Hindawi

Mathematical Problems in Engineering
Volume 2023, Article ID 9798267, 1 page
https://doi.org/10.1155/2023/9798267

Retraction

Q@) Hindawi

Retracted: Application of Multi-Measurement Vector
Based on the Wireless Sensor Network in Mechanical

Fault Diagnosis

Mathematical Problems in Engineering

Received 26 September 2023; Accepted 26 September 2023; Published 27 September 2023

Copyright © 2023 Mathematical Problems in Engineering. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

This article has been retracted by Hindawi following an investi-
gation undertaken by the publisher [1]. This investigation has
uncovered evidence of one or more of the following indicators of
systematic manipulation of the publication process:

(1) Discrepancies in scope

(2) Discrepancies in the description of the research reported

(3) Discrepancies between the availability of data and the
research described

(4) Inappropriate citations

(5) Incoherent, meaningless and/or irrelevant content
included in the article

(6) Peer-review manipulation

The presence of these indicators undermines our confidence
in the integrity of the article’s content and we cannot, therefore,
vouch for its reliability. Please note that this notice is intended
solely to alert readers that the content of this article is unreliable.
We have not investigated whether authors were aware of or
involved in the systematic manipulation of the publication
process.

Wiley and Hindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external
researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction. We have kept a record of
any response received.

References

[1] W. Kang, “Application of Multi-Measurement Vector Based on
the Wireless Sensor Network in Mechanical Fault Diagnosis,”
Mathematical Problems in Engineering, vol. 2022, Article ID
2390119, 7 pages, 2022.


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9798267

Hindawi

Mathematical Problems in Engineering
Volume 2022, Article ID 2390119, 7 pages
https://doi.org/10.1155/2022/2390119

Research Article

@ Hindawi

Application of Multi-Measurement Vector Based on the Wireless
Sensor Network in Mechanical Fault Diagnosis

Wei Kang

Anshan Normal University Liaoning China, Anshan 114007, Liaoning, China

Correspondence should be addressed to Wei Kang; 1117410434@st.usst.edu.cn

Received 26 June 2022; Accepted 20 August 2022; Published 7 September 2022

Academic Editor: Hengchang Jing

Copyright © 2022 Wei Kang. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to solve the problem of low positioning accuracy of mechanical fault diagnosis, a polarization GPR imaging recon-
struction algorithm based on the MMV model was proposed. The algorithm was mainly based on the joint processing of the
measured data of multiple polarization channels to achieve the reconstruction of the reflectance of the detection scene cor-
responding to each polarization channel. The simulation data processing results based on FDTD showed that compared with the
traditional SMV model polarization imaging algorithm, the proposed imaging algorithm could improve the accuracy of target
location reconstruction and the ability of background clutter suppression significantly. Compared with the SMV model, TCR
obtained by the MMV model increased by 30%. As for the imaging results at different noise ratios, TCR obtained by the MMV
model was 10% higher than that obtained by the SMV model. And when the ratio of available real data samples decreased to 25%,
the sample data generation based on the adversarial generation network could greatly improve the classification accuracy of the

fault diagnosis model. It could realize the detection of the target better, so as to locate faults accurately.

1. Introduction

In the increasingly intelligent society, the application of
mechanical equipment is more and more widely in indus-
trial production and daily life. From aerospace, industrial
production, and national defense to the travel means of
transportation, such as aircraft, cars, and high-speed train
which are closely related to people’s lives, rotating ma-
chinery plays an important role. With the continuous de-
velopment of modern science and technology, all kinds of
mechanical systems are developing towards the large-scale,
complex, and high-speed direction, which also increases the
uncertainty of mechanical system safety. Once the rotating
machinery equipment breaks down, it will not only cause the
stagnation of industrial production but also cause serious
safety problems. In addition to affecting the production
efficiency and economic loss of the enterprise, it may also
bring irreversible casualties [1]. Mechanical equipment fault
diagnosis is a scientific technology to monitor, diagnose, and
predict the state of continuous running equipment and
ensure the safe operation of mechanical equipment. Its

