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We aim to suggest a simple genetic algorithm (GA) and other four hybrid GAs (HGAs) for solving the asymmetric distance-
constrained vehicle routing problem (ADVRP), a variant of vehicle routing problem (VRP). The VRP is a difficult NP-hard
optimization problem that has numerous real-life applications. The VRP aims to find an optimal tour that has least total distance (or
cost) to provide service to n customers (or nodes or cities) utilizing m vehicles so that every vehicle starts journey from and ends
journey at a depot (headquarters) and visits every customer only once. The problem has many variations, and we consider the
ADVRP for this study, where distance traveled by every vehicle must not exceed a predefined maximum distance. The proposed GA
uses random initial population followed by sequential constructive crossover and swap mutation. The HGAs enhance the initial
solution using 2-opt search method and incorporate a local search technique along with an immigration procedure to obtain effective
solution to the ADVRP. Experiments have been conducted among the suggested GAs by solving several restricted and unrestricted
ADVRP instances on asymmetric TSPLIB utilizing several vehicles. Our experiments claim that the suggested HGAs using local
search methods are very effective. Finally, we reported a comparative study between our best HGA and a state-of-the-art algorithm on
asymmetric capacitated VRP and found that our algorithm is better than the state-of-the-art algorithm for the instances.

1. Introduction

The vehicle routing problem (VRP) is very complicated
traditional NP-hard combinatorial optimization problem
(COP) that was presented by Dantzig and Ramser [1]. The
problem determines minimum distance (cost or time) route
for a vehicle set to serve a customer set. It has several real-life
applications such as shipments delivery, transportation
networks, and street cleaning. The VRP is a widely studied
problem that has several variants such as the VRP with
Backhauls (VRPB), the VRP with pickup and delivery
(VRPPD), the split delivery VRP (SDVRP), the VRP with
time window (VRPTW), and the multi-depot VRP
(MDVRP) [2].

We consider another variant of the VRP, called distance-
constrained VRP (DVRP) in which total distance toured by
every vehicle in the tour is constrained by a predefined
maximum distance. The problem determines minimum cost
route for a vehicle set so that every customer is provided
service once by exactly one vehicle, every vehicle starts
journey and ends journey at the same depot, and the entire
distance traveled by each vehicle must not exceed the pre-
defined maximum distance. Methods that have been used to
solve the DVRP as well as COPs are categorized as exact and
heuristic methods [3]. Branch and bound, branch and price,
branch and cut, and lexisearch are some examples of exact
methods which obtain exact solutions [4]. However, these
methods take lots of computational effort. However, heuristic
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and metaheuristic methods obtain near exact solutions
quickly, so they are normally used in large-scale DVRP in-
stances. Metaheuristic methods are more advanced than the
heuristic methods. Genetic algorithm (GA), simulated
annealing (SA), differential evolution algorithm (DEA), tabu
search (TS), artificial bee colony (ABC), ant colony optimi-
zation (ACO), and particle swarm optimization (PSO) are
some examples of metaheuristic methods. They can obtain
suitable solutions to various kinds of optimization problems
in a realistic time [5]. Among them, GA is commonly applied
to find effective solution to the COPs in a reasonable time.

GA is a popular metaheuristic algorithm, which was first
introduced by John Holland [6]. The major assumption of GA
is that just the stronger individuals/chromosomes can live
longer. Normally, a random population of chromosomes is
generated first, and then wusing possibly three oper-
ators—selection, crossover, and mutation, (hopefully) new
population is created in each generation. The process is
replicated till the stopping criterion is reached. The purpose is
to find solution with higher fitness value that is close to the
optimal solution.

A common problem with GAs is premature convergence
to obtain optimal solution which is due to the population
diversity loss. If it is low, the convergence will be fast; oth-
erwise, convergence will be time-consuming and sometimes it
is a wastage of computational efforts. So, it is important to
balance between exploitation and exploration of search area.
In general, the effectiveness of GAs extremely depends on
genetic operators. Among them, crossover operator plays a
very important role and accordingly many researchers used/
developed different crossovers for the VRP. Usually, crossover
techniques that were used/developed for the usual traveling
salesman problem (TSP) are used in other COPs also. Among
crossover operators, sequential constructive crossover (SCX)
was found very good for some COPs [7, 8]. Though simple
GA using SCX is very good, sometimes it gets stuck in local
optima. So, one can go for hybrid GA that merges simple GA
with a local search (or heuristic) method.

The main contribution of this paper is to propose a
simple GA and four hybrid GAs (HGAs) for the ADVRP. In
our proposed HGAs, initial population is generated ran-
domly that is further enhanced by 2-opt local search, off-
spring are created by SCX, random alteration of two genes by
swap mutation, solutions are improved by one of three
different local search methods, and stagnation/premature
convergence is removed by immigration method. Experi-
ments have been conducted among the suggested GAs by
solving several restricted and unrestricted ADVRP instances
on asymmetric TSPLIB utilizing several vehicles. Our ex-
periments claim that the suggested HGAs using different
local search methods are very effective. Finally, we did a
comparative study between our best HGA and a state-of-the-
art algorithm [9] on some asymmetric capacitated VRP
(ACVRP) and found that our algorithm is better than the
competing algorithm for the instances.

This paper is arranged as follows: Section 2 defines the
problem, Section 3 provides a literature survey for the
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problem, Section 4 develops the simple GA and hybrid GAs
for the problem, Section 5 introduces results of experiments,
and finally Section 6 introduces discussion and conclusion.

2. Problem Definition

The ADVRP determines the minimum cost route to serve a
customer set. The cost is defined by total traveling distance.
Customers are scattered across several locations, and each of
them is to be visited only once by a single vehicle. Generally,
the vehicles have the same distance constraints.

2.1. Assumptions. Following are the assumptions for de-
fining the problem:

(i) Each customer is visited exactly once by exactly one
vehicle

(ii) Each vehicle route starts and ends at the same depot

(iii) Each vehicle’s route can only pass through one
depot exactly once

(iv) A non-negative distance-constrained for all vehicle
is defined, and the distance traveled by each vehicle
cannot exceed the distance-constrained

(v) The sum of route of all vehicles must be minimum

2.2. Notation. Following is the list of notations that will be
used in this study (Table 1).

The objective of the ADVRP is to find a least cost optimal
tour set that visit all cities using all vehicles, every vehicle
starts journey from and ends journey at the same head-
quarters, each city is visited exactly once, and the distance
traveled by each vehicle must not exceed D,,,,. If d;; = d;,
the matrix D is symmetric, otherwise, asymmetric. The
mathematical model of the ADVRP is given below [10].

The objective function:

n-1n-1
f(S)=min ) ¥ d,x,;. (1)
i=0 j=0
Subject to
n—-1
xijzl ]:1,2, ..,1’1—1, (2)
i=0
n-1
inj_1 j=12,...,n-1, (3)
=0
n—-1
Z ij = m’ (4)
=0
n—-1
Z Xjp =M, (%)
i=0
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TaBLE 1: List of notations that will be used in this study.

