and demand, reduces
manufacturing costs, estimates fair energy pricing, and
regulates capacity scheduling and future planning.  ese
forecasts are extremely important for energy suppliers and
other power system stack holders, as well as for power
generation, transmission, and distribution industries.  ere
is also the precise projection of electric load magnitudes and
geographic locations for various times of the planning ho-
rizon [1].  emain criterion is used to test the predictions of
the model on the basis of lead-time horizon. Accurately
predicting future load requirements is critical for proper
generation planning. It additionally improves the

performance of the power system and facilitates managerial
decision making in the future. Inaccurate forecasts can be
the reason for massive economic losses for housing and
power system. Researchers have applied a number of
techniques for electrical load demand forecasting using
numerous statistical, mathematical, and arti�cial intelli-
gence-based approaches to facilitate the supply chain of
electrical load in a smooth manner. It is found that deep
neural networks (DNN) and their hybrid combinations with
other meta-heuristic optimization algorithms provided
wonderful functionality in managing complicated nonlinear
relationships, model complexity, and their prediction per-
formance is found accurate as compared to other conven-
tional methods [2]. emajor objective of this research work
is to enhance electrical load demand forecast accuracy by
implementing the state-of-the-art deep neural networks
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using LSTM and RNN architectures. In particular, the
impact of seasonal variation on forecast error has been
explored and reported.

According to the literature, short-term electrical load
demand forecasts are of considerable interest. +is fore-
casting is important for power system control, unit input,
security assessment, economic calculations, and power
markets [3]. STLF is under high consideration for con-
trolling and optimizing energy systems on a daily energy
efficiency basis, exchange, and security checks. It is also
useful for reliability considerations and mathematical cal-
culations in the power system. However, STLF needs a great
effort to produce reasonable forecast accuracy because of the
lesser lead-time. For immediate and accurate future pre-
dictions on the basis of lesser lead-time, we need more
parametric analysis and complex modeling techniques [4].
Choosing a good technique for STLF is most important for
high accuracy in the results. One of an electric company’s
key jobs is to precisely estimate load demand at all times,
which is especially important in the near term. Observing the
behavior of near-future load demand may be highly useful
for the assessment and operation of power systems in terms
of a noninterrupted supply chain of power [5].

+ere are several load-forecasting techniques that are
classified as parametric and nonparametric techniques in
two major sections. Parametric techniques are based on
mathematical and statistical equations such as time series
and linear regression. Nonparametric techniques are arti-
ficial intelligence and machine learning-based techniques
such as artificial neural networks (ANN), deep neural net-
works (DNN), fuzzy logic, and expert systems. In the cat-
egory of nonlinear techniques, many hybrid combinations of
ANN and DNN with nature inspired meta-heuristic tech-
niques such as genetic algorithm (GA), particle swarm
optimization (PSO), feature selection, and others have been
reported frequently for STLF in the past decade. It is further
reported by many researchers that these hybrid combina-
tions of intelligent forecast methods produced highly effi-
cient models in terms of accuracy and generalization.

+e electric load forecasting is categorized into three
classes including short-term forecasts, that is, from few
minutes to few days ahead, medium-term forecasts from one
week to few months ahead, and long-term forecasts of 1 year
to 10 years ahead [6]. Short-term load forecasting (STLF) is
useful for day-to-day decisions including fuel requirement
and maintenance scheduling systems setup, whereas me-
dium-term load forecasting (MTLF) is important for system
maintenance, purchasing electricity, and pricing plans. +is
maintains the shutdown and maintenance scheduling, as
well as load-switching operations. On the other hand, long-
term load forecasting (LTLF) is highly beneficial for ex-
pansion plans and the development of new power plants.

In this study, intelligent computational models are
designed and developed using a deep neural network in-
tegrated with feature selection and genetic algorithm using
various activation functions, such as sigmoid, tanh, and
ReLU to forecast short-term electrical energy demand. To
make forecasts more trustworthy, all significant factors
impacting future power usage must be included [7]. DNNs

are always difficult to train, test, and validate, particularly
when the dimensions of the input are very large. It is very
critical to pick important features by evaluating a DNN-
trained model’s first-layer activation potential [8]. More-
over, a crucial factor in the DNN-based model for STLF is
the availability of a small number of data samples for the
training phase, which can cause the model to overfit. To
avoid overfitting, we used 2 years of electricity load from
FESCO, a company in Pakistan, to supply the electricity. In
this investigation, there are one year of Australian electricity
load data and other input parameters with feature selection
to train the presented DNN models utilizing a single acti-
vation function. In the literature, [9], Denil et al. demon-
strate that it is possible not only to forecast all the other
weights but also to exclude some of the weights, providing a
few weights to every element. It is shown for neurons with
multiple layers, training 25% with parameters produces the
same error as learning all weights. Sainath et al. [10] use low-
rank matrix factorization to reduce the number of input
parameters in the final layer of a DNN.