outstanding characteristic is the close combination of the-
oretical research and engineering practical application. Itis a
kind of advanced technology that uses various measurement
and monitoring methods to record and analyze the equip-
ment state and identify and alarm the abnormal state (see
Figure 1). Using this technology, the failure state of me-
chanical equipment can be found in time to avoid the oc-
currence of catastrophic events. It can also avoid the
economic loss caused by insufficient or excessive mainte-
nance and has greater economic benefits. As the most im-
portant part of the mechanical system, rotating machinery,
such as induction motor, is the main device to drive all kinds
of mechanical equipment, widely used in all kinds of me-
chanical equipment. The reliability and security of its op-
eration should be higher. Generally, mechanical equipment
is divided into three basic parts, gear, bearing, and rotating
shafting. While rotating parts, such as bearings and gears,
are also widely used in all kinds of mechanical systems.
According to the survey, bearing damage and gear failure
account for about 40% of the faults of rotating machinery,
and 10.3% of the faults caused by gear failure [2]. Therefore,
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it is of great significance to find out the fault status of the
rotating machinery in time and to make accurate fault di-
agnosis and maintenance for the rotating machinery so as to
ensure the safe and stable operation of the production
system and reduce the probability of catastrophic accidents.

2. Literature Review

With the development of network technology, multi-mea-
surement vector machine fault diagnosis technology has
been paid more attention. In the aspect of signal processing
and feature extraction, vibration signals of rotating ma-
chinery parts are complicated when faults occur, and the
signals obtained by sensors are nonlinear, non-stationary,
and noisy. Therefore, it is difficult to extract useful fault
features directly from original signals. Feature extraction
based on signal processing is widely used in fault diagnosis.
The traditional signal processing technology mainly consists
of three aspects: time-domain analysis, frequency domain
analysis, and time-frequency domain analysis. Time domain
processing is mainly based on statistical feature analysis. The
frequency domain processing method mainly analyzes the
signal frequency domain components. Fourier transform is
the classical frequency domain processing method, in ad-
dition to envelope analysis, thinning spectrum, cepstrum,
high order spectrum, holographic spectrum analysis, and
other methods. A more widely used method is the time-
frequency domain analysis method, which can capture the
fault-related transient components in non-stationary signals
and provide the joint distribution of time domain and
frequency domain, such as short-time Fourier transform,
Winger-Ville distribution, empirical mode decomposition,
and wavelet transform theory. Gonzalez-Arango et al.
proposed the deep learning model, which got rid of the
inevitable uncertainty of artificial feature extraction and
enhanced the structural depth of the network model [3].
Hriez et al. proposed a software measurement method to

scientifically organize the whole process of software and also
proposed a method that can be used for many times in this
process [4]. Shahid et al. proposed the rationality of as-
sumptions required by the MMV model combined with
sparse reconstruction, that is, when multiple observation
signals share a sparse structure, the MMV model is superior
to the SMV model [5]. Qi et al. proposed a feature extraction
method for mechanical faults based on category-indepen-
dent component analysis and the correlation coefficient.
Firstly, the independent component analysis of mechanical
fault signals in different working conditions were carried out
to obtain the independent components of various working
conditions, which contained some inherent characteristics
of the working conditions. Then, the absolute sum of the
correlation coefficients between the sample and the inde-
pendent components extracted from signals under different
working conditions was used as the characteristics of the
sample [6]. Sharma et al. used the Morlet wavelet and the
particle swarm optimization algorithm to de-noise bearing
vibration signals [7]. Kim et al. proposed empirical mode
decomposition based on adaptive variable-scale frequency-
shift band-pass stochastic resonance denoising, a denoising
method of a vibration signal with an interval threshold of
empirical mode decomposition [8]. Gong et al. proposed a
rolling bearing fault feature extraction method based on the
improved envelope spectrum based on EMD and spectrum
kurtosis, namely, the holographic spectrum technique for
mechanical fault diagnosis [9]. Shriram et al. proposed the
method of the multi-scale envelope order spectrum to
evaluate the health status of the mechanical system under
variable speed conditions and used the instantaneous fre-
quency obtained by the empirical mode decomposition
method to detect the state degradation of bearings [10]. Ma
et al. used wavelet packet decomposition to decompose the
original signal into a series of time-domain waveforms and
reduced them into one-dimensional signals by local tangent
space arrangement, so as to achieve denoising of the original
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signal [11]. Bashar et al. combined continuous wavelet
transform and local tangent space arrangement for non-
linear noise reduction [12]. Based on the characteristics of
mixed time-frequency domain, Ping et al. carried out fault
diagnosis of the wind turbine transmission system [13].
Chen et al. introduced an iterative algorithm for matching
demodulation transformation to generate time-frequency
distribution images of energy concentration. It was bene-
ficial to weak fault feature extraction. Good results were
achieved in the simulation signal and real data [14].