Notation Description

n Number of cities (or customers or nodes)
N=1{0,1,2,...,n} Set of cities, where “city 0” is the depot

M Number of vehicles

D = [d, j] Distance matrix

d;; The traveled distance from city i to city j

D« Maximum traveled distance-constrained

x;j The decision binary variable that is equal to 1 if a vehicle travels from city i to city j and 0 otherwise

z; The variable that presents the shortest distance traveled from the depot to city j, where i is the predecessor of j

i=1,2,...,n-1, (6)

n-1 n-1 n-1
> zi= Y, 2= ) dyxij=0
=]

j=0,j#i j=0,j#i
2;;< (Dpax —djo)xi;  j#0, (7)

Zij < (Dmax)xiO

< i=1,2,...,n-1,

(8)

Zjj 2 (dij + dOi)xij i#0, (9)

i=12,...,n-1,
(10)

Zg; = doiXo;

x;j € {0, 1), (11)

In this formulation, the constraint (1) shows the objective
function that minimizes the total routes” distance. The con-
straints (2) and (3) are the constraints that ensure that each
node (or customer) is visited exactly once, whereas the
constraints (4) and (5) ensure that only m vehicles are
allowed. The constraint (6) is a flow constraint that is
identified as a flow-based model which states that the distance
from city i to another city j on a tour must be same as the
difference between the distance from headquarters (depot) to
city i and the distance from headquarters to city j. The
constraint (7) claims that the distance from headquarters to
city j must not exceed the difference between the predefined
maximum distance (D,,.) and the distance from city j to
depot. The constraint (8) verifies that the distance traveled up
to the depot must not exceed the predefined maximum
distance. Additionally, the constraint (9) states that the total
distance from depot to city j must not be less than the distance
from the depot to city i plus the distance from city i to city j.
The constraint (10) shows the initial value of z,; that equals the
distance from the depot to city i. The constraint (11) states that
the decision variables x;; are binary variables.

3. Literature Review

There is enough literature for the CVRP, but very few literature
are available for the DVRP as it is not a common variant [2]. A
branch and bound (B&B) method is developed in [10] for
finding exact solution to the ADVRP. A multistart B&B
method is developed in [11] for solving the ADVRP.

Computational results show that the algorithm can provide
exact solutions for some instances. But, for some instances, it
could not find a feasible solution. Additionally, when distance
restriction is tight, solving the problem instance becomes very
hard, and the method is terminated before it might find any
feasible solution. A lexisearch algorithm is developed in [4] for
the DVRP and applied on various problem instance types. The
results show that as the number of vehicles increases the
computational time and optimal solution value also increase.
Further, for some instances, the algorithm failed to prove the
optimality of the solutions within restricted time limit. In
general, exact algorithms cannot provide exact solutions for
large problem instances, and hence many heuristic algorithms
are developed for solving large problem instances.

Rachid et al. [12] compared some crossover operators for
the VRP and found that partially mapped crossover (PMX)
is better than ordered crossover (OX), and OX is better than
merge #2. The PMX arbitrarily chooses two crossover points,
copies the sub-chromosome between the points from any
parent into one offspring, and then creates the full offspring
by adding remaining cities from other parent in the mapped
process. The OX arbitrarily chooses two crossover points,
copies the sub-chromosome between the points from any
parent into one offspring, and then creates the full offspring
by adding remaining cities from other parent in the same
order as they appear therein. The merge #2 operator is based
on the global precedence among the genes and is inde-
pendent of any of the chromosomes.

Krunoslav and Robert [13] compared eight crossover
operators for the VRP and showed that alternate edge
crossover (AEX) is best among them. The AEX chooses
edges subsequently from the parents or arbitrarily chooses a
legal edge if an illegal edge exists, for creating offspring.

Alabdulkareem and Ahmed [7] conducted a compara-
tive study among four crossover methods—cycle crossover
(CX), SCX, AEX, and PMX, for the DVRP and observed that
SCX is the best. The CX takes positions and values from any
parent so that the cities are reproduced from every parent in
alternative cycles for creating offspring. The SCX creates an
offspring using better links (edges) from the parents.
Sometimes, it introduces better new edges which are not
consistent in any parent. So, the chance of creating better
offspring is very high [8].

Simple heuristic procedures have some drawbacks, such
as stagnation and premature convergence. Hybrid tech-
niques are used to overcome such drawbacks. Hybridization



can be done by combining the better sides of various exact
methods or heuristic methods [14]. Several hybridization
methods have been described in the literature for the VRP.

A hybrid swarm-based method (PSO-VNS) is proposed
for the distance-constrained CVRP in [15], by combining a
variable neighborhood search (VNS) within the PSO. As
reported, the algorithm shows high-quality solutions com-
pared to the existing algorithms.

The variable neighborhood SA (VNSA) algorithm is
proposed for the CVRP in [16] by combining a modified
VNS and SA. The algorithm is tested on 39 CVRP instances
and then is compared against some existing algorithms. As
reported, the algorithm could solve some large and very large
instances efficiently.

A hybrid algorithm (LNS-ACO) is proposed for the
capacitated VRP (CVRP) in [5] by embedding the solution
by the ACO into the large neighborhood search (LNS) al-
gorithm. The performance of the algorithm is tested on 88
CVRP instances and then is compared against other LNS
algorithms. As reported, the algorithm has a suitable per-
formance in solving the instances.

Four hybrid algorithms—improved intelligent water
drops (IIWD), advanced cuckoo search (ACS), local search
hybrid algorithm (LSHA), and post-optimization hybrid
algorithm (POHA)—are proposed for the CVRP in [17].
Experimental results on some instances are compared to the
best known solutions and found that LSHA and POHA
algorithms could obtain best known solutions for most of
the instances.

An enhanced perturbation-based VNS with adaptive
selection mechanism method (PVNS-ASM) is developed in
[18] by combining perturbation-based VNS (PVNS) with an
adaptive selection mechanism (ASM). The algorithm is
tested on 21 CVRP instances and then is compared against
existing heuristics. The computational results show the ef-
ficiency of the algorithm.

A hybrid firefly algorithm (CVRP-FA) is proposed for
the CVRP in [19] by integrating 2 h-opt and improved 2-opt
algorithms for improving solution quality obtained by PMX
and two mutation operators, and then tested on 82 instances.
The computational results show that the algorithm has faster
convergence rate and higher computational accuracy.

An improved SA (ISA) algorithm with crossover oper-
ator (ISA-CO) is developed for the CVRP in [20] where a
population-based SA algorithm is applied. Further, the
solutions are improved using four local search method-
s—swap, scramble, insertion, and reversion—and two
crossover operators—PMX and OX operators. The algo-
rithm was applied on 91 instances. The computational results
show that the algorithm has a better performance compared
to other algorithms.

