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We aim to suggest a simple genetic algorithm (GA) and other four hybrid GAs (HGAs) for solving the asymmetric distance-
constrained vehicle routing problem (ADVRP), a variant of vehicle routing problem (VRP). �e VRP is a di�cult NP-hard
optimization problem that has numerous real-life applications. �e VRP aims to �nd an optimal tour that has least total distance (or
cost) to provide service to n customers (or nodes or cities) utilizing m vehicles so that every vehicle starts journey from and ends
journey at a depot (headquarters) and visits every customer only once. �e problem has many variations, and we consider the
ADVRP for this study, where distance traveled by every vehicle must not exceed a prede�ned maximum distance. �e proposed GA
uses random initial population followed by sequential constructive crossover and swap mutation. �e HGAs enhance the initial
solution using 2-opt searchmethod and incorporate a local search technique along with an immigration procedure to obtain e�ective
solution to the ADVRP. Experiments have been conducted among the suggested GAs by solving several restricted and unrestricted
ADVRP instances on asymmetric TSPLIB utilizing several vehicles. Our experiments claim that the suggested HGAs using local
searchmethods are very e�ective. Finally, we reported a comparative study between our best HGA and a state-of-the-art algorithm on
asymmetric capacitated VRP and found that our algorithm is better than the state-of-the-art algorithm for the instances.

1. Introduction

�e vehicle routing problem (VRP) is very complicated
traditional NP-hard combinatorial optimization problem
(COP) that was presented by Dantzig and Ramser [1]. �e
problem determines minimum distance (cost or time) route
for a vehicle set to serve a customer set. It has several real-life
applications such as shipments delivery, transportation
networks, and street cleaning. �e VRP is a widely studied
problem that has several variants such as the VRP with
Backhauls (VRPB), the VRP with pickup and delivery
(VRPPD), the split delivery VRP (SDVRP), the VRP with
time window (VRPTW), and the multi-depot VRP
(MDVRP) [2].

We consider another variant of the VRP, called distance-
constrained VRP (DVRP) in which total distance toured by
every vehicle in the tour is constrained by a prede�ned
maximum distance. �e problem determines minimum cost
route for a vehicle set so that every customer is provided
service once by exactly one vehicle, every vehicle starts
journey and ends journey at the same depot, and the entire
distance traveled by each vehicle must not exceed the pre-
de�ned maximum distance. Methods that have been used to
solve the DVRP as well as COPs are categorized as exact and
heuristic methods [3]. Branch and bound, branch and price,
branch and cut, and lexisearch are some examples of exact
methods which obtain exact solutions [4]. However, these
methods take lots of computational e�ort. However, heuristic
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and metaheuristic methods obtain near exact solutions
quickly, so they are normally used in large-scale DVRP in-
stances. Metaheuristic methods are more advanced than the
heuristic methods. Genetic algorithm (GA), simulated
annealing (SA), differential evolution algorithm (DEA), tabu
search (TS), artificial bee colony (ABC), ant colony optimi-
zation (ACO), and particle swarm optimization (PSO) are
some examples of metaheuristic methods. )ey can obtain
suitable solutions to various kinds of optimization problems
in a realistic time [5]. Among them, GA is commonly applied
to find effective solution to the COPs in a reasonable time.

GA is a popular metaheuristic algorithm, which was first
introduced by JohnHolland [6].)emajor assumption of GA
is that just the stronger individuals/chromosomes can live
longer. Normally, a random population of chromosomes is
generated first, and then using possibly three oper-
ators—selection, crossover, and mutation, (hopefully) new
population is created in each generation. )e process is
replicated till the stopping criterion is reached.)e purpose is
to find solution with higher fitness value that is close to the
optimal solution.

A common problem with GAs is premature convergence
to obtain optimal solution which is due to the population
diversity loss. If it is low, the convergence will be fast; oth-
erwise, convergence will be time-consuming and sometimes it
is a wastage of computational efforts. So, it is important to
balance between exploitation and exploration of search area.
In general, the effectiveness of GAs extremely depends on
genetic operators. Among them, crossover operator plays a
very important role and accordingly many researchers used/
developed different crossovers for the VRP. Usually, crossover
techniques that were used/developed for the usual traveling
salesman problem (TSP) are used in other COPs also. Among
crossover operators, sequential constructive crossover (SCX)
was found very good for some COPs [7, 8]. )ough simple
GA using SCX is very good, sometimes it gets stuck in local
optima. So, one can go for hybrid GA that merges simple GA
with a local search (or heuristic) method.

)e main contribution of this paper is to propose a
simple GA and four hybrid GAs (HGAs) for the ADVRP. In
our proposed HGAs, initial population is generated ran-
domly that is further enhanced by 2-opt local search, off-
spring are created by SCX, random alteration of two genes by
swap mutation, solutions are improved by one of three
different local search methods, and stagnation/premature
convergence is removed by immigration method. Experi-
ments have been conducted among the suggested GAs by
solving several restricted and unrestricted ADVRP instances
on asymmetric TSPLIB utilizing several vehicles. Our ex-
periments claim that the suggested HGAs using different
local search methods are very effective. Finally, we did a
comparative study between our best HGA and a state-of-the-
art algorithm [9] on some asymmetric capacitated VRP
(ACVRP) and found that our algorithm is better than the
competing algorithm for the instances.

)is paper is arranged as follows: Section 2 defines the
problem, Section 3 provides a literature survey for the

problem, Section 4 develops the simple GA and hybrid GAs
for the problem, Section 5 introduces results of experiments,
and finally Section 6 introduces discussion and conclusion.

2. Problem Definition

)e ADVRP determines the minimum cost route to serve a
customer set. )e cost is defined by total traveling distance.
Customers are scattered across several locations, and each of
them is to be visited only once by a single vehicle. Generally,
the vehicles have the same distance constraints.

2.1. Assumptions. Following are the assumptions for de-
fining the problem:

(i) Each customer is visited exactly once by exactly one
vehicle

(ii) Each vehicle route starts and ends at the same depot
(iii) Each vehicle’s route can only pass through one

depot exactly once
(iv) A non-negative distance-constrained for all vehicle

is defined, and the distance traveled by each vehicle
cannot exceed the distance-constrained

(v) )e sum of route of all vehicles must be minimum

2.2. Notation. Following is the list of notations that will be
used in this study (Table 1).

)e objective of the ADVRP is to find a least cost optimal
tour set that visit all cities using all vehicles, every vehicle
starts journey from and ends journey at the same head-
quarters, each city is visited exactly once, and the distance
traveled by each vehicle must not exceed Dmax. If dij � dji,
the matrix D is symmetric, otherwise, asymmetric. )e
mathematical model of the ADVRP is given below [10].

)e objective function:

f(S) � min 
n−1

i�0


n−1

j�0
dijxij. (1)

Subject to



n−1

i�0
xij � 1 j � 1, 2, . . . , n − 1, (2)



n−1

j�0
xij � 1 j � 1, 2, . . . , n − 1, (3)



n−1

j�0
x0j � m, (4)



n−1

i�0
xi0 � m, (5)

2 Mathematical Problems in Engineering




n−1

j�0,j≠i
zij − 

n−1

j�0,j≠i
zji − 

n−1

j�0
dijxij � 0 i � 1, 2, . . . , n − 1, (6)

zij ≤ Dmax − dj0 xij j≠ 0, (7)

zij ≤ Dmax( xi0 i � 1, 2, . . . , n − 1,

(8)

zij ≥ dij + d0i xij i≠ 0, (9)

z0i � d0ix0i i � 1, 2, . . . , n − 1,

(10)

xij ∈ 0, 1{ }. (11)

In this formulation, the constraint (1) shows the objective
function that minimizes the total routes’ distance. )e con-
straints (2) and (3) are the constraints that ensure that each
node (or customer) is visited exactly once, whereas the
constraints (4) and (5) ensure that only m vehicles are
allowed. )e constraint (6) is a flow constraint that is
identified as a flow-based model which states that the distance
from city i to another city j on a tour must be same as the
difference between the distance from headquarters (depot) to
city i and the distance from headquarters to city j. )e
constraint (7) claims that the distance from headquarters to
city j must not exceed the difference between the predefined
maximum distance (Dmax) and the distance from city j to
depot. )e constraint (8) verifies that the distance traveled up
to the depot must not exceed the predefined maximum
distance. Additionally, the constraint (9) states that the total
distance from depot to city jmust not be less than the distance
from the depot to city i plus the distance from city i to city j.
)e constraint (10) shows the initial value of z0i that equals the
distance from the depot to city i.)e constraint (11) states that
the decision variables xij are binary variables.