To solve the above problems, a sparse imaging recon-
struction algorithm of polarization GPR based on the MMV
model for mechanical diagnostic echo signals was proposed,
which equivalently transformed the measured data of each
polarization channel into multiple measurement vectors.
The multi-task Bayesian compressed sensing (MT-BCS)
algorithm was used to process the measurement data of
different polarization channels, and then the sparse high-
resolution imaging reconstruction of the mechanical fault
detection region was realized. Compared with the traditional
SMV reconstruction algorithm, the proposed algorithm
could reduce the background clutter and improve the quality
of image reconstruction, so as to achieve the accurate
judgment of mechanical failure.

3. Research Methods

3.1. Traditional SRC Model. If multi-measurement vectors
can share the sparse structure, the prior information can
be used to constrain the selection of representation atoms
to improve the performance of joint sparse reconstruc-
tion. However, in practical application, it is difficult to
obtain measurement vectors with exactly the same sparse
structure. Few signal sources meet the assumption con-
ditions of the shared sparse structure. And these mea-
surement vectors may not share the sparse structure even
if they observe the same thing. The possible reasons are as
follows: first, the sparsity structure of actual signals is
time-varying. Second, the high dimension of the signal
makes the feature space of the same type of the signal may
have a large gap. For example, the photos taken by the
same person under different circumstances may have a
large gap. Third, the limitation of feature description
space makes the measurement matrix lack feature de-
scription atoms, resulting in incomplete feature de-
scription. It can be seen that measurement vectors with
identical sparse structures are difficult to obtain. In the
MMYV model, the general sparsity hypothesis is only valid
for a small number of measurement vectors. In practical
application, multi-measurement vectors with the non-
shared sparse structure are often encountered [15]. The
measurement vector of the traditional SRC model is
single. However, intuitively, the information provided by
multiple observation signals obtained from the same
object is significantly more than that provided by a single
observation signal. Even if these multiple observation
signals do not share the sparse structure, they should still
provide more effective information. If the increased in-
formation can be effectively utilized, the performance of

sparse classification can be improved. In the data dic-
tionary of the SRC model, similar training sample sets are
arranged. If multiple measurement vectors are observa-
tions of the same object, then their representation atoms
should be concentrated in a certain region of the mea-
surement matrix. The corresponding representation co-
efficient is non-0, but the non-0 elements are not
necessarily in the same line, that is, the sparse structure is
not shared [16]. The non-zero terms of the coefficient
matrix are concentrated in a certain category, but the
sparse structure is not shared among the columns of the
coefficient matrix. This prior structural information can
be used to improve the accuracy of diagnosis [17].

3.2. Polarization Signal Model. The schematic diagram of
polarization GPR system detection is shown in Figure 2. The
polarization GPR antenna system has four polarization
measurement channels, which are XX, XY, YX, and YY
polarization, among which the first represents the polari-
zation direction of the transmitting antenna and the second
represents the polarization direction of the receiving an-
tenna. The direction of the measuring line is parallel to the Y
direction. Assuming that the system adopts the working
mode of single station stepping frequency, for the Ith(l =

1,2,3,4) polarization channel, the system at the
m(m=0,1,...,M — 1) antenna positions and the nth(n =
0,1,...,N —1) measurement data r;(m,n) of frequency
points are expressed as the following formula:
P
r(m,n) = Z 0, exp(—j2ﬂfn‘rp’m). (1)
p=1

In the formula, §,; is the complex reflection coefficient
of the pth target. f, = f, +nAf is the nth working fre-
quency point. f, is the starting frequency of the working
bandwidth. Af is the step interval of frequency in the
working bandwidth. 7, ,, is the round-trip delay between the
pth target and the mth antenna position.