A hybrid algorithm that combines the randomized VNS
(RVNS) and TS is proposed in [9] to solve the ADVRP. In
addition, the intensification and diversification stages are
also incorporated to find optimal solutions. Computational
results show that the algorithm is competitive in finding
quality solutions.

There is some literature available for other VRP variants.
A hybrid GA is proposed to solve the VRP with drones
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(VRPD) [21]. Experiments were carried out on different
instances and found good performance of the algorithm. A
novel hybrid algorithm by combining the GA and modified
VNS (MVNY) for the VRP with cross-docking (VRPCD) is
proposed in [22]. To prove the usefulness of the hybrid
algorithm, a comparative study is carried out on some
problem instances. It is found from the computational study
that the proposed algorithm is more efficient than other
algorithms to find best solutions in less computational time.
A hybrid multi-objective genetic local search (HGLS) al-
gorithm is proposed for the prize-collecting VRP (PCVRP)
in [23]. Experiments on some instances are performed to
evaluate the performance of the algorithm that shows the
superiority of the algorithm.

4. The HGAs for the ADVRP

In this present section, a simple GA and four HGAs are
proposed for the ADVRP. Following is the list of notations
that will be used in our algorithms (Table 2).

4.1. The Solution Encoding and Initial Population. For ap-
plying GA to solve any problem, a way to represent (encode)
a solution as chromosome (individual) must be defined first.
In our GAs, a solution is encoded by an integer chromosome
called path representation whose length is n + m-1, where n
is the number of cities and m is the number of vehicles. In
this representation, there are m-1 extra cities that represent
duplicate depot cities to show the beginning of new vehicles
[24]. A chromosome consisting of all routes of the vehicles is
created randomly such that distance constraint is not vio-
lated. An initial population of size P; is created using Al-
gorithm 1.

An example of a chromosome with n=10 cities and
m = 3 vehicles is given in Figure 1(a), where the integer 1 and
integers bigger than 10 are the depot and the others are
intermediate cities. The routes of the vehicles are shown in
the VRP version in Figure 1(b), while the graphical inter-
pretation of the routes is given in Figure 1(c). Thus, the given
distance matrix is to be augmented to show the duplicate
depot cities. For this, m-1 copy of the depot (city 1) row and
column (i.e., 1st row and 1st column) is added to the given
original matrix.

4.2. Fitness Function and Selection Operator. The objective
function value of a chromosome (solution) is the total
traveled distance of the routes by all vehicles. The distance of
every route is computed by adding the distances between the
cities. Since the ADVRP is minimization problem, so the
fitness function is the inverted objective function. In the
selection procedure, a subpopulation (some chromosomes)
is chosen from the current population for forming the next
population. The performance of GA is affected by choosing a
better selection operator without which GA is a like random
sampling that gives various results in the generations.
Several selection procedures are present in the literature. We
implement the fitness proportional selection (FPS) [25] for
our GAs, which is very popular operator where the fitness
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TaBLE 2: List of notations that will be used in our algorithms.

Notation Description
P, Population size
P, Crossover probability
Pt Mutation probability
MaxGen Maximum generation allowed
G; Population in ith generation
fi Fitness of ith chromosome
prob; Selection probability of ith
! chromosome in a generation

cp; Cumulative probability of ith

! chromosome in a generation
C; The jth chromosome
B, Best solution in ith generation
D, oue Distance of the route of a vehicle
BS Best solution
BT Best tour

e
o
s DOD0-O

(®)

FIGURE 1: (a) An example chromosome, (b) the VRP routes, and (c) the graphical interpretation.

Input: n, D, P,.
Output: Population of chromosomes.
fori=1to P, do
Set first city p = 1.
Current chromosome contains only “city 1.”
Prepare a list of remaining cities except dummy cities.
for j =2 ton do

remove it from the list to make sure that it is not repeated.
If the distance of the route greater than D,
Rename the “city g~ as “city p” and continue.
end for
end for
Improve the population by 2-opt local search
Return the population

Select a city (suppose city q) randomly from the list of remaining cities.
If the distance of the route of present vehicle is less than or equal to D,

then add a dummy depot (city g).

then add it to the current chromosome and then

max’>

ALGORITHM 1: Initial population creation algorithm.

value of every chromosome in a population relates the area
of roulette-wheel portions. Then, a chromosome is pointed
by the roulette-wheel pointer after it is rotated. Depending
on the fitness value of each chromosome, a probability prob;
of selection is calculated as follows:

fi .
P,
i fj
where P is the population size and f; is the fitness function

value for the chromosome i. Thus, better fitness value
chromosomes have higher chance of being selected as

prob; = ief{l,2,...,Pg}, (12)

parents. There is no variation of the segment size and se-
lection probability during the selection process. This process
is very simple to implement, and it gives unbiased distrib-
uted probabilities to the chromosomes and assigns a high
probability to the best chromosome. This procedure is called
roulette-wheel selection procedure [6] that is presented in
Algorithm 2.

4.3. The Crossover Operator. The selection procedure gives a
trade-off between exploration and exploitation of search
area. The crossover is a major procedure in GAs that is
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Input: P,, Population of chromosomes.
Output: New population of chromosomes.
Calculate the fitness f;, probability prob;, and then cumulative probability cp; of each chromosome (1 <i< P,) of the population.
Note that cpy=0.
fori=1to P, do
Generate a random number r € [0, 1].
if (cpj_y <r<cp;) (for any j,1<j<P,) then
Copy the chromosome j to the population.
end if
end for
Return the new population
ALGORITHM 2: Roulette-wheel selection algorithm.
TasLE 3: The given distance matrix.
City 1 2 3 4 5 6 7
1 99999 2 11 10 8 7 6
2 6 99999 1 8 8 4 6
3 5 12 99999 11 8 12 3
4 11 9 10 99999 1 9 8
5 11 11 9 4 99999 2 10
6 12 8 5 2 11 99999 11
7 10 11 12 10 9 12 99999

employed on a chromosome pair to generate offspring(s)
within a subspace restricted by the parents. Combinedly,
selection and crossover operators are very strong operators
that accelerate the convergence of GAs. The basic one-point
or multi-point crossover operators do not work with respect
to our encoding. The crossover operators which are valid for
the TSP can be applied to the VRP and its variants. Several
crossover operators are present in the literature for the TSP,
and we are using the SCX; as it is observed to be one of the
best crossovers for the DVRP [7], we apply this SCX with
some modifications. The SCX algorithm is presented in
Algorithm 3.

We demonstrate the SCX applying on a 7-city (n=7)
and 2-vehicle (m = 2) instance together with distance matrix
given in Table 3. Further, suppose that maximum allowed
distance is 60.

We modify the given distance matrix by combining one
copy of the depot (city 1) row and column (i.e., 1st row and
Ist column) to the matrix [14] that is provided in Table 4.