3. Literature Review

)ere is enough literature for the CVRP, but very few literature
are available for the DVRP as it is not a common variant [2]. A
branch and bound (B&B) method is developed in [10] for
finding exact solution to the ADVRP. A multistart B&B
method is developed in [11] for solving the ADVRP.

Computational results show that the algorithm can provide
exact solutions for some instances. But, for some instances, it
could not find a feasible solution. Additionally, when distance
restriction is tight, solving the problem instance becomes very
hard, and the method is terminated before it might find any
feasible solution. A lexisearch algorithm is developed in [4] for
the DVRP and applied on various problem instance types. )e
results show that as the number of vehicles increases the
computational time and optimal solution value also increase.
Further, for some instances, the algorithm failed to prove the
optimality of the solutions within restricted time limit. In
general, exact algorithms cannot provide exact solutions for
large problem instances, and hence many heuristic algorithms
are developed for solving large problem instances.

Rachid et al. [12] compared some crossover operators for
the VRP and found that partially mapped crossover (PMX)
is better than ordered crossover (OX), and OX is better than
merge #2.)e PMX arbitrarily chooses two crossover points,
copies the sub-chromosome between the points from any
parent into one offspring, and then creates the full offspring
by adding remaining cities from other parent in the mapped
process. )e OX arbitrarily chooses two crossover points,
copies the sub-chromosome between the points from any
parent into one offspring, and then creates the full offspring
by adding remaining cities from other parent in the same
order as they appear therein. )e merge #2 operator is based
on the global precedence among the genes and is inde-
pendent of any of the chromosomes.

Krunoslav and Robert [13] compared eight crossover
operators for the VRP and showed that alternate edge
crossover (AEX) is best among them. )e AEX chooses
edges subsequently from the parents or arbitrarily chooses a
legal edge if an illegal edge exists, for creating offspring.

Alabdulkareem and Ahmed [7] conducted a compara-
tive study among four crossover methods—cycle crossover
(CX), SCX, AEX, and PMX, for the DVRP and observed that
SCX is the best. )e CX takes positions and values from any
parent so that the cities are reproduced from every parent in
alternative cycles for creating offspring. )e SCX creates an
offspring using better links (edges) from the parents.
Sometimes, it introduces better new edges which are not
consistent in any parent. So, the chance of creating better
offspring is very high [8].

Simple heuristic procedures have some drawbacks, such
as stagnation and premature convergence. Hybrid tech-
niques are used to overcome such drawbacks. Hybridization

Table 1: List of notations that will be used in this study.

Notation Description
n Number of cities (or customers or nodes)
N � 0, 1, 2, . . . , n{ } Set of cities, where “city 0” is the depot
M Number of vehicles
D � [dij] Distance matrix
dij )e traveled distance from city i to city j
Dmax Maximum traveled distance-constrained
xij )e decision binary variable that is equal to 1 if a vehicle travels from city i to city j and 0 otherwise
zij )e variable that presents the shortest distance traveled from the depot to city j, where i is the predecessor of j
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can be done by combining the better sides of various exact
methods or heuristic methods [14]. Several hybridization
methods have been described in the literature for the VRP.

A hybrid swarm-based method (PSO-VNS) is proposed
for the distance-constrained CVRP in [15], by combining a
variable neighborhood search (VNS) within the PSO. As
reported, the algorithm shows high-quality solutions com-
pared to the existing algorithms.

)e variable neighborhood SA (VNSA) algorithm is
proposed for the CVRP in [16] by combining a modified
VNS and SA. )e algorithm is tested on 39 CVRP instances
and then is compared against some existing algorithms. As
reported, the algorithm could solve some large and very large
instances efficiently.

A hybrid algorithm (LNS-ACO) is proposed for the
capacitated VRP (CVRP) in [5] by embedding the solution
by the ACO into the large neighborhood search (LNS) al-
gorithm. )e performance of the algorithm is tested on 88
CVRP instances and then is compared against other LNS
algorithms. As reported, the algorithm has a suitable per-
formance in solving the instances.

Four hybrid algorithms—improved intelligent water
drops (IIWD), advanced cuckoo search (ACS), local search
hybrid algorithm (LSHA), and post-optimization hybrid
algorithm (POHA)—are proposed for the CVRP in [17].
Experimental results on some instances are compared to the
best known solutions and found that LSHA and POHA
algorithms could obtain best known solutions for most of
the instances.

An enhanced perturbation-based VNS with adaptive
selection mechanism method (PVNS-ASM) is developed in
[18] by combining perturbation-based VNS (PVNS) with an
adaptive selection mechanism (ASM). )e algorithm is
tested on 21 CVRP instances and then is compared against
existing heuristics. )e computational results show the ef-
ficiency of the algorithm.

A hybrid firefly algorithm (CVRP-FA) is proposed for
the CVRP in [19] by integrating 2 h-opt and improved 2-opt
algorithms for improving solution quality obtained by PMX
and twomutation operators, and then tested on 82 instances.
)e computational results show that the algorithm has faster
convergence rate and higher computational accuracy.

An improved SA (ISA) algorithm with crossover oper-
ator (ISA-CO) is developed for the CVRP in [20] where a
population-based SA algorithm is applied. Further, the
solutions are improved using four local search method-
s—swap, scramble, insertion, and reversion—and two
crossover operators—PMX and OX operators. )e algo-
rithmwas applied on 91 instances.)e computational results
show that the algorithm has a better performance compared
to other algorithms.

A hybrid algorithm that combines the randomized VNS
(RVNS) and TS is proposed in [9] to solve the ADVRP. In
addition, the intensification and diversification stages are
also incorporated to find optimal solutions. Computational
results show that the algorithm is competitive in finding
quality solutions.

)ere is some literature available for other VRP variants.
A hybrid GA is proposed to solve the VRP with drones

(VRPD) [21]. Experiments were carried out on different
instances and found good performance of the algorithm. A
novel hybrid algorithm by combining the GA and modified
VNS (MVNS) for the VRP with cross-docking (VRPCD) is
proposed in [22]. To prove the usefulness of the hybrid
algorithm, a comparative study is carried out on some
problem instances. It is found from the computational study
that the proposed algorithm is more efficient than other
algorithms to find best solutions in less computational time.
A hybrid multi-objective genetic local search (HGLS) al-
gorithm is proposed for the prize-collecting VRP (PCVRP)
in [23]. Experiments on some instances are performed to
evaluate the performance of the algorithm that shows the
superiority of the algorithm.

4. The HGAs for the ADVRP

In this present section, a simple GA and four HGAs are
proposed for the ADVRP. Following is the list of notations
that will be used in our algorithms (Table 2).