The detection area is divided into N, x N, uniform
spatial grids, where N, and N represent the number of
discrete grids in horizontal direction and depth direction,
respectively. The reconstructed image can be transformed
into N, N x 1-dimensional scene reflectance vector 9, by
column stacking operation. Then the received signal r; of the
system in the /th polarization channel can be expressed as
the following formula:

r = o). (2)

In the formula, 7= [r;(0,0),...,7,(0,N-1),
r;(M —1,N —1)]”. 8, represents the scene reflectance vector
corresponding to the /th polarization measurement channel.
v is the MN x N, N, -dimensional lexicographical matrix,
and the elements in the rth row and gth column can be
expressed as the following formula:

[W]r,q = eXp(_jznfnTp,m)' (3)
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FIGURE 2: Schematic diagram of system detection.

In the formula, r=0,1,MN -1; ¢=0,1,N,N, - 1;
n=rmodN; m= [r/N]. 7,, represents the round-trip
delay between g imaging grid and my, antenna location.

Because the target of interest only occupies a few space
positions in the detection scene, §; is a sparse vector. A
random measurement matrix ¢; can be constructed to
achieve the reduction sampling and obtain the measurement
vector, as shown in the following formula:

i =i = dyd; = Ad) +my. (4)

In the formula, A; = ¢;y is a Jx M N dimensional matrix,
which can be constructed by randomly selecting J rows from
the MN x MN dimensional identity matrix. The dictionary
matrix A; may be the same or different for different po-
larization measurement channels. The additive White
Gaussian noise vector #; is added into the formula. And
represents the measurement noise of the I/th polarization
channel.

3.3. Polarization GPR Imaging Based on the SMV Model.
By the polarization GPR imaging method based on the SMV
model, the measurement data of a single polarization
channel were processed, respectively, so as to reconstruct the
reflectivity of the corresponding detection scene of each
polarization channel [18]. The scene reflectance vector &
corresponding to the /th polarization measurement channel
can be reconstructed by I, norm minimization method, as
shown in the following formula:

SI = argmin“@l”l 5)
St”yl —A181||2<£.

In the formula, ||*]|; and ||*||, represent the I, and I,
norm, respectively. € is a regularization parameter. The
reconstructed §; is expanded according to the N, column
and the N, row to obtain the reconstructed target image. The
imaging reconstruction process represented by formula (5)
only utilizes the measured data of a single polarization
channel, without considering the correlation of the

Mathematical Problems in Engineering

measured data of each polarization channel, so the imaging
reconstruction effect achieved is very limited.

3.4. Polarization GPR Imaging Based on the MMV Model.
In the detection process of GPR, for different polarization
measurement channels, the detection area and the working
frequency band of the system are the same, but the difference
is only the reflectivity of the detection scene [19]. Therefore,
for XX, XY, YX, and YY polarization channels, §; has a
common sparse support set, namely, the positions of the
non-zero elements of §; remain unchanged in the mea-
surement, while the positions of the non-zero elements of §;
correspond to different element values [20]. The polarization
GPR imaging model based on MMV can be constructed, and
the measurement data of multiple polarization channels can
be processed jointly by using the multi-task Bayesian
compressive sensing (MT — BCS) framework, so as to re-
alize the joint reconstruction of the reflectance of the de-
tection scene corresponding to each polarization channel.
Since (MT — BCS) framework is based on the real-value
signal model, formula (5) is converted into the real-value
signal model, as shown in the following formula:

yl=m+’:l\lal=[l’2)3’4]- (6)

In the formula, 7, = [Re (y;)", Im ( ¥1)T]T, 85 = [Re(8)7,
Im((Sl)T]T, ) = [Re(nl)Tt, nImq(nl)T
The dictionary matrix is shown in the following formula:
-~ Re (Al) —Im (Al)

"lm(4) Re(4)

(7)