Hybrid load demand forecast model by integrating deep
recurrent neural networks and LSTM architectures are
designed, developed, and tested. +eir performance is
compared with the conventional ANN design. +e perfor-
mance of the developed hybrid model in different seasonal
and load demand variations is examined on a day-ahead and
week-ahead basis. +e integration of various meta-heuristic
techniques adds up the individual features of those methods
to produce the summed up benefits. However, the hy-
bridization of multiple methods leads to complexity and
affects the transparency of these models. As the LSTMmodel
keeps a track of the vibrant recent memory states, its
strength in remembering the recent past states is considered
superior as compared to other meta-heuristic methods.

+e remainder of the paper is ordered as, Section 2
explains DNN’s and RNNs importance for load forecasting.
Section 3 explains the data description. Section 4 explains
the methodology behind the hybridization of DNN and the
feature selection-based model for STLF. +e results and
corresponding consequences are seen in Section 5, and fi-
nally, the conclusions regarding the proposed method are
provided in Section 6.

2. Deep Neural Networks and Applications

Deep neural network is an advanced form of conventional
ANN whose learning is typically carried out using the
framework of complex architecture with multiple hidden
layers and neurons.+eword “deep” refers to the topological
structure of NN with a number of layers in the network. A
deep neural network (DNN) is just an ANN with some extra
layers than the three standard layers of multiple-layer
perceptron (MLP). A deep neural network integrates several
nonlinear layers of computation, utilizing basic parallel
operating components biologically inspired nervous sys-
tems. Deep learning is traditionally focused on using back
propagation including gradient descent and a huge number
of neurons and hidden layers [11]. +e deep structure en-
hances the potential of neural networks for abstraction.
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Currently, the advancement of the Internet of things (IoT)
and big data allows the deployment of DNNs in a variety of
ways. Moreover, recent findings for DNN have shown great
promise in other fields, such as computer vision and voice
recognition. However, there is much less work on applying
DNN to short-term load forecasting in STLF is found in the
literature [12]. DNNs allow higher precision to be achieved
by detecting dominant factors that influence electricity
consumption trends and can surely make a major contri-
bution to next-generation energy systems and the recently
launched Smart grid [13]. A typical DNN interconnection
structure with one input and output layer and multiple
hidden layers having neurons is shown in Figure 1. It can be
seen that there are a number of hidden layers which convert
this neural network to deep neural network. +e results will
also be more accurate by more layers.

2.1. DNN with Genetic Algorithm. Genetic algorithm is a
method of programming which derives its foundation from
biological evolution [14]. +e Genetic Algorithm is generally
used as a problem-solving technique to have the optimized
value [15]. A hybrid model designed by integrating a genetic
algorithm (GA) and deep neural network (DNN) is used to
increase performance, cogency, and reduce the error [16].
Specifically, GA is used for selecting features and optimizing
DNN design parameters [17]. A set of possible solutions is
provided to GA as inputs and evaluation of the performance
of each input is carried out with a metric called a fitness
function, which allows each candidate to be quantitatively
evaluated.+e input to the GA is a series of feasible solutions
to the problem, stored in some form, and a metric named as
fitness function that allows every applicant to be concretely
evaluated.+e GA’s functionality was proven by the creation
of a DNN with more than four million parameters; the best
infrastructure ever developed by an evolutionary algorithm
[18].

2.2. DNN with Feature Selection. Selection of features dis-
tinguishes the relevant features from a collection of data and
eliminates unrelated or less-significant features which do not
lead most to our target variable in order to obtain optimal
reliability for our model. It is commonly accepted that the
performance of DNNs is because the relationship between
the target value and the features of the input is very sig-
nificant. It takes gradual and definite transformation to
render useful features [19]. For a DNN, the measurement of
sensitivity does not work far beyond one or two layers.
+erefore, in order to better evaluate an input feature’s
contribution, we review its activation potential (averaged
over all input training values and hidden neurons) relative to
the full activation potential. +e greater the possible acti-
vation involvement of an input factor, the more likely its
inclusion in the hidden layers [20].