4.1. !e Solution Encoding and Initial Population. For ap-
plying GA to solve any problem, a way to represent (encode)
a solution as chromosome (individual) must be defined first.
In our GAs, a solution is encoded by an integer chromosome
called path representation whose length is n+m-1, where n
is the number of cities and m is the number of vehicles. In
this representation, there are m-1 extra cities that represent
duplicate depot cities to show the beginning of new vehicles
[24]. A chromosome consisting of all routes of the vehicles is
created randomly such that distance constraint is not vio-
lated. An initial population of size Ps is created using Al-
gorithm 1.

An example of a chromosome with n� 10 cities and
m� 3 vehicles is given in Figure 1(a), where the integer 1 and
integers bigger than 10 are the depot and the others are
intermediate cities. )e routes of the vehicles are shown in
the VRP version in Figure 1(b), while the graphical inter-
pretation of the routes is given in Figure 1(c).)us, the given
distance matrix is to be augmented to show the duplicate
depot cities. For this, m-1 copy of the depot (city 1) row and
column (i.e., 1st row and 1st column) is added to the given
original matrix.

4.2. Fitness Function and Selection Operator. )e objective
function value of a chromosome (solution) is the total
traveled distance of the routes by all vehicles. )e distance of
every route is computed by adding the distances between the
cities. Since the ADVRP is minimization problem, so the
fitness function is the inverted objective function. In the
selection procedure, a subpopulation (some chromosomes)
is chosen from the current population for forming the next
population.)e performance of GA is affected by choosing a
better selection operator without which GA is a like random
sampling that gives various results in the generations.
Several selection procedures are present in the literature. We
implement the fitness proportional selection (FPS) [25] for
our GAs, which is very popular operator where the fitness
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value of every chromosome in a population relates the area
of roulette-wheel portions. �en, a chromosome is pointed
by the roulette-wheel pointer after it is rotated. Depending
on the �tness value of each chromosome, a probability probi
of selection is calculated as follows:

probi �
fi

∑Psj�1 fj
; i ∈ 1, 2, . . . , PS{ }, (12)

where Ps is the population size and fi is the �tness function
value for the chromosome i. �us, better �tness value
chromosomes have higher chance of being selected as

parents. �ere is no variation of the segment size and se-
lection probability during the selection process. �is process
is very simple to implement, and it gives unbiased distrib-
uted probabilities to the chromosomes and assigns a high
probability to the best chromosome.�is procedure is called
roulette-wheel selection procedure [6] that is presented in
Algorithm 2.

4.3.�e Crossover Operator. �e selection procedure gives a
trade-o� between exploration and exploitation of search
area. �e crossover is a major procedure in GAs that is

1 11 125 3 10 8 2 7 6 4 9

(a)

1Route 1:

Route 2:

Route 3:

1

5 3 1

10 8 2 7 1

1 16 4 9

(b)

1

10 8 2

5

3

9 4

7

6

(c)

Figure 1: (a) An example chromosome, (b) the VRP routes, and (c) the graphical interpretation.

Input: n, Dmax, Ps.
Output: Population of chromosomes.
for i � 1 to Ps do

Set �rst city p � 1.
Current chromosome contains only “city 1.”
Prepare a list of remaining cities except dummy cities.
for j � 2 to n do

Select a city (suppose city q) randomly from the list of remaining cities.
If the distance of the route of present vehicle is less than or equal toDmax, then add it to the current chromosome and then

remove it from the list to make sure that it is not repeated.
If the distance of the route greater than Dmax then add a dummy depot (city q).
Rename the “city q” as “city p” and continue.

end for
end for
Improve the population by 2-opt local search
Return the population

ALGORITHM 1: Initial population creation algorithm.

Table 2: List of notations that will be used in our algorithms.

Notation Description
Ps Population size
Pc Crossover probability
Pmut Mutation probability
MaxGen Maximum generation allowed
Gi Population in ith generation
fi Fitness of ith chromosome

probi
Selection probability of ith
chromosome in a generation

cpi
Cumulative probability of ith
chromosome in a generation

Cj �e jth chromosome
Bi Best solution in ith generation
Droute Distance of the route of a vehicle
BS Best solution
BT Best tour
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employed on a chromosome pair to generate offspring(s)
within a subspace restricted by the parents. Combinedly,
selection and crossover operators are very strong operators
that accelerate the convergence of GAs. )e basic one-point
or multi-point crossover operators do not work with respect
to our encoding. )e crossover operators which are valid for
the TSP can be applied to the VRP and its variants. Several
crossover operators are present in the literature for the TSP,
and we are using the SCX; as it is observed to be one of the
best crossovers for the DVRP [7], we apply this SCX with
some modifications. )e SCX algorithm is presented in
Algorithm 3.

We demonstrate the SCX applying on a 7-city (n � 7)
and 2-vehicle (m � 2) instance together with distance matrix
given in Table 3. Further, suppose that maximum allowed
distance is 60.

We modify the given distance matrix by combining one
copy of the depot (city 1) row and column (i.e., 1st row and
1st column) to the matrix [14] that is provided in Table 4.

Let P1: (1, 2, 4, 8, 3, 6, 5, 7) and P2: (1, 3, 8, 5, 2, 7, 4, 6) be
parent chromosomes. )e objective function value of a
chromosome is determined by summing the tour distances
of all vehicles.)e objective function value (total distance) of
the 1st parent chromosome is 75 with the 1st and 2nd vehicle
distances 54 and 21, respectively. )e objective function
value of the 2nd parent chromosome is 72 with the 1st and
2nd vehicle distances 56 and 16, respectively.

)e calculation is begun from the city 1 (depot). After
city 1, cities 2 in P1 and 3 in P2 are un-visited cities with
distances d12 � 2 and d13 �11. Since d12< d13, city 2 is
combined that generates the offspring as (1, 2). Since
2�Droute<Dmax � 60, continue to build offspring. After city
2, cities 4 in P1 and 7 in P2 are legitimate cities with distances

d24 � 8 and d27 � 6. Since d27< d24, city 7 is combined that
generates the offspring as (1, 2, 7). Since
8�Droute<Dmax � 60, continue to build offspring. After city
7, city 4 is in P2 with distances d74 �10, but no city in P1. So,
for P1, search from the starting and find legitimate city 4 with
d74 �10. Since both are same cities, city 4 is combined that
generates the offspring as (1, 2, 7, 4). Since
18�Droute<Dmax � 60, continue to build offspring. After
city 4, cities 8 in P1 and 6 in P2 are legitimate cities with
distances d48 �11 and d46 � 9. Since d46< d48, city 6 is
combined that generates the offspring as (1, 2, 7, 4, 6). Since
27�Droute<Dmax � 60, continue to build offspring. After
city 6, cities 5 are in P1 with distances d65 �11, but there is no
city in P2. So, for P2, search from the starting and city 3 with
d63 � 5 is found. Since d63< d65, city 3 is combined that
generates the offspring as (1, 2, 7, 4, 6, 3). Since
32�Droute<Dmax � 60, continue to build offspring. After
city 3, cities 5 in P1 and 8 in P2 are legitimate cities with
distances d35 � 8 and d38 � 5. Since d38< d35, city 8 is com-
bined that generates the offspring as (1, 2, 7, 4, 6, 3, 8). )is
completes route for the first vehicle whose distance is 37.
Continue to build route for the next vehicle as well as the
offspring. After city 8, the un-visited city 5 is in both parents,
with distance d85 � 8. So, city 5 is added that produces the
offspring as (1, 2, 7, 4, 6, 3, 8, 5). Since 8�Droute<Dmax � 60,
continue to build offspring. However, this is the complete
offspring chromosome, and so, we stop. )e distance of the
route of the 2nd vehicle is 19, and total distance of the
offspring is 37 + 19� 56 which is less than the distance of the
parents. For this example, the SCX obtains an offspring that
has value better than the values of both parent chromo-
somes. Figure 2(a) shows parent chromosomes (P1 and P2),
Figure 2(b) shows the offspring chromosome (O),

Input: Ps, Population of chromosomes.
Output: New population of chromosomes.
Calculate the fitness fi, probability probi, and then cumulative probability cpi of each chromosome (1≤ i≤Ps) of the population.
Note that cp0 � 0.
for i � 1 to Ps do

Generate a random number r ∈ [0, 1].
if (cpj−1 < r≤ cpj) (for any j, 1≤ j≤Ps) then

Copy the chromosome j to the population.
end if

end for
Return the new population

ALGORITHM 2: Roulette-wheel selection algorithm.