In formula (6), each process of 8, reconstruction from 7,
is called the /th reconstruction task, thus realizing the multi-
task signal reconstruction. Given a Gaussian prior distri-
bution with zero mean for each element of 7; in formula (6),
the Gaussian likelihood model of the measurement vector
can be expressed as follows:

_] 5
poap)-(5) en(Ln-asl)

In the formula, f is the accuracy of the Gaussian density
function (reciprocal of the noise variance). For each element
in §;, it is assumed that the Gaussian prior distribution of
zero mean is satisfied, as shown in the following formula:

2N,N,

p(&le ) = [T N(8()10, 5 a;"). (9)

i=1

The hyperparameter o = {oci}ngy is common to all four
polarization channels. Therefore, the measurement vector y;
in each task will contribute to the estimation of the
hyperparameter, so as to realize the sharing of information.
It is assumed that both super-parameter a and f obey
gamma distribution. According to Bayes criterion, the
posterior probability density function of §; satisfies multi-
variable Student-1 distribution. Its mean value is shown as
follows:
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w =((4)"4, +D)’1(A,)Ty,. (10)

In the formula, D =diaglay,qa;,..., ayy n ]- The
hyperparameter « is solved by the fast correlation vector
machine. When the hyperparameter « is obtained, the
scene reflectance vector §; corresponding to each polar-
ization channel can be obtained from the following
formula:

3.5. Experimental Simulation. In order to simulate the ef-
fectiveness of the mechanical fault diagnosis method of
multi-measurement vectors in the line sensor network, the
induction motor experimental platform was used for ex-
perimental verification, and the model performance was
evaluated by statistical indicators [21]. The experimental
platform used in this experiment was the induction motor
experimental platform. What experimental platform col-
lected was the vibration signals of the sensor. Here, a di-
rection of the vibration signal was picked as the input signal
of the experiment. At the data preprocessing stage, 4096
consecutive sampling data points would be contained as a
sample. 300 independent samples were collected in each
working condition. Therefore, as for corresponding six
different induction motor running states, the entire data set
consisted of 1,800 samples. At the same time, the data set was
divided into the training data and the testing data in a ratio
of 2:1, namely, for each working condition, there were 200
vibration signal samples for training adversation generation
network, and 100 samples for model testing. The improved
model was trained with the training data set and the cor-
responding generated samples were obtained. In the testing
process, only test data (real sample data) were used to test the
trained ACGAN model. At the same time, the sample quality
of the generated data were evaluated. In this case, the test
data were the real sample data. In the process of training, in
order to prevent the generation of over-learning, a test was
set up after the end of each training round. The model was
used to predict the test data that did not participate in the
model training, and the results were compared with the
training results. If the difference was large, it indicated the
existence of over-learning. The generator generated samples
from the potential variable space to explore simulated
learning of the distribution of input data. During the
training, the Epoch of the training cycle was set to 100.1000
pseudo samples would be generated for each induction
motor running state. The performance of the model is shown
in Figure 3.

In the initial stage of model training, the model errors of
both generator and discriminator advanced towards Nash
equilibrium, but the final classification accuracy was not
improved, indicating that model updating was not carried
out towards the optimal solution. After 15 Epochs, the
classification accuracy of the model improved significantly.
The error curves of generator and discriminator were
approaching Nash equilibrium and the performance of the
model tended to be stable. After 60 Epochs, the error curve
gradually tended to the Nash equilibrium point and the
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F1GURE 3: Diagnostic performance.

classification accuracy of the model was stable at the highest
point, at which time the model had been well trained.