2.3. Hybrid LSTM and DNN Recurrent Neural Network.
+e ANN is referred to as recurrent neural networks when
feed forward neural networks are expanded to provide

feedback connections as shown in Figure 2. +e input
neurons are responsible to receive inputs, whereas relational
ends receive the signals modified with an activation function
from the current input layer and from the hidden nodes in
the previous state of the network at each time-step of
sending input through a recurrent network. Long short-term
memory (LSTM) networks are a revamped variant of re-
current neural networks, allowing memory retrieval of
previous data simpler. +e RNN problem of the vanishing
gradient is solved here. Given unpredictable time delays,
LSTM is well suited for categorizing, analyzing, and fore-
casting time series. It trains the model using back-propa-
gation. +e performance is determined by the secret state of
the hidden layers. +e concept behind RNNs is to make use
of the knowledge in sequence. It is generally assumed that in
a typical neural network all inputs and outputs are distinct of
one another.

3. Research Methodology

+e main requirement for an accurate prediction model is
careful analysis of the load data and its dynamics. A big
quantity of data is being gathered with the aid of the in-
telligent meters on every day basis which is called raw data at
initial stage as shown in Figure 3. Big statistics analytics can
be helpful in reaching insights for smart grid energy
management [4]. To achieve the good forecast results,
variation and the behavior of the load data is of high
consideration. Initial steps for treatment of data are data
preprocessing which is also called the data normalization.
+ese methods can be carried out according to simple load
profile analysis. On the basis of traits of input data, it can be
classified into distinctive clusters by which the network
performance can be increased. To preprocess data, the first
stage is the compilation of data from the different infor-
mation systems, for instance, the equipment, customer and
charging details, weather, and electrical load system [21]. As
designing data management and smart electronics increases,
data-oriented applications have been gaining far more in-
terest in both academia and industry through power con-
verters in power grid companies [22, 23]. In addition to the
load demand data other factor are also important including
metrological data and day type information.

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer N

Output
layer

Figure 1: A typical deep neural network architecture.
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Long short-term memory (LSTM) networks are an
improved variation of recurrent neural networks that make
it easier to retrieve earlier data from memory. +e declining
gradient issue is handled here. Given the unpredictable
nature of time delays, LSTM is ideal for categorizing, an-
alyzing, and predicting time series. +e performance of the
LSTM-based intelligent forecast models has been proved in
many smart systems such as smart grids.

3.1. Effect ofTemperature. It is noticed that the electrical load
demand increases with the rise in temperature during the
summer season and it decreases in the cold season.
+erefore, the seasonal variables should be included in the
predicted model input to obtain accurate predictive results.
A review of the literature shows that there is a strong
correlation between seasonal variables and load demand.
+e results of human sensitivity test tell that dew point
between 40 F and 60 F is considered comfortable for the
humans [24]. +e demand for load remains normal in this
range of dew point. +ere is a more need of strength when
the temperature falls below 10°C due to heating require-
ments in a family.

3.2. Working and Nonworking Days. Electricity usage is
higher on weekdays while electricity consumption is low on
Saturday and Sunday, and also on other public holidays. +e
“Working Day feature” is chosen based on these results to
draw this impact.

3.3. Impact of Time. +ere is high impact of time on elec-
tricity usage. Energy usage values reflect an up-and-down
trend, respectively, during bothmiddays. To express the time
dependence as hour and day of week, two functions are
extracted.

3.4. External Factors. +e external factors can also influence
the power load behavior (we define data collected as external
factors outside the energy database) such as season, climate,
and holiday statistics [25].

3.5. Data Preprocessing. +ere is a process called pre-
processing by which the input data is converted into nor-
malized form to facilitate the NN for easy interpretation of
input patterns for better results. +e change between each
input data point interval is between 0 and 1 throughout the
normalization procedure. Each input’s data can be trans-
formed into normalized form independently or in groups.
Preliminary work on entering the input data reduces the size
of input space to DNN, which lowers the training time of the
network. It shortens the input surface measurement and
reduces the variety of parameters that need to be set for the
training process.