Table 3: )e given distance matrix.

City 1 2 3 4 5 6 7
1 99999 2 11 10 8 7 6
2 6 99999 1 8 8 4 6
3 5 12 99999 11 8 12 3
4 11 9 10 99999 1 9 8
5 11 11 9 4 99999 2 10
6 12 8 5 2 11 99999 11
7 10 11 12 10 9 12 99999
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Figure 2(c) shows ADVRP routes of the offspring, and
Figure 2(d) shows the graphical interpretation of the off-
spring chromosome. In general, the crossover operator that
maintains better attributes of parents in their offspring(s) is
supposed to be better crossover, and SCX is supposed to be
better in this respect. In Figure 2(b), six boldface edges are
from either parent chromosome.

)is SCX obtains only one offspring chromosome. )e
parent chromosomes are chosen based on the predefined
crossover probability. If the offspring has better fitness value
than the parent, the first parent is substituted by the off-
spring in the new population.

4.4. Mutation Operator. To diversify the population, mu-
tation operator is applied with a prespecified probability.
Generally, mutation probability is set very low compared to
crossover probability. )e exchange mutation that chooses
randomly two places in a chromosome and exchanges their

values, if neither of them is dummy depot, is applied here.
)e exchange mutation is presented in Algorithm 4.

For example, let the chromosome: (1, 2, 7, 4, 6, 3, 8, 5)
with distance 56 be allowed for the mutation, and the 5th
and 8th positions with their values are swapped. )en, the
muted chromosome will be muted: (1, 2, 7, 4, 5, 3, 8, 6) with
distance of 1st and 2nd vehicles 33 and 19, respectively, and
with total distance equal to 33 + 19� 52 which is less than the
distance of the original chromosome. Figure 3 shows this
mutation process. However, we do not see whether the value
of muted chromosome is better than the original chromo-
some, we only see whether the distance constraint is valid,
and if it is not valid, then the mutated chromosome is not
accepted.

4.5. Local Search Approach. Local search approaches are used
to hybridize the simple GA that improve the solution quality
and convergence level of the simple GA. In this study, the local

Table 4: )e modified distance matrix.

City 1 2 3 4 5 6 7 8
1 9999 2 11 10 8 7 6 9999
2 6 9999 1 8 8 4 6 6
3 5 12 99999 11 8 12 3 5
4 11 9 10 9999 1 9 8 11
5 11 11 9 4 9999 2 10 11
6 12 8 5 2 11 9999 11 12
7 10 11 12 10 9 12 9999 10
8 9999 2 11 10 8 7 6 9999

Input: D, Pc, Dmax, Pair of parent chromosomes.
Output: Offspring chromosome.
Generate a random number r ∈ [0, 1].
if (r≤Pc) then do

Set p � 1.
)e offspring chromosome contains only “city 1.”
for i � 2 to n do

In each chromosome consider the first “legitimate” (un-visited) city existed after “city p.”
if no legitimate city is existed in a parent, then

Examine from starting of the parent and choose the first legitimate city existed after “city p.”
end if
Assume that “city α” and “city β” are selected from 1st and 2nd parents, respectively.
if (dpα <dpβ) then do

Add “city α” to the offspring chromosome.
else

Add “city β” to the offspring chromosome.
end if
If after combining the current city, Droute >Dmax
then

Drop the current city and add a dummy depot in the route as the end city of the route.
end if
Rename the present city as “city p” and continue.

end for
end if
Return the offspring chromosome

ALGORITHM 3: Sequential constructive crossover algorithm.

Mathematical Problems in Engineering 7



search approaches based on swap, insertion, and inversion
mutations are used. Swap search chooses two cities (genes)
randomly and swaps them. Insertion search inserts a randomly
chosen city into a position in a chromosome randomly. In-
version search inverts the sub-chromosome between two
randomly chosen places in a chromosome. Let (α1, α2, α3, . . .,
αn) be a chromosome, then we de�ne these three mutations as
local search techniques in our HGAs as follows.

4.5.1. Insertion Search. �e insertion search is presented in
Algorithm 5. Figure 4 shows the implementation of the
insertion search approach.

4.5.2. Inversion Search. �e inversion search is presented in
Algorithm 6. Figure 5 shows the implementation of the
inversion search approach.

4.5.3. Swap Search. �e swap search is presented in Algo-
rithm 7. Figure 6 shows the implementation of the swap
search approach.

In the proposed local search technique, one of these three
local searches is chosen for the �rst three HGAs. For the

fourth HGA, we choose any of the above local search ap-
proaches randomly with a probability of 1/3.

4.6. Immigration Method. Although GAs are robust ap-
proaches, however, occasionally they get trapped in local
optima. It might be caused by similar population, and so, the
population should be diversi�ed to escape from the local
optima. �e immigrant procedure increases population
diversity by substituting some chromosomes of the current
population with newly generated chromosomes every gen-
eration. We use the following immigration procedure. If
there is no improvement of solution within last 10% gen-
erations of maximum prede�ned generations, then 10% of
population is replaced by random chromosomes which is
further improved by 2-opt local search approach.

4.7. �e Algorithms. We propose one simple GA and four
HGAs for the ADVRP. �e GA begins with randomly
generated initial population and goes repeatedly through
roulette-wheel selection, sequential constructive crossover,
and exchange mutation procedures to enhance the pop-
ulation gradually, until a prede�ned maximum number of
generations is reached, hoping that a near-optimal solution
is obtained. In addition to the operators in GA, one of the

1P1:

P2:

82 4 3 6 5 7 Distance = 75

Distance = 721 3 8 5 2 7 4 6

(a)

O: Distance = 561 82 7 4 6 3 5

(b)

Route 1: 1 2 7

Route 2: 1 15

4 6 3 1

(c)

7

4 6

3

52
1

(d)

Figure 2: (a) Parent chromosomes, (b) the o�spring, (c) the ADVRP routes of the o�spring, and (d) the graphical interpretation of the
o�spring.

Input : A chromosome, Pmut.
Output: Muted chromosome.
Generate a random number r ∈ [0, 1].
if (r≤Pmut) then do

Select randomly two di�erent cities except dummy depots, suppose “city α” and “city β” in the chromosome.
“city α”↔ “city β,” provided that they do not violate the distance constraint.

end if
Return the mutated chromosome

ALGORITHM 4: Exchange mutation algorithm.

7

4 6

3

52
1

7

4 5

3

62
1

Chromosome Muted Chromosome

Chromosome: Distance = 56

Distance = 52

1 82 7 4 6 3 5

Muted: 1 82 7 4 5

Exchange city 6 with city 5

3 6

Figure 3: Exchange mutation process.

1Before 4 82 7 5

Shift this substring one place left

3 6 Distance = 52

1 8After 52 7 3

Insert city 4 after city 6

46 Distance = 51

Figure 4: Implementation of the insertion search.
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following local search approaches and above de�ned im-
migration approach are incorporated in the HGAs.

GA-INS : GA+ insertion search + immigration
approach.
GA-INV :GA+ inversion search + immigration
approach.
GA-SWP :GA+ swap search + immigration approach.
GA-ADP : GA+ adaptive search that randomly selects
one of three local searches—insertion, inversion, and
swap search + immigration approach.