Let Py:(1,2,4,8,3,6,5,7)and P5: (1, 3,8,5,2,7,4,6) be
parent chromosomes. The objective function value of a
chromosome is determined by summing the tour distances
of all vehicles. The objective function value (total distance) of
the 1st parent chromosome is 75 with the 1st and 2nd vehicle
distances 54 and 21, respectively. The objective function
value of the 2nd parent chromosome is 72 with the 1st and
2nd vehicle distances 56 and 16, respectively.

The calculation is begun from the city 1 (depot). After
city 1, cities 2 in P; and 3 in P, are un-visited cities with
distances dy,=2 and dyj3=11. Since di,<d3, city 2 is
combined that generates the offspring as (1, 2). Since
2= Dioute < Dinax = 60, continue to build offspring. After city
2, cities 4 in P, and 7 in P, are legitimate cities with distances

dr4=8 and d,;=6. Since d,; < dy, city 7 is combined that
generates the offspring as (1, 2, 7). Since
8 = D;oute < Dinax = 60, continue to build offspring. After city
7, city 4 is in P, with distances d;, = 10, but no city in P;. So,
for Py, search from the starting and find legitimate city 4 with
d;4=10. Since both are same cities, city 4 is combined that
generates the offspring as (1, 2, 7, 4). Since
18 = Dyoute < Dimax = 60, continue to build offspring. After
city 4, cities 8 in P; and 6 in P, are legitimate cities with
distances dyg=11 and dss=9. Since dys<dys, city 6 is
combined that generates the offspring as (1, 2, 7, 4, 6). Since
27 =Dy oute < Dmax = 60, continue to build offspring. After
city 6, cities 5 are in P; with distances dgs =11, but there is no
city in P,. So, for P,, search from the starting and city 3 with
dg3=5 is found. Since dg3 < dgs, city 3 is combined that
generates the offspring as (1, 2, 7, 4, 6, 3). Since
32 =Droute < Dmax =60, continue to build offspring. After
city 3, cities 5 in P; and 8 in P, are legitimate cities with
distances d35s =8 and d3g=5. Since dsg < d3s, city 8 is com-
bined that generates the offspring as (1, 2, 7, 4, 6, 3, 8). This
completes route for the first vehicle whose distance is 37.
Continue to build route for the next vehicle as well as the
offspring. After city 8, the un-visited city 5 is in both parents,
with distance dgs=8. So, city 5 is added that produces the
offspring as (1, 2, 7, 4, 6, 3, 8, 5). Since 8 = D, yte < Dimax = 60,
continue to build offspring. However, this is the complete
offspring chromosome, and so, we stop. The distance of the
route of the 2nd vehicle is 19, and total distance of the
offspring is 37 + 19 = 56 which is less than the distance of the
parents. For this example, the SCX obtains an offspring that
has value better than the values of both parent chromo-
somes. Figure 2(a) shows parent chromosomes (P; and P,),
Figure 2(b) shows the offspring chromosome (O),
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Input: D, P, D,.., Pair of parent chromosomes.
Output: Offspring chromosome.
Generate a random number 7 € [0, 1].
if (r<P,) then do
Set p=1.
The offspring chromosome contains only “city 1.”
for i =2 to n do
In each chromosome consider the first “legitimate” (un-visited) city existed after “city p.”
if no legitimate city is existed in a parent, then
Examine from starting of the parent and choose the first legitimate city existed after “city p.”
end if
Assume that “city &” and “city 7 are selected from 1st and 2nd parents, respectively.
if (dpa <dpﬁ) then do
Add “city «” to the offspring chromosome.
else
Add “city B” to the offspring chromosome.
end if
If after combining the current city, D, e > Dy
then
Drop the current city and add a dummy depot in the route as the end city of the route.
end if
Rename the present city as “city p” and continue.
end for
end if
Return the offspring chromosome
ALGORITHM 3: Sequential constructive crossover algorithm.
TaBLE 4: The modified distance matrix.
City 1 2 3 4 5 6 7 8
1 9999 2 11 10 8 7 6 9999
2 6 9999 1 8 8 4 6 6
3 5 12 99999 11 8 12 3 5
4 11 9 10 9999 1 9 8 11
5 11 11 9 4 9999 2 10 11
6 12 8 5 2 11 9999 11 12
7 10 11 12 10 9 12 9999 10
8 9999 2 11 10 8 7 6 9999

Figure 2(c) shows ADVRP routes of the offspring, and
Figure 2(d) shows the graphical interpretation of the off-
spring chromosome. In general, the crossover operator that
maintains better attributes of parents in their offspring(s) is
supposed to be better crossover, and SCX is supposed to be
better in this respect. In Figure 2(b), six boldface edges are
from either parent chromosome.

This SCX obtains only one offspring chromosome. The
parent chromosomes are chosen based on the predefined
crossover probability. If the offspring has better fitness value
than the parent, the first parent is substituted by the off-
spring in the new population.

4.4. Mutation Operator. To diversify the population, mu-
tation operator is applied with a prespecified probability.
Generally, mutation probability is set very low compared to
crossover probability. The exchange mutation that chooses
randomly two places in a chromosome and exchanges their

values, if neither of them is dummy depot, is applied here.
The exchange mutation is presented in Algorithm 4.

For example, let the chromosome: (1, 2, 7, 4, 6, 3, 8, 5)
with distance 56 be allowed for the mutation, and the 5th
and 8th positions with their values are swapped. Then, the
muted chromosome will be muted: (1, 2, 7, 4, 5, 3, 8, 6) with
distance of 1st and 2nd vehicles 33 and 19, respectively, and
with total distance equal to 33 + 19 = 52 which is less than the
distance of the original chromosome. Figure 3 shows this
mutation process. However, we do not see whether the value
of muted chromosome is better than the original chromo-
some, we only see whether the distance constraint is valid,
and if it is not valid, then the mutated chromosome is not
accepted.

4.5. Local Search Approach. Local search approaches are used
to hybridize the simple GA that improve the solution quality
and convergence level of the simple GA. In this study, the local
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FIGURE 2: (a) Parent chromosomes, (b) the offspring, (c) the ADVRP routes of the offspring, and (d) the graphical interpretation of the

offspring.

Input : A chromosome, P, .

Output: Muted chromosome.
Generate a random number 7 € [0, 1].
if (r<P,,) then do

end if
Return the mutated chromosome

Select randomly two different cities except dummy depots, suppose “city «” and “city ” in the chromosome.
“city a” < “city B,” provided that they do not violate the distance constraint.

ALGORITHM 4: Exchange mutation algorithm.

Chromosome: @ e ° o o ° Distance = 56
Exchange city 6 with city 5

Muted: Distance = 52
(D> D>
@9 @0
5" 5

Chromosome Muted Chromosome

FiGure 3: Exchange mutation process.

search approaches based on swap, insertion, and inversion
mutations are used. Swap search chooses two cities (genes)
randomly and swaps them. Insertion search inserts a randomly
chosen city into a position in a chromosome randomly. In-
version search inverts the sub-chromosome between two
randomly chosen places in a chromosome. Let (a1, a2, a3, .. .,
an) be a chromosome, then we define these three mutations as
local search techniques in our HGAs as follows.