4. Result Analysis

In order to further verify the effectiveness and accuracy of
the image extraction algorithm, firstly, the finite-difference
time-domain (FDTD) method based on GprMax software
was used to construct the detection scene and obtain the
polarization GPR full-wave simulation data. Then the im-
aging algorithm was used to process the simulation data to
obtain the imaging results. The simulation model was set as
follows: The detection scene was composed of two layers of
media. The first layer was air; the second layer was soil; the
relative dielectric constant and conductivity of soil were
er=6 and §=1 mS/m, respectively. Four steel bars with a
radius of 0.0l m were buried in the soil, evenly arranged
along the horizontal direction. The buried depth of steel bars
was 0.2m. The excitation source was a Laker wave with a
center frequency of 1000 MHz and the height of the antenna
from the ground was 5 cm. The transmitting antenna and the
receiving antenna were in the same position and moved
evenly along the horizontal direction with a moving step of
5cm. The number of data acquisition channels was 21 and
the sampling time was 20 ns. The time-domain scattering
echo at each measurement aperture was obtained by FDTD
calculation. Since the image acquisition algorithm was
carried out in the frequency domain, the background
elimination technology was first used to remove the strong
reflected echo at the interface between air and soil, and then
the time-domain echo data were obtained by Fourier
transform to obtain the target frequency domain back-
scattering signal with 21 frequency points within the
working bandwidth of 500-1500 MHz. The frequency step
interval was 50 MHz. Thus, each polarization channel had a
total of 21 x21 =441 measurement data. Additive White
Gaussian noise was added to the scattering field data in
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frequency domain of each polarization channel and the
signal-to-noise ratio was 10 dB. The imaging area was set to
1.2 m in both horizontal direction and depth direction. The
imaging region was divided into 61 x 61 spatial grids in the
horizontal direction and depth direction [22]. In order to
quantitatively compare the reconstruction performance of
the two imaging algorithms under the different sampling
rate reduction of measured data, the signal-to-noise ratio of
the measured data was fixed at 10dB at first, and then 100
independent experiments were conducted corresponding to
the sampling rate reduction of each measured data. The
average TCR of the obtained imaging results was shown in
Figure 4. It could be seen from Figure 4 that under the
condition of the same sampling rate reduction of mea-
surement data, the imaging algorithm based on the MMV
model had a larger TCR than the SMV model, which was
more conducive to target detection and recognition.

In order to compare the imaging reconstruction per-
formance of the two imaging algorithms under different
SNRS, the reduction sampling rate of the measured data was
first fixed at 0.5 and then 100 independent experiments were
conducted for each SNR. The average TCR of the obtained
imaging results was shown in Figure 5. It could be seen from
Figure 5 that under the same SNR condition, the imaging
algorithm based on the MMV model could obtain a larger
TCR, and the background clutter interference energy in the
imaging results was less.

At the same time, the class imbalance of training data
was simulated by changing the proportion of available
training data. At the same time, different numbers of
generated data samples were used for experimental com-
parison, and the method model without data enhancement
strategy was also adopted. The final classification results of
fault diagnosis models under different settings were shown
in Table 1. The results showed that when the training data
was sufficient, the data enhancement strategy based on the
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TaBLE 1: Fault diagnosis and recognition accuracy of different
training datasets.

Percentage of real data

Sample number of generated data samples (%)

25 50 (%) 100%
0 95 91 999%
50 97 98 999%
100 98 99 999%
200 98 99 999%
300 98 100 100%

adversarial generative network did not improve the classi-
fication accuracy greatly. When the proportion of available
real data samples decreased to 25%, the adversarial gener-
ation network was used to generate sample data for data
enhancement, so that the classification accuracy of the fault
diagnosis model improved greatly. It also showed that the
adversarial generative network was helpful for accurate
classification of fault diagnosis models when the number of
samples was limited.

5. Conclusion

In the research, based on the sparsity of the detection scene, a
polarization GPR imaging reconstruction algorithm based
on the MMV model was proposed. The measurement data of
multiple polarization channels were processed jointly to
achieve the reconstruction of the reflectance of the detection
scene corresponding to each polarization channel. The
simulation data processing results based on FDTD showed
that compared with the polarization GPR imaging algorithm
based on the traditional SMV model, the proposed algo-
rithm improved the accuracy of target location recon-
struction and the ability of background clutter suppression
significantly, which could realize the detection of buried



Mathematical Problems in Engineering

targets better. It also showed that the adversarial generative
network was helpful for the accurate classification of fault
diagnosis models when the number of samples was limited.
The system could greatly improve the detection and rec-
ognition ability of underground targets. Finally, the precise
positioning of the target was carried out, so as to realize the
accurate judgment of mechanical failure.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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