�e algorithm of the proposed HGAs is presented in
Algorithm 8.

5. Experimental Results

�e proposed GA and HGAs are encoded in Visual C++ and
run on a Laptop with i7-1065G7 CPU@1.30 GHz and 8GB
RAM under MS Windows 10. �e proposed GAs are exe-
cuted for di�erent parameter settings on some TSPLIB
instances [26]. For setting parameters, ftv70 with 2 vehicles
and in�nite maximum distance constraint are used for the
pilot runs. As the higher crossover probability can produce
(hopefully) better solutions, we kept crossover probability
�xed at 1.00 and run all algorithms for all combinations of
Ps� 20, 30, 40, 50, 60, 70, 80, 90, and 100 and Pmut� 0.05,
0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, and 0.15. We
observed that for Ps� 50 and Pmut� 0.10, almost all algo-
rithms could obtain better solutions; hence, these values are
considered for the study. However, looking at the compu-
tational time and solution improvement in the successive
generations, for termination condition, we considered 2000
generations for GA and 200 generations for HGAs. �e
parameter values are reported in Table 5.

We compare the performance of GA and four HGAs on
asymmetric TSPLIB instances of various sizes with various
numbers of vehicles.

In Figure 7, each GA is represented by a curve that
indicates improvement of the solution in successive gen-
erations. �e curve for simple GA shows that it starts the
search process with the worst solutions compared to the
HGAs at the initial stage. It shows variation in solutions
within �rst 25 generations, and after that it shows no var-
iation. So, it gets stuck in local minimum quickly and is
found to be the worst one. Among HGAs, the curve for GA-
INV shows that it starts the search process with the worst
solutions at the initial stage, and shows variation in solutions
within only �rst 10 generations. So, it gets stuck in local
minimum very quickly and is found to be the worst one
among HGAs. However, compared to simple GA, it is far
better. �e curve for GA-INS shows that it starts the search
process with the best solutions compared to other HGAs at
the initial stage and shows variation in solutions within �rst
30 generations. However, after 30 generations, it shows no
variation. So, it gets stuck in local minimum quickly and is
not the best one. �e curves for GA-SWP and GA-ADP
show that they start the search process with better solutions
and are competing within �rst few generations. However,
GA-SWP shows no variation in solutions after �rst 20
generations. �e variation of solutions by GA-ADP con-
tinues up to 35 out of 50 generations, and it obtains best
solution. So, GA-ADP is positioned in 1st position and GA-
SWP is positioned in 2nd position.

We report relative studies among GA and HGAs on
�fteen asymmetric TSPLIB instances of various sizes with 2
and 3 vehicles. Note that we suppose br17 with 2 vehicles is
one instance and br17 with 3 vehicles is another instance. So,
the total number of tested instances is thirty. �e descrip-
tions of the di�erent column titles are as follows (Table 6).

Table 7 reports the results for 30 unrestricted ADVRP
instances where Dmax � Inf(infinity). �e formula for AI is
as follows:

AI �
100 AS1 − AS2( )

AS2
, (13)

where AS1 and AS2 are average solutions found by the GA
and a HGA, respectively.

�e results are evaluated based on average solution, and
SD and average improvement (%) of the HGAs over simple
GA. From Table 7, it is noticed that all algorithms could �nd
best average solutions for the instance br17 with both 2 and 3
vehicles. �e algorithms GA-INS, GA-INV, GA-SWP, and
GA-ADP could obtain best average solutions for 6, 5, 10, and

Input: A chromosome.
Output: New chromosome.
for i � 2 to n − 1 do

for j � i + 1 to n d
If inserting city αi after city αj reduces the distance of the chromosome and does not violate distance constraint, then insert

the city αi after the city αj.
end for

end for
Return the new chromosome

ALGORITHM 5: Insertion search algorithm.

1 8Before 2 7 4 5 3

Invert this substring

6 Distance = 52

1 8After 2 7 4 5 6 3 Distance = 49

Figure 5: Implementation of the inversion search.
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18 instances, respectively. On average, GA-ADP, GA-SWP,
GA-INS, and GA-INV have average improvement (%) as
7.75, 7.51, 7.13, and 5.08, respectively. It shows that the
average improvement of GA-ADP is the largest, GA-SWP is
the second largest, GA-INS is the third largest, and GA-INV
shows the smallest average improvement. From these re-
sults, we can tell that GA-ADP is the best one, GA-SWP is
the second best, GA-INS is the third best, and GA-INV is
positioned in fourth position. Further, by looking at SD, we
can say that results by GA-ADP are stable because its ob-
tained solutions have lowest SD. Figure 8 shows the average
improvements (%) that also signi�es the appropriateness of
the HGAs, especially GA-ADP and GA-SWP. Note that
b17.2 means the instance br17 with 2 vehicles. So, for these
asymmetric unrestricted instances GA-ADP is the best
method and GA-SWP is the second best method. Regarding
the computational time, almost all HGAs are taking same
time. However, simple GA takes less time. We further can
see in this table that a number of vehicles have signi�cant

e�ect on the solution; i.e., as the number of vehicles in-
creases, solution also increases.

From the above outcomes on the asymmetric unre-
stricted instances, we can see that HGAs have showed very
good enhancements in the solutions over GA, and GA-
ADP and GA are the best and worst algorithms, respec-
tively. To con�rm whether average solutions obtained by
GA-ADP are statistically and signi�cantly distinct from
the average solutions found by other HGAs, we conducted
Student’s t-test applying the (14) below [27]. �e t-test is
utilized to measure not only improvement of an algorithm
over another, but signi�cant performance by the better
algorithm.

t � X1 −X2�����������������������
SD2

1/n1 − 1( ) + SD2
2/n2 − 1( )

√ , (14)

whereX1 is average of �rst sample, SD1 is standard deviation
of �rst sample, X2 is average of second sample, SD2 is

Input: A chromosome.
Output: New chromosome.
for i � 2 to n − 1 do
for j � i + 1 to n do
If inverting substring between the cities αi and αj reduces the distance of the chromosome and does not violate distance constraint,
then invert the substring
end for
end for
Return the new chromosome

ALGORITHM 6: Inversion search algorithm.

1 8Before 2 7 4
Swap city 2 with city 6

5 3 6 Distance = 52

1 8After 6 7 4 5 3 2 Distance = 51

(a)

1 8Before 6 7 4
Swap city 7 with city 4

5 3 2 Distance = 51

1 8After 6 4 7 5 3 2 Distance = 48

(b)

1 8Before 6 4 7
Swap city 4 with city 3

5 3 2 Distance = 48

1 8After 6 3 7 5 4 2 Distance = 47

(c)

Swap city 5 with city 4
1 8Before 6 3 7 5 4 2 Distance = 47

1 8After 6 3 7 4 4 2 Distance = 45

(d)

Figure 6: Implementation of the swap search.

Input: A chromosome.
Output: New chromosome.
for i � 2 to n − 1 do

for j � i + 1 to n do
If swapping cities αi and αj reduces the distance of the chromosome and does not violate distance constraint, then swap

them
end for

end for
Return the new chromosome

ALGORITHM 7: Swap search algorithm.
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standard deviation of second sample, n1 is �rst sample size,
and n2 is second sample size.

Here, X2 and SD2 are found by GA-ADP, and X1 and
SD1 are found by remaining HGAs. Table 8 reports t-statistic
values, which can be positive or negative. As the problem is a
minimization problem, positive value implies that GA-ADP
found better solution than its rival HGA found, and negative
value implies that the rival HGA found better solution than
GA-ADP found. We applied 95% con�dence level
(t0.05�1.73), so if t-value is higher than 1.73, they have
signi�cant di�erence. So, if t-value is positive, then GA-ADP
is signi�cantly better; otherwise, its competitive HGA is
better. If t-value is smaller than 1.73, then they have no
statistical and signi�cant di�erences. We further report the
name of better algorithm.