4.5.1. Insertion Search. The insertion search is presented in
Algorithm 5. Figure 4 shows the implementation of the
insertion search approach.

4.5.2. Inversion Search. The inversion search is presented in
Algorithm 6. Figure 5 shows the implementation of the
inversion search approach.

4.5.3. Swap Search. The swap search is presented in Algo-
rithm 7. Figure 6 shows the implementation of the swap
search approach.

In the proposed local search technique, one of these three
local searches is chosen for the first three HGAs. For the

Shift this substring one place left

Before @ e o I o T Distance = 52
L

Insert city 4 after city 6

After @ O—() ) ) (6 )—>(4) Distance =51

FiGure 4: Implementation of the insertion search.

fourth HGA, we choose any of the above local search ap-
proaches randomly with a probability of 1/3.

4.6. Immigration Method. Although GAs are robust ap-
proaches, however, occasionally they get trapped in local
optima. It might be caused by similar population, and so, the
population should be diversified to escape from the local
optima. The immigrant procedure increases population
diversity by substituting some chromosomes of the current
population with newly generated chromosomes every gen-
eration. We use the following immigration procedure. If
there is no improvement of solution within last 10% gen-
erations of maximum predefined generations, then 10% of
population is replaced by random chromosomes which is
turther improved by 2-opt local search approach.

4.7. The Algorithms. We propose one simple GA and four
HGAs for the ADVRP. The GA begins with randomly
generated initial population and goes repeatedly through
roulette-wheel selection, sequential constructive crossover,
and exchange mutation procedures to enhance the pop-
ulation gradually, until a predefined maximum number of
generations is reached, hoping that a near-optimal solution
is obtained. In addition to the operators in GA, one of the
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Input: A chromosome.
Output: New chromosome.
fori=2ton-1do

for j=i+1tond

the city ai after the city aj.
end for

end for

Return the new chromosome

If inserting city i after city aj reduces the distance of the chromosome and does not violate distance constraint, then insert

ALGORITHM 5: Insertion search algorithm.

Invert this substring

<>
Before @ CO—0)r—()—=0) ) (6) Distance =52
After @ e o G o o Distance = 49

FIGURE 5: Implementation of the inversion search.

following local search approaches and above defined im-
migration approach are incorporated in the HGAs.

GA-INS: GA +insertion
approach.

GA-INV : GA + inversion
approach.

search +immigration
search + immigration

GA-SWP: GA + swap search + immigration approach.

GA-ADP: GA +adaptive search that randomly selects
one of three local searches—insertion, inversion, and
swap search + immigration approach.

The algorithm of the proposed HGAs is presented in
Algorithm 8.

5. Experimental Results

The proposed GA and HGAs are encoded in Visual C++ and
run on a Laptop with i7-1065G7 CPU@1.30 GHz and 8 GB
RAM under MS Windows 10. The proposed GAs are exe-
cuted for different parameter settings on some TSPLIB
instances [26]. For setting parameters, ftv70 with 2 vehicles
and infinite maximum distance constraint are used for the
pilot runs. As the higher crossover probability can produce
(hopetully) better solutions, we kept crossover probability
fixed at 1.00 and run all algorithms for all combinations of
P, =20, 30, 40, 50, 60, 70, 80, 90, and 100 and P, = 0.05,
0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, and 0.15. We
observed that for P;=50 and Pp,,,=0.10, almost all algo-
rithms could obtain better solutions; hence, these values are
considered for the study. However, looking at the compu-
tational time and solution improvement in the successive
generations, for termination condition, we considered 2000
generations for GA and 200 generations for HGAs. The
parameter values are reported in Table 5.

We compare the performance of GA and four HGAs on
asymmetric TSPLIB instances of various sizes with various
numbers of vehicles.

In Figure 7, each GA is represented by a curve that
indicates improvement of the solution in successive gen-
erations. The curve for simple GA shows that it starts the
search process with the worst solutions compared to the
HGAs at the initial stage. It shows variation in solutions
within first 25 generations, and after that it shows no var-
iation. So, it gets stuck in local minimum quickly and is
found to be the worst one. Among HGAs, the curve for GA-
INV shows that it starts the search process with the worst
solutions at the initial stage, and shows variation in solutions
within only first 10 generations. So, it gets stuck in local
minimum very quickly and is found to be the worst one
among HGAs. However, compared to simple GA, it is far
better. The curve for GA-INS shows that it starts the search
process with the best solutions compared to other HGAs at
the initial stage and shows variation in solutions within first
30 generations. However, after 30 generations, it shows no
variation. So, it gets stuck in local minimum quickly and is
not the best one. The curves for GA-SWP and GA-ADP
show that they start the search process with better solutions
and are competing within first few generations. However,
GA-SWP shows no variation in solutions after first 20
generations. The variation of solutions by GA-ADP con-
tinues up to 35 out of 50 generations, and it obtains best
solution. So, GA-ADP is positioned in Ist position and GA-
SWP is positioned in 2nd position.

We report relative studies among GA and HGAs on
fifteen asymmetric TSPLIB instances of various sizes with 2
and 3 vehicles. Note that we suppose br17 with 2 vehicles is
one instance and br17 with 3 vehicles is another instance. So,
the total number of tested instances is thirty. The descrip-
tions of the different column titles are as follows (Table 6).

Table 7 reports the results for 30 unrestricted ADVRP
instances where D, = Inf (infinity). The formula for Al is
as follows:

_ 100(AS, - AS;)
- AS,

Al , (13)

where AS; and AS, are average solutions found by the GA
and a HGA, respectively.

The results are evaluated based on average solution, and
SD and average improvement (%) of the HGAs over simple
GA. From Table 7, it is noticed that all algorithms could find
best average solutions for the instance br17 with both 2 and 3
vehicles. The algorithms GA-INS, GA-INV, GA-SWP, and
GA-ADP could obtain best average solutions for 6, 5, 10, and
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Input: A chromosome.
Output: New chromosome.
fori=2ton-1do

for j=i+1 tondo

then invert the substring

end for

end for

Return the new chromosome

If inverting substring between the cities ai and aj reduces the distance of the chromosome and does not violate distance constraint,

ALGORITHM 6: Inversion search algorithm.

Swap city 2 with city 6
° Distance = 52

¥
Before ©
After o

Distance = 51

—
)
=

Swap city 4 with city 3

pefore
A

(c)

Distance = 48

ONOC
G O

Distance = 47

' Swap city 7 with city 4
O—=0—=0 ®
J S—
O—->O—=0—=0-0
(b)

Swap city 5 with city 4

Before Distance = 51

H

After Distance = 48

Distance = 47

w
&
S
a

]

Distance = 45

—~
(=W
=

FIGURE 6: Implementation of the swap search.