3.6. Training and Test of Datasets. +e model is trained
before testing to forecast the input data at high accuracy. We
also separated the input data into training and testing
datasets in this model, utilizing two years of data for training
and one year of data for testing. From the dataset testing, we
used 24 and 168 hours forward records for day and week
ahead prediction, respectively.

3.7. Training and Test of Datasets. In the design and de-
velopment of hybrid forecasting models based on DNN and
multiple meta-heuristic techniques, different activation
functions were used which directly affect the behavior and
ultimate DNN efficiency. DNNs typically need capacities for
nonlinear activation. Because of their simplicity, rectified
linear units (ReLU) are commonly used in modern-day
DNNs. Arunadevi et. al. [26] researched the impact of ac-
tivation function on classification accuracy using DNN.
However, choosing an appropriate activation feature is a
difficult task [27–29]. Some of the commonly employed
activation functions are given in the subsequent sections.

3.8. Sigmoid Function. A sigmoid function is a type of ac-
tivation function, more precisely a squashing function.
Crushing functions, as seen in Figure 4, limit the output to a
range of 0 to 1, making them effective in probability
prediction.

3.9. Linear Rectified Unit (ReLU). +e rectified linear acti-
vation function or ReLU for short is a linear piece-by-piece
function that directly outputs the input if it is positive,
otherwise, it will output zero as shown in Figure 5. For
several forms of neural networks, it has become the default
activation function, since a model that uses it is easier to
train and often achieves better performance. We have, f(x)�

m(o, x).

3.10. Leaky ReLU. Leaky ReLUs are such method to over-
come the “dying ReLU” problem. Rather than making the
feature zero if x < 0. Instead, a leaky ReLU would have a
slight negative slope (of 0.01, or so), as shown in Figure 6. It
can be expressed mathematically:

F(x)� 1 (x< 0) (αx) + 1 (x≥ 0) (x).
Here the α is a constant of computation.

Recurrent network

input layer

x2

x1

hidden layers

output layer

y

Figure 2: Recurrent neural network.
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4. Results and Discussion

+is section presents the electrical load demand prediction
results of benchmark combinational approaches using
conventional ANN, RNN, and LSTM. +e simulation re-
sults, as well as the pertinent discussion of the suggested
prediction model for various forecast scenarios, are also
presented. To guarantee that the model works successfully in
different seasonal fluctuations, its forecast accuracy is vali-
dated using load demand and meteorological data for all
four seasons of the year. Furthermore, to ensure that the
model does not overfit, the forecast performance is validated
under high variable load demand situations one day and one
week ahead, as well as seasonal load changes.

+e model’s performance in the aforementioned varied
situations demonstrates that it is capable of providing strong
prediction results under the vivid and vibrant settings of load

demand. To explore the influence of these tactics, a relative
analysis of the aforesaid methodologies is performed with
respect to the appropriateness of the input variables and
ANN design optimization. On a one-hour sampling fre-
quency, the data are collected at a rate of 24 samples per day
and 168 samples per week, and it contains electrical load as
well as four meteorological variables: dry bulb temperature,
wet bulb temperature, dew point, and humidity. MSE and
MAPE are performance measures employed to analyze and
compare the efficacy of various methods.

+e variations in load demand are analyzed w.r.t. sea-
sons: the load demand in the spring and fall seasons is lesser
than the load demand in the winter and summer seasons.
Furthermore, the summer season’s load is less consistent,
having higher peaks than the winter season’s load. +is
disparity is most likely due to the less frequent usage of air
conditioning during extremely hot summer days, as opposed
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Figure 3: Modelling for load forecasting.
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to the more consistent use of heaters throughout the winter.
Based on this trend, the data have been divided into four
seasons: summer is seen as lasting from November to
January, autumn from February to April, winter from May
to July and spring fromAugust to October. In addition to the
performance indicators, the number of repetitions for the
same training error are also used to evaluate the prediction
accuracy of the presented algorithms.