Input: n, MaxGen.
Output: BS and BT
G0�Generate initial population using Algorithm 1
Evaluate (G0)
BS� Find the best solution in this population
i � 0
while (i≤MaxGen) do

i � i + 1
Gi�Population after selection using Algorithm 2
for j � 1 to Ps do

Cj� o�spring chromosome using crossover Algorithm 3
Cj�mutated chromosome using mutation Algorithm 4
Cj� improved chromosome using a local search Algorithm 5, 6, or 7

end for
Gi �New population
Evaluate (Gi)
Bi � Find the best solution in this generation
if (Bi <BS) then

BS � Bi
BT �Best tour;

else if (number of generation till last update> 0.10∗MaxGen) then
Apply immigration

end if
end if

end while
Print BS and BT

ALGORITHM 8: Hybrid genetic algorithm.

Table 5: Parameter settings for the GAs.

Parameters Values
Ps 50
Pc 100%
Pmut 10%

Termination condition For GA, 2000 generations
For HGAs, 200 generations

No. of runs for each instance 20 times

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

So
lu

tio
ns

s

Genrations

GA

GA-INS

GA-INV

GA-SWP

GA-ADP

Figure 7: Solutions for ftv70 with 2 vehicles and in�nite maximum
distance constraint within only �rst 50 generations by GA and
HGAs.

Table 6: Description of di�erent notations used in the tables that
contain results.

Notation Description
INST Name of a TSPLIB instance
Opt Optimal solution
AS Average solution in 20 runs
SD Standard deviation of obtained solutions
AT Average computational time in seconds in 20 runs

AI
Average percentage of improvement of average

solution obtained by a HGA over average solution
obtained by simple GA

Maxi
�e maximum distance traveled by a vehicle among m

vehicles in a route
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�e algorithms GA-ADP and GA-INS have no statistical
and signi�cant di�erences on thirteen instances. On the
sixteen instances, GA-ADP is better than GA-INS, and only
on ftv70.2, GA-INS is better than GA-ADP. On six instances,
GA-ADP and GA-INV have no statistical and signi�cant
di�erences. On the remaining twenty-four instances, GA-
ADP is better than GA-INV. On eighteen instances, GA-
ADP and GA-SWP have no statistical and signi�cant

di�erences. On two instances—ftv70.2 and ftv170.2, GA-
SWP is better than GA-ADP, and on the other ten instances,
GA-ADP is better than GA-SWP. From these experimental
results, we can tell that GA-ADP is statistically signi�cant
and is the best among the HGAs for unrestricted ADVRP
instances.

Further, we conducted t-test to check whether average
solutions obtained by GA-SWP are statistically and
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Figure 8: Average improvement (%) of solution by HGAs over solution by GA for TSPLIB asymmetric instances.

Table 8: �e t-values against GA-ADP and the result about HGAs that found signi�cantly better solutions for the unrestricted ADVRP.

INST GA-INS GA-INV GA-SWP Instance GA-INS GA-INV GA-SWP
br17.2 — — — ry48p.3 better 6.24 0.42 7.82
Better — — — GA-ADP — —
br17.3 — — — ft53.2 2.28 6.86 2.60
Better — — — Better GA-ADP GA-ADP GA-ADP
ftv33.2 1.05 2.06 1.39 ft53.3 1.17 9.72 3.56
Better — GA-ADP — Better — GA-ADP GA-ADP
ftv33.3 3.74 2.04 1.85 ftv55.2 4.80 9.41 3.62
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv35.2 −0.67 2.55 0.63 ftv55.3 2.98 10.69 1.29
Better — GA-ADP — Better GA-ADP GA-ADP —
ftv35.3 0.29 3.21 0.85 ftv64.2 3.21 8.94 −0.11
Better — GA-ADP — Better GA-ADP GA-ADP —
ftv38.2 −0.56 9.69 4.84 ftv64.3 1.45 7.19 1.35
Better — GA-ADP GA-ADP Better — GA-ADP —
ftv38.3 0.00 6.42 4.92 ft70.2 4.04 23.41 −0.21
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP —
p43.2 4.21 — 0.19 ft70.3 1.12 24.87 −0.09
Better GA-ADP — — Better — GA-ADP —
p43.3 6.01 — 0.34 ftv70.2 −3.00 14.77 −2.04
Better GA-ADP — — Better GA-INS GA-ADP GA-SWP
ftv44.2 −0.78 2.19 −1.38 ftv70.3 3.98 19.28 −1.13
Better — GA-ADP — Better GA-ADP GA-ADP —
ftv44.3 0.65 3.62 1.34 kro124p.2 9.91 25.99 1.78
Better — GA-ADP — Better GA-ADP GA-ADP GA-ADP
ftv47.2 3.36 3.93 2.07 kro124p.3 2.92 26.83 −0.37
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP —
ftv47.3 1.67 3.84 1.87 ftv170.2 3.19 13.75 −3.95
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP GA-SWP
ry48p.2 4.59 −0.50 6.60 ftv170.3 4.42 14.72 −1.58
Better GA-ADP — GA-ADP Better GA-ADP GA-ADP —
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significantly distinct from the average solutions found by
GA-INS. We saw (not reported here) that for 25 instances
there is no statistical difference between them, and for 5
instances, GA-SWP is better than GA-INS. So, GA-SWP is
the second best.

Table 9 reports the results for restricted ADVRP in-
stances where Dmax � 0.9∗Max1 is used to find Max2. From
this table, it is seen that the GA could find best average
solutions for the instance br17 with both 2 and 3 vehicles.
)e algorithms GA-INS, GA-INV, GA-SWP, and GA-ADP
could find best average solutions for 4, 2, 6, and 22 instances,
respectively. On average, GA-ADP, GA-SWP, GA-INS, and
GA-INV have average improvement (%) as 10.97, 9.97, 9.72,
and 6.59, respectively. It shows that the average improve-
ment of GA-ADP is the largest, GA-SWP is the second
largest, GA-INS is the third largest, and GA-INV shows the
smallest average improvement. From these results, we can
tell that GA-ADP is the best one, GA-SWP is the second
best, GA-INS is the third best, and GA-INV is positioned in
fourth position. Further, by looking at SD, we can say that
results by GA-ADP are stable because its obtained solutions
have lower SD. It is to be noted that no algorithm could solve
the instance p43 with both 2 and 3 vehicles, so their results
are not stated in Table 9. Figure 9 shows the average im-
provements (%) that also signifies the appropriateness of the
HGAs, especially GA-ADP and GA-SWP. So, for these
restricted ADVRP instances GA-ADP is the best algorithm
and GA-SWP is the second best algorithm. Regarding the
computational time, almost all HGAs are taking same time.
However, simple GA takes less time. We further can see in
this table that a number of vehicles have significant effect on
the solution; i.e., almost for all instances, as the number of
vehicles increases, solution also increases.

We see from the experiment that HGAs have fantastic
improvements in the solution over GA for the restricted
ADVRP instances. Among the algorithms, GA-ADP is the
best and GA is the worst. To confirm whether average so-
lutions obtained by GA-ADP are statistically and signifi-
cantly distinct from the average solutions found by other
HGAs, Student’s t-test is performed, and the results are
shown in Table 10. )ere is no statistical and significant
difference between GA-INS and GA-ADP on twelve in-
stances. On the remaining sixteen instances, GA-ADP is
better than GA-INS. )ere is no statistical and significant
difference between GA-INV and GA-ADP on five instances.
On the remaining twenty-three instances, GA-ADP is better
than GA-INV. )ere is no statistical and significant dif-
ference between GA-SWP and GA-ADP on ten instances.
On the seventeen instances, GA-ADP is better than GA-
SWP. On only the instance ftv38 with 3 vehicles, GA-SWP is
better than GA-ADP. From this experiment, we can say that
GA-ADP is statistically significant and is the best among the
HGAs for the restricted ADVRP instances also.