Input: A chromosome.
Output: New chromosome.
fori=2ton-1do

for j=i+1tondo

them
end for
end for
Return the new chromosome

If swapping cities ai and &j reduces the distance of the chromosome and does not violate distance constraint, then swap

ALGORITHM 7: Swap search algorithm.

18 instances, respectively. On average, GA-ADP, GA-SWP,
GA-INS, and GA-INV have average improvement (%) as
7.75, 7.51, 7.13, and 5.08, respectively. It shows that the
average improvement of GA-ADP is the largest, GA-SWP is
the second largest, GA-INS is the third largest, and GA-INV
shows the smallest average improvement. From these re-
sults, we can tell that GA-ADP is the best one, GA-SWP is
the second best, GA-INS is the third best, and GA-INV is
positioned in fourth position. Further, by looking at SD, we
can say that results by GA-ADP are stable because its ob-
tained solutions have lowest SD. Figure 8 shows the average
improvements (%) that also signifies the appropriateness of
the HGAs, especially GA-ADP and GA-SWP. Note that
b17.2 means the instance br17 with 2 vehicles. So, for these
asymmetric unrestricted instances GA-ADP is the best
method and GA-SWP is the second best method. Regarding
the computational time, almost all HGAs are taking same
time. However, simple GA takes less time. We further can
see in this table that a number of vehicles have significant

effect on the solution; i.e., as the number of vehicles in-
creases, solution also increases.

From the above outcomes on the asymmetric unre-
stricted instances, we can see that HGAs have showed very
good enhancements in the solutions over GA, and GA-
ADP and GA are the best and worst algorithms, respec-
tively. To confirm whether average solutions obtained by
GA-ADP are statistically and significantly distinct from
the average solutions found by other HGAs, we conducted
Student’s t-test applying the (14) below [27]. The t-test is
utilized to measure not only improvement of an algorithm
over another, but significant performance by the better
algorithm.

X, - X,
t= 5 5 (14)
\(SD}/m, - 1) +(SD3/m, - 1)

where X is average of first sample, SD, is standard deviation
of first sample, X, is average of second sample, SD, is
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Input: n, MaxGen.
Output: BS and BT

Evaluate (G,)

i=0
while (i < MaxGen) do
i=i+1

for j =1 to P, do

j
end for

G, =New population
Evaluate (G;)

if (B; <BS) then
BS = B;
BT =Best tour;

Apply immigration
end if
end if
end while
Print BS and BT

Gy = Generate initial population using Algorithm 1

BS =Find the best solution in this population

G;=Population after selection using Algorithm 2

C; = offspring chromosome using crossover Algorithm 3
C;=mutated chromosome using mutation Algorithm 4
C;=improved chromosome using a local search Algorithm 5, 6, or 7

B; =Find the best solution in this generation

else if (number of generation till last update > 0.10 * MaxGen) then

ALGORrITHM 8: Hybrid genetic algorithm.

TaBLE 5: Parameter settings for the GAs.

Parameters Values
P, 50
P, 100%
Pout 10%

For GA, 2000 generations
For HGAs, 200 generations
20 times

Termination condition

No. of runs for each instance

4000

3800
3600
3400
3200 ||
3000 |\
2800
2600
2400
2200
2000

Solutionss

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Genrations

GA ——— GA-SWP
—— GA-INS —— GA-ADP
——— GA-INV

FIGURE 7: Solutions for ftv70 with 2 vehicles and infinite maximum
distance constraint within only first 50 generations by GA and
HGAs.

TaBLE 6: Description of different notations used in the tables that
contain results.

Notation Description

INST Name of a TSPLIB instance

Opt Optimal solution

AS Average solution in 20 runs

SD Standard deviation of obtained solutions

AT Average computational time in seconds in 20 runs
Average percentage of improvement of average

Al solution obtained by a HGA over average solution

obtained by simple GA
Max, The maximum distance traveled by a vehicle among m

vehicles in a route

standard deviation of second sample, n, is first sample size,
and n, is second sample size.

Here, X, and SD, are found by GA-ADP, and X, and
SD, are found by remaining HGAs. Table 8 reports t-statistic
values, which can be positive or negative. As the problem is a
minimization problem, positive value implies that GA-ADP
found better solution than its rival HGA found, and negative
value implies that the rival HGA found better solution than
GA-ADP found. We applied 95% confidence level
(to.05=1.73), so if t-value is higher than 1.73, they have
significant difference. So, if t-value is positive, then GA-ADP
is significantly better; otherwise, its competitive HGA is
better. If t-value is smaller than 1.73, then they have no
statistical and significant differences. We further report the
name of better algorithm.
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Average Improvement (%)

GA-INS

- -—- GA-INV

Instances

-—-—- GA-SWP

—— GA-ADP

FIGURE 8: Average improvement (%) of solution by HGAs over solution by GA for TSPLIB asymmetric instances.

TaBLE 8: The t-values against GA-ADP and the result about HGAs that found significantly better solutions for the unrestricted ADVRP.

INST GA-INS GA-INV GA-SWP Instance GA-INS GA-INV GA-SWP
br17.2 — — — ry48p.3 better 6.24 0.42 7.82
Better — — — GA-ADP — —
brl7.3 — — — ft53.2 2.28 6.86 2.60
Better — — — Better GA-ADP GA-ADP GA-ADP
ftv33.2 1.05 2.06 1.39 ft53.3 1.17 9.72 3.56
Better — GA-ADP — Better — GA-ADP GA-ADP
ftv33.3 3.74 2.04 1.85 ftv55.2 4.80 9.41 3.62
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv35.2 -0.67 2.55 0.63 ftv55.3 2.98 10.69 1.29
Better — GA-ADP — Better GA-ADP GA-ADP —
ftv35.3 0.29 3.21 0.85 ftv64.2 3.21 8.94 -0.11
Better — GA-ADP — Better GA-ADP GA-ADP —
ftv38.2 -0.56 9.69 4.84 ftv64.3 1.45 7.19 1.35
Better — GA-ADP GA-ADP Better — GA-ADP —
ftv38.3 0.00 6.42 4.92 ft70.2 4.04 23.41 -0.21
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP —
p43.2 4.21 — 0.19 ft70.3 1.12 24.87 -0.09
Better GA-ADP — — Better — GA-ADP —
p43.3 6.01 — 0.34 ftv70.2 -3.00 14.77 -2.04
Better GA-ADP — — Better GA-INS GA-ADP GA-SWP
ftv44.2 -0.78 2.19 -1.38 ftv70.3 3.98 19.28 -1.13
Better — GA-ADP — Better GA-ADP GA-ADP —
ftv44.3 0.65 3.62 1.34 kro124p.2 9.91 25.99 1.78
Better — GA-ADP — Better GA-ADP GA-ADP GA-ADP
ftv47.2 3.36 3.93 2.07 kro124p.3 2.92 26.83 -0.37
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP —
ftvd7.3 1.67 3.84 1.87 ftv170.2 3.19 13.75 -3.95
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP GA-SWP
ry48p.2 4.59 -0.50 6.60 ftv170.3 4.42 14.72 -1.58
Better GA-ADP — GA-ADP Better GA-ADP GA-ADP —

The algorithms GA-ADP and GA-INS have no statistical
and significant differences on thirteen instances. On the
sixteen instances, GA-ADP is better than GA-INS, and only
on ftv70.2, GA-INS is better than GA-ADP. On six instances,
GA-ADP and GA-INV have no statistical and significant
differences. On the remaining twenty-four instances, GA-
ADP is better than GA-INV. On eighteen instances, GA-
ADP and GA-SWP have no statistical and significant

differences. On two instances—ftv70.2 and ftv170.2, GA-
SWP is better than GA-ADP, and on the other ten instances,
GA-ADP is better than GA-SWP. From these experimental
results, we can tell that GA-ADP is statistically significant
and is the best among the HGAs for unrestricted ADVRP
instances.