4.1. Prediction by ANNModel. A three-layer neural network
with an 8-16-1 topology will be used in the tests. +e transfer
function for hidden layer neurons is logistic sigmoid;
however, it is linear for output layer neurons. Figure 6 shows
the projected load demand assessment of the ANNmodel for
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Figure 8: One day-ahead load forecast results of the ANN model
for the winter season.
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Figure 7: Leaky ReLU.
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Figure 9: One day-ahead load forecast results of the ANN model
for the autumn season.
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Figure 10: One day-ahead load forecast results of the ANN model
for the spring season.
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twenty-four hours ahead load during the summer. +e
graph’s X-axis indicates hourly time with an interval of one
hour, while the actual and predicted load demand can be
seen on Y-axis. It is apparent that load demand fluctuates
depending on the time of day, starting from modest in the
morning; however, it rises as the day activities are started.
+e results of summer season forecasting of one-day ahead
of ANN model for other seasons including winter, autumn,
and spring are shown in Figures 8–10, respectively. In this
model, the best results are found in winter season, where
MSE remained 0.10015 and MAPE is found 1.31% for day-
ahead predictions.

4.2. Prediction by LSTM Model. +e results of LSTM-based
model are presented in Figures 11–14 for the autumn,

spring, summer, and winter seasons, respectively. +e red
line shows the actual load and the green line shows the
predicted values. +e minimum forecast results for this
model are observed in the summer season, where MSE is
observed as 0.09153 and MAPE is 1.02% for 24 points per
day. +e predicted load is decreasing at the initial, but there
is a difference between both lines giving better prediction
results.

4.3. Prediction by RNN Model. +e results of RNN-based
hybrid model are presented in Figures 15–18 for the sum-
mer, winter, autumn, and spring seasons, respectively. +e
minimum forecast errors for this model are observed in the
summer season, where MSE is observed as 0.09873 and
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Figure 12: One day-ahead load forecast results of the LSTMmodel
for the spring season.
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Figure 13: One day-ahead load forecast results of the LSTMmodel
for the summer season.
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Figure 11: One day-ahead load forecast results of the LSTMmodel
for autumn season.
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Figure 14: One day-ahead load forecast results of the LSTMmodel
for the winter season.
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MAPE is 1.23% for 24 points per day. +e predicted load is
decreasing at the initial, but there is a difference between
both lines giving better prediction results. Figures 15–18
show the forecast error graphs of the RNN-based hybrid
model for summer, winter, autumn, and spring seasons,
respectively. +e load pattern of all four seasons is different
because of the changes in the meteorological parameters,
such as temperature, humidity, and cloud cover. However,
the proposed model shows reasonable forecast accuracy for
all the seasons and demonstrates its generalized prediction
strength throughout the year under different load demand
conditions. +e load forecast results in terms of MAPE are
summarized in Table 1.

Among the three models deployed for the electrical load
demand prediction, it is observed that the hybrid models

based on the combination of LSTM and ANN and RNN
performed better w.r.t. forecast accuracy for one-day ahead
forecasts. Especially, the RNN model predicted the electrical
load demand with an accuracy of 1.01% in terms of MAPE.
+e RNN model is applied for the prediction of one week
ahead forecast, and the results for the summer season are
depicted in Figure 19. +e model predicted the load demand
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Figure 15: One day-ahead load forecast results of the RNN model
for summer season.
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Figure 16: One day-ahead load forecast results of the RNN model
for winter season.
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Figure 17: One day-ahead load forecast results of the RNN model
for the autumn season.
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Figure 18: One day-ahead load forecast results of the RNN model
for the spring season.

Table 1: Forecast error of the deployed models.

Model Forecast error (MAPE) (%)
ANN 1.9
RNN 1.23
LSTM 1.01
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with a reasonable forecast accuracy of 1.09% MAPE on
week ahead bases. All these results show the superiority of
the hybrid models in terms of forecast accuracy and
generalization.

5. Conclusion

+ere are several feature descriptors currently available that
provide high-dimensional features to identify the behavior
in the video, but it takes detailed research to measure the
impact of those features on classification. Although size
reduction techniques are available to reduce the dimensions
of items, their main focus is good reconstruction and the
prejudicial information is lost in low-dimensional space. We
have used the three types of modeling as LSTM modeling,
RNNmodeling, and NNmodeling for one day forecasting of
all the seasons. +ere is more accuracy using the leaky ReLU
activation function with RNN.+ere are also good results for
yearly forecasting data by using the above techniques. +e
training data is undertaking preprocessing step to predict the
new features that will be more important for the use of
electricity. +e proposed hybrid forecast models have shown
high forecast accuracy and generalization that would lead to
less-operating costs and safe operation of the power utility
companies.
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