Further, we conducted t-test to check whether average
solutions obtained by GA-SWP are statistically and signif-
icantly distinct from the average solutions found by GA-INS.
We saw (not reported here) that for 20 instances there is no
statistical difference between them, for 3 instances GA-INS
is better than GA-SWP, and for 5 instances GA-SWP is

better than GA-INS. So, GA-SWP is the second best and
GA-INS is the third best one.

We further report the results in Table 11 for restricted
ADVRP instances where Dmax � 0.9∗Max2 is used to find
Max3. It is seen that no algorithm could solve the instances
p43, ft53, and ftv170 with both 2 and 3 vehicles; ftv35, ftv38,
ftv44, ftv47, ftv55, ft70, and kro124p with 2 vehicles; and
br17 with 3 vehicles. It seems that these problem instances
are more complex. So, we did not report them, and we
reported the results on 17 instances only.

Among the reported instances, GA could not solve
kro124p with 2 vehicles; GA-INV could not solve ftv38 with
3 vehicles, and ftv64 and kro124p with 2 vehicles; however,
the algorithms GA-INS, GA-SWP, and GA-ADP could solve
these instances. It is noticed that the GA could find best
average solutions for the instance br17 with 2 vehicles only.
)e algorithms GA-INS, GA-INV, GA-SWP, and GA-ADP
could find best average solutions for 2, 1, 5, and 12 instances,
respectively.

On average, GA-ADP, GA-INS, GA-SWP, and GA-INV
have average improvement (%) as 10.77, 9.90, 8.98, and 6.17,
respectively. It shows that the average improvement of GA-
ADP is the largest, GA-INS is the second largest, GA-SWP is
the third largest, and GA-INV shows the smallest average
improvement. From these results, we can tell that for these
restricted ADVRP instances GA-ADP is the best one, GA-
INS is the second best, GA-SWP is the third best, and GA-
INV is positioned in fourth position. Further, by looking at
SD, we can say that results by GA-ADP are stable because its
obtained solutions have lowest SD.

We further can see in this table that a number of vehicles
have significant effect on the solution; i.e., almost for all
instances, as the number of vehicles increases, solution also
increases. It is also observed that as the distance-constrained
becomes tight finding feasible solution becomes difficult.
Regarding the computational time, almost all HGAs are
taking same time. However, simple GA takes less time.

To prove whether average solutions found by GA-ADP
are statistically and significantly different from the average
solutions found by remaining HGAs, we conducted Stu-
dent’s t-test and reported the results in Table 12. )ere is no
statistical and significant difference between GA-INS and
GA-ADP on five instances. On one instance, GA-INS is
better, and on the other ten instances GA-ADP is better.
)ere is no statistical and significant difference between GA-
INV and GA-ADP on four instances. On the remaining
twelve instances, GA-ADP is better. )ere is no statistical
and significant difference between GA-SWP and GA-ADP
on three instances, on one instance GA-SWP is better, and
on the other twelve instances GA-ADP is better. From this
experiment, we can say that GA-ADP is the best for the
restricted ADVRP instances also. However, GA-INS and
GA-SWP are still competing for 2nd rank. We further
perform Student’s t-test between GA-SWP and GA-INS but
found them equivalent. From all above experiments, we can
assume that GA-ADP is the best, GA-SWP and GA-INS are
the second best, and GA is the worst.

We further report a performance comparison of GA-
ADP against HVTalgorithm [9] on some asymmetric CVRP
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(ACVRP) instances [28] of sizes from 34 to 71. As in [9], we
run each instance 10 times. Further, we increase in the
maximum generations to 250 generations for each run. �e
results are reported in Table 13. �e percentage of gap (Gap)
is calculated by

Gap �
100(BS − Opt)

Opt
. (15)

Looking at the best solutions, HVT could not �nd op-
timal solution for the A065-03f, whereas our proposed GA-
ADP could �nd optimal solutions of all instances at least
once in ten runs. So, in terms of best solution, our proposed

algorithm GA-ADP is better than HVT. Looking at the
average solutions, for the �rst four instances, both algo-
rithms could obtain same average solutions, for the
remaining three instances—A048-03f, A065-03f, and A071-
03f, our GA-ADP is better than HVT, whereas only for the
instance A056-03f, HVT is better than GA-ADP. Overall,
our proposed algorithm GA-ADP is better than HVT. Re-
garding the computational time, HVTwas executed on Intel
Pentium core i7 duo 2.10GHz CPU with 8GB RAM,
whereas our algorithm is executed on Intel Pentium core i7
1.30GHz CPU with 8GB RAM. It shows that their machine
is faster than our machine. Looking at the computer
speci�cations of both machines and computational times,

GA-INS
GA-INV

GA-SWP
GA-ADP

A
ve

ra
ge

 Im
pr

ov
em

en
t (

%
)

0

5

10

15

20

25

30

35

br
17

.2
br

17
.3

ftv
33

.2
ftv

33
.3

ftv
35

.2
ftv

35
.3

ftv
38

.2
ftv

38
.3

ftv
44

.2
ftv

44
.3

ftv
47

.2
ftv

47
.3

ry
48

p.
2

ry
48

p.
3

ft5
3.

2
ft5

3.
3

ft5
5.

2
ft5

5.
3

ftv
64

.2
ftv

64
.3

ftv
70

.2
ftv

70
.3

ftv
70

.2
ftv

70
.3

kr
o1

24
p.

2
kr

o1
24

p.
3

ftv
17

0.
2

ftv
17

0.
3

Instances

Figure 9: Average improvement (%) of solution by HGAs over solution by GA for TSPLIB asymmetric instances.

Table 10: �e t-values against GA-ADP and the result about HGAs that found signi�cantly better solutions for the restricted ADVRP.

INST GA-INS GA-INV GA-SWP Instance GA-INS GA-INV GA-SWP
br17.2 — — — ft53.2 better 2.86 GA-ADP 2.99 GA-ADP 4.01 GA-ADP
Better — — —
br17.3 — — — ft53.3 better 1.58 2.07 GA-ADP 2.06 GA-ADP
Better — — — —
ftv33.2 1.13 7.64 4.80 ftv55.2 10.56 12.43 3.33
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv33.3 1.20 5.58 5.49 ftv55.3 1.68 12.97 6.16
Better — GA-ADP GA-ADP Better — GA-ADP GA-ADP
ftv35.2 −0.26 5.88 2.80 ftv64.2 4.82 13.55 5.44
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv35.3 0.98 1.65 1.85 ftv64.3 3.48 21.04 5.44
Better — — GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv38.2 0.84 11.39 7.68 ft70.2 1.75 27.89 0.58
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP —
ftv38.3 2.00 5.01 11.78 ft70.3 5.06 29.94 −2.30
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP GA-SWP
ftv44.2 4.50 7.19 4.95 ftv70.2 1.93 18.94 0.75
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP —
ftv44.3 2.90 5.38 4.40 ftv70.3 1.07 19.95 1.53
Better GA-ADP GA-ADP GA-ADP Better — GA-ADP —
ftv47.2 −0.81 3.75 −0.11 kro124p.2 6.02 15.31 −0.05
Better — GA-ADP — Better GA-ADP GA-ADP —
ftv47.3 1.65 6.00 1.58 kro124p.3 7.01 17.21 −0.98
Better — GA-ADP — Better GA-ADP GA-ADP —
ry48p.2 6.13 0.99 5.72 ftv170.2 9.88 16.42 −0.31
Better GA-ADP — GA-ADP Better GA-ADP GA-ADP —
ry48p.3 4.11 1.34 5.19 ftv170.3 5.90 9.02 1.75
Better GA-ADP — GA-ADP Better GA-ADP GA-ADP GA-ADP
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one can say that our computational time is comparable with
that of HVT. Overall, looking at the solution quality and
computational time, our suggested GA-ADP is found to be
better than HVT.