Further, we conducted t-test to check whether average
solutions obtained by GA-SWP are statistically and
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significantly distinct from the average solutions found by
GA-INS. We saw (not reported here) that for 25 instances
there is no statistical difference between them, and for 5
instances, GA-SWP is better than GA-INS. So, GA-SWP is
the second best.

Table 9 reports the results for restricted ADVRP in-
stances where D, = 0.9 * Max, is used to find Max,. From
this table, it is seen that the GA could find best average
solutions for the instance brl7 with both 2 and 3 vehicles.
The algorithms GA-INS, GA-INV, GA-SWP, and GA-ADP
could find best average solutions for 4, 2, 6, and 22 instances,
respectively. On average, GA-ADP, GA-SWP, GA-INS, and
GA-INV have average improvement (%) as 10.97, 9.97, 9.72,
and 6.59, respectively. It shows that the average improve-
ment of GA-ADP is the largest, GA-SWP is the second
largest, GA-INS is the third largest, and GA-INV shows the
smallest average improvement. From these results, we can
tell that GA-ADP is the best one, GA-SWP is the second
best, GA-INS is the third best, and GA-INV is positioned in
fourth position. Further, by looking at SD, we can say that
results by GA-ADP are stable because its obtained solutions
have lower SD. It is to be noted that no algorithm could solve
the instance p43 with both 2 and 3 vehicles, so their results
are not stated in Table 9. Figure 9 shows the average im-
provements (%) that also signifies the appropriateness of the
HGAs, especially GA-ADP and GA-SWP. So, for these
restricted ADVRP instances GA-ADP is the best algorithm
and GA-SWP is the second best algorithm. Regarding the
computational time, almost all HGAs are taking same time.
However, simple GA takes less time. We further can see in
this table that a number of vehicles have significant effect on
the solution; i.e., almost for all instances, as the number of
vehicles increases, solution also increases.

We see from the experiment that HGAs have fantastic
improvements in the solution over GA for the restricted
ADVRP instances. Among the algorithms, GA-ADP is the
best and GA is the worst. To confirm whether average so-
lutions obtained by GA-ADP are statistically and signifi-
cantly distinct from the average solutions found by other
HGAs, Student’s t-test is performed, and the results are
shown in Table 10. There is no statistical and significant
difference between GA-INS and GA-ADP on twelve in-
stances. On the remaining sixteen instances, GA-ADP is
better than GA-INS. There is no statistical and significant
difference between GA-INV and GA-ADP on five instances.
On the remaining twenty-three instances, GA-ADP is better
than GA-INV. There is no statistical and significant dif-
ference between GA-SWP and GA-ADP on ten instances.
On the seventeen instances, GA-ADP is better than GA-
SWP. On only the instance ftv38 with 3 vehicles, GA-SWP is
better than GA-ADP. From this experiment, we can say that
GA-ADP is statistically significant and is the best among the
HGAs for the restricted ADVRP instances also.

Further, we conducted t-test to check whether average
solutions obtained by GA-SWP are statistically and signif-
icantly distinct from the average solutions found by GA-INS.
We saw (not reported here) that for 20 instances there is no
statistical difference between them, for 3 instances GA-INS
is better than GA-SWP, and for 5 instances GA-SWP is
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better than GA-INS. So, GA-SWP is the second best and
GA-INS is the third best one.

We further report the results in Table 11 for restricted
ADVRP instances where D,,,, =0.9 x Max, is used to find
Max;. It is seen that no algorithm could solve the instances
P43, £t53, and ftv170 with both 2 and 3 vehicles; ftv35, ftv38,
ftv44, ftv47, ftvs5, t70, and krol24p with 2 vehicles; and
br17 with 3 vehicles. It seems that these problem instances
are more complex. So, we did not report them, and we
reported the results on 17 instances only.

Among the reported instances, GA could not solve
kro124p with 2 vehicles; GA-INV could not solve ftv38 with
3 vehicles, and ftv64 and kro124p with 2 vehicles; however,
the algorithms GA-INS, GA-SWP, and GA-ADP could solve
these instances. It is noticed that the GA could find best
average solutions for the instance br17 with 2 vehicles only.
The algorithms GA-INS, GA-INV, GA-SWP, and GA-ADP
could find best average solutions for 2, 1, 5, and 12 instances,
respectively.

On average, GA-ADP, GA-INS, GA-SWP, and GA-INV
have average improvement (%) as 10.77, 9.90, 8.98, and 6.17,
respectively. It shows that the average improvement of GA-
ADP is the largest, GA-INS is the second largest, GA-SWP is
the third largest, and GA-INV shows the smallest average
improvement. From these results, we can tell that for these
restricted ADVRP instances GA-ADP is the best one, GA-
INS is the second best, GA-SWP is the third best, and GA-
INV is positioned in fourth position. Further, by looking at
SD, we can say that results by GA-ADP are stable because its
obtained solutions have lowest SD.

We further can see in this table that a number of vehicles
have significant effect on the solution; i.e., almost for all
instances, as the number of vehicles increases, solution also
increases. It is also observed that as the distance-constrained
becomes tight finding feasible solution becomes difficult.
Regarding the computational time, almost all HGAs are
taking same time. However, simple GA takes less time.

To prove whether average solutions found by GA-ADP
are statistically and significantly different from the average
solutions found by remaining HGAs, we conducted Stu-
dent’s t-test and reported the results in Table 12. There is no
statistical and significant difference between GA-INS and
GA-ADP on five instances. On one instance, GA-INS is
better, and on the other ten instances GA-ADP is better.
There is no statistical and significant difference between GA-
INV and GA-ADP on four instances. On the remaining
twelve instances, GA-ADP is better. There is no statistical
and significant difference between GA-SWP and GA-ADP
on three instances, on one instance GA-SWP is better, and
on the other twelve instances GA-ADP is better. From this
experiment, we can say that GA-ADP is the best for the
restricted ADVRP instances also. However, GA-INS and
GA-SWP are still competing for 2nd rank. We further
perform Student’s ¢-test between GA-SWP and GA-INS but
found them equivalent. From all above experiments, we can
assume that GA-ADP is the best, GA-SWP and GA-INS are
the second best, and GA is the worst.