A real-life application of the ADVRP may be the sales
representative who visits customers without pick up or
delivery constraints but with distance constraints.)is study
uses three local search methods to develop three separate
HGAs and adaptive search that randomly selects one of three
local search methods to develop fourth HGA to solve the
ADVRP. )e fourth HGA, i.e., GA-ADP, provides cost-
effective optimal solution to the problem.)e proposed GA-
ADP provides a cost-effective optimal routing plan to the
sales representative. It is observed that as the number of
vehicles increases solution value also increases, so removal of
a vehicle from the fleet can reduce the workers. Hence, this
gives managerial interpretation for the optimal fleet sizing
and route designing.

6. Conclusion and Future Works

)is paper developed a simple GA and four hybrid HGAs for
solving the asymmetric distance-constrained vehicle routing
problem (ADVRP). )e proposed GA used random initial

population followed by sequential constructive crossover
and swap mutation. )e HGAs improved the initial solution
using 2-opt search method and incorporated local search
techniques along with an immigration procedure to find
better solution to this problem. Experimental study has been
carried out among the proposed GA and HGAs, by solving
some TSPLIB asymmetric instances of various sizes.

)ree sets of experiments were performed on asym-
metric TSPLIB instances. )e first experiment was unre-
stricted ADVRP that used a very big predefined maximum
distance for every vehicle, in the 2nd experiment, the pre-
defined maximum distance was restricted by multiplying 0.9
to the maximum distance obtained in the 1st experiment,
and the third experiment used the maximum distance as 0.9
multiple of maximum distance obtained in 2nd experiment.
Our computational experience reveals that the suggested
HGAs are very good. From the experiments, we found that
HGA using adaptive search is the best, and HGA using swap
search is the second best for the restricted and unrestricted
ADVRP instances. We further performed Student’s t-test
and confirmed our claim. However, since no research re-
ported the exact solutions for the instances, hence, we could
not claim how good our obtained solutions are. So, one can
verify the optimality of our best solutions, which is also

Table 12: )e t-values against GA-ADP and the result about HGAs that found significantly better solutions for the restricted ADVRP.

INST GA-INS GA-INV GA-SWP Instance GA-INS GA-INV GA-SWP
ftv33.2 0.69 5.72 7.24 ftv55.3 3.85 10.47 3.02
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv33.3 2.60 3.39 4.68 ftv64.2 3.70 — 6.62
Better GA-ADP GA-ADP GA-ADP Better GA-ADP — GA-ADP
ftv35.3 0.73 3.65 4.30 ftv64.3 1.19 6.59 5.27
Better — GA-ADP GA-ADP Better — GA-ADP GA-ADP
ftv38.3 0.53 — 7.17 ft70.3 2.40 25.04 4.23
Better — — GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv44.3 −2.37 7.92 2.35 ftv70.2 8.37 27.85 −0.91
Better GA-INS GA-ADP GA-ADP Better GA-ADP GA-ADP —
ftv47.3 2.04 7.88 4.49 ftv70.3 1.00 20.99 −0.32
Better GA-ADP GA-ADP GA-ADP Better — GA-ADP —
ry48p.2 4.47 0.03 5.60 kro124p.2 4.16 — −4.00
Better GA-ADP — GA-ADP Better GA-ADP — GA-SWP
ry48p.3 4.41 2.73 6.86 kro124p.3 5.80 16.36 −0.70
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP —

Table 13: A comparative study between HVT [9] and GA-ADP on the ACVRP.

INST n m Opt
HVT GA-ADP

BS AS Gap Time BS AS Gap Time
A034-02f 34 2 1406 1406 1406.00 0.00 0.27 1406 1406.00 0.00 0.16
A036-03f 36 3 1644 1644 1644.00 0.00 0.31 1644 1644.00 0.00 0.18
A039-03f 39 3 1654 1654 1654.00 0.00 0.44 1654 1654.00 0.00 0.26
A045-03f 45 3 1740 1740 1740.00 0.00 0.52 1740 1740.00 0.00 0.53
A048-03f 48 3 1891 1891 1891.51 0.00 0.59 1891 1891.23 0.00 0.74
A056-03f 56 3 1739 1739 1739.00 0.00 0.63 1739 1739.01 0.00 1.96
A065-03f 65 3 1974 1976 1976.21 0.10 2.61 1974 1975.06 0.00 2.63
A071-03f 71 3 2054 2054 2054.51 0.00 2.80 2054 2054.35 0.00 2.95
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under our next investigation. However, it is observed that as
the distance-constrained becomes tight finding feasible
solution becomes difficult. Finally, we reported a compar-
ative study between our GA-ADP and a state-of-the-art
algorithm on asymmetric capacitated VRP and found that
our algorithm is better than the state-of-the-art algorithm
for the instances.

)ough the proposed HGAs found very effective solu-
tions with small differences among average solutions, we
acknowledge that still there is possibility to enhance the
solutions by merging better local search approaches and/or
heuristic procedures and perturbation technique to the al-
gorithms which will be our investigation. Also, proposing a
new metaheuristic procedure for solving many other in-
stances effectively could be very interesting for the
researchers.
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method for large asymmetric distance-constrained vehicle
routing problem,” European Journal of Operational Research,
vol. 226, no. 3, pp. 386–394, 2013.

[12] M. H. Rachid, W. R. Cherif-Khettaf, P. Chatonnay, and
C. Bloch, “A study of performance on crossover and mutation
operators for vehicle routing problem,” in Proceedings of the
3rd International Conference on Information Systems, Logistics
and Supply Chain - ILS’2010, Casablanca, Morocco, April
2010.

[13] P. Krunoslav and M. Robert, “Comparison of eight evolu-
tionary crossover operators for the vehicle routing problem,”
Mathematical Communications, vol. 18, pp. 359–375, 2013.

[14] Z. H. Ahmed, “A hybrid algorithm combining lexisearch and
genetic algorithms for the quadratic assignment problem,”
Cogent Engineering, vol. 5, no. 1, Article ID 1423743, 2018.

[15] T. Tlili, S. Faiz, and S. Krichen, “A hybrid metaheuristic for
the distance-constrained capacitated vehicle routing prob-
lem,” Procedia - Social and Behavioral Sciences, vol. 109,
pp. 779–783, 2014.

[16] Y. Xiao, Q. Zhao, I. Kaku, and N. Mladenovic, “Variable
neighbourhood simulated annealing algorithm for capaci-
tated vehicle routing problems,” Engineering Optimization,
vol. 46, no. 4, pp. 562–579, 2014.

[17] E. Teymourian, V. Kayvanfar, G. M. Komaki, andM. Zandieh,
“Enhanced intelligent water drops and cuckoo search algo-
rithms for solving the capacitated vehicle routing problem,”
Information Sciences, vol. 334-335, pp. 354–378, 2016.

[18] A. Faiz, S. Subiyanto, and U. M. Arief, “An efficient meta-
heuristic algorithm for solving capacitated vehicle routing
problem,” International Journal of Advances in Intelligent
Informatics, vol. 4, no. 3, pp. 212–225, 2018.

[19] A. M. Altabeeb, A. M.Mohsen, and A. Ghallab, “An improved
hybrid firefly algorithm for capacitated vehicle routing
problem,” Applied Soft Computing, vol. 84, Article ID 105728,
2019.
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