We further report a performance comparison of GA-
ADP against HVT algorithm [9] on some asymmetric CVRP
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Average Improvement (%)

GA-INS
-—-- GA-INV

Instances

-—-—- GA-SWP
—— GA-ADP

FIGURE 9: Average improvement (%) of solution by HGAs over solution by GA for TSPLIB asymmetric instances.

TaBLE 10: The t-values against GA-ADP and the result about HGAs that found significantly better solutions for the restricted ADVRP.

INST GA-INS GA-INV GA-SWP Instance GA-INS GA-INV GA-SWP
br17.2 — — — t53.2 better 2.86 GA-ADP 2.99 GA-ADP 4.01 GA-ADP
Better — — —

brl7.3 — — — ft53.3 better 1.58 2.07 GA-ADP 2.06 GA-ADP
Better — — — —

ftv33.2 1.13 7.64 4.80 ftv55.2 10.56 12.43 3.33
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv33.3 1.20 5.58 5.49 ftv55.3 1.68 12.97 6.16
Better — GA-ADP GA-ADP Better — GA-ADP GA-ADP
ftv35.2 -0.26 5.88 2.80 ftv64.2 4.82 13.55 5.44
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv35.3 0.98 1.65 1.85 ftv64.3 3.48 21.04 5.44
Better — — GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv38.2 0.84 11.39 7.68 t70.2 1.75 27.89 0.58
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP —
ftv38.3 2.00 5.01 11.78 t70.3 5.06 29.94 -2.30
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP GA-SWP
ftv44.2 4.50 7.19 4.95 ftv70.2 1.93 18.94 0.75
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP —
ftv44.3 2.90 5.38 4.40 ftv70.3 1.07 19.95 1.53
Better GA-ADP GA-ADP GA-ADP Better — GA-ADP —
ftv47.2 -0.81 3.75 -0.11 kro124p.2 6.02 15.31 -0.05
Better — GA-ADP — Better GA-ADP GA-ADP —
ftva7.3 1.65 6.00 1.58 kro124p.3 7.01 17.21 -0.98
Better — GA-ADP — Better GA-ADP GA-ADP —
ry48p.2 6.13 0.99 5.72 ftv170.2 9.88 16.42 -0.31
Better GA-ADP — GA-ADP Better GA-ADP GA-ADP —
ry48p.3 4.11 1.34 5.19 ftv170.3 5.90 9.02 1.75
Better GA-ADP — GA-ADP Better GA-ADP GA-ADP GA-ADP

(ACVRP) instances [28] of sizes from 34 to 71. As in [9], we
run each instance 10 times. Further, we increase in the
maximum generations to 250 generations for each run. The
results are reported in Table 13. The percentage of gap (Gap)
is calculated by

100 (BS - Opt)

G
P Opt

(15)
Looking at the best solutions, HVT could not find op-
timal solution for the A065-03f, whereas our proposed GA-

ADP could find optimal solutions of all instances at least
once in ten runs. So, in terms of best solution, our proposed

algorithm GA-ADP is better than HVT. Looking at the
average solutions, for the first four instances, both algo-
rithms could obtain same average solutions, for the
remaining three instances—A048-03f, A065-03f, and A071-
03f, our GA-ADP is better than HVT, whereas only for the
instance A056-03f, HVT is better than GA-ADP. Overall,
our proposed algorithm GA-ADP is better than HVT. Re-
garding the computational time, HVT was executed on Intel
Pentium core i7 duo 2.10GHz CPU with 8 GB RAM,
whereas our algorithm is executed on Intel Pentium core i7
1.30 GHz CPU with 8 GB RAM. It shows that their machine
is faster than our machine. Looking at the computer
specifications of both machines and computational times,
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TaBLE 12: The t-values against GA-ADP and the result about HGAs that found significantly better solutions for the restricted ADVRP.

INST GA-INS GA-INV GA-SWP Instance GA-INS GA-INV GA-SWP
ftv33.2 0.69 5.72 7.24 ftv55.3 3.85 10.47 3.02
Better — GA-ADP GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv33.3 2.60 3.39 4.68 ftv64.2 3.70 — 6.62
Better GA-ADP GA-ADP GA-ADP Better GA-ADP — GA-ADP
ftv35.3 0.73 3.65 4.30 ftve4.3 1.19 6.59 5.27
Better — GA-ADP GA-ADP Better — GA-ADP GA-ADP
ftv38.3 0.53 — 7.17 t70.3 2.40 25.04 4.23
Better — — GA-ADP Better GA-ADP GA-ADP GA-ADP
ftv44.3 -2.37 7.92 2.35 ftv70.2 8.37 27.85 -0.91
Better GA-INS GA-ADP GA-ADP Better GA-ADP GA-ADP —
ftv47.3 2.04 7.88 4.49 ftv70.3 1.00 20.99 -0.32
Better GA-ADP GA-ADP GA-ADP Better — GA-ADP —
ry48p.2 4.47 0.03 5.60 kro124p.2 4.16 — -4.00
Better GA-ADP — GA-ADP Better GA-ADP — GA-SWP
ry48p.3 4.41 2.73 6.86 kro124p.3 5.80 16.36 -0.70
Better GA-ADP GA-ADP GA-ADP Better GA-ADP GA-ADP —
TaBLE 13: A comparative study between HVT [9] and GA-ADP on the ACVRP.
HVT GA-ADP

INST n m Opt . .

BS AS Gap Time BS AS Gap Time
A034-02f 34 2 1406 1406 1406.00 0.00 0.27 1406 1406.00 0.00 0.16
A036-03f 36 3 1644 1644 1644.00 0.00 0.31 1644 1644.00 0.00 0.18
A039-03f 39 3 1654 1654 1654.00 0.00 0.44 1654 1654.00 0.00 0.26
A045-03f 45 3 1740 1740 1740.00 0.00 0.52 1740 1740.00 0.00 0.53
A048-03f 48 3 1891 1891 1891.51 0.00 0.59 1891 1891.23 0.00 0.74
A056-03f 56 3 1739 1739 1739.00 0.00 0.63 1739 1739.01 0.00 1.96
A065-03f 65 3 1974 1976 1976.21 0.10 2.61 1974 1975.06 0.00 2.63
A071-03f 71 3 2054 2054 2054.51 0.00 2.80 2054 2054.35 0.00 2.95

one can say that our computational time is comparable with
that of HVT. Overall, looking at the solution quality and
computational time, our suggested GA-ADP is found to be
better than HVT.

A real-life application of the ADVRP may be the sales
representative who visits customers without pick up or
delivery constraints but with distance constraints. This study
uses three local search methods to develop three separate
HGAs and adaptive search that randomly selects one of three
local search methods to develop fourth HGA to solve the
ADVRP. The fourth HGA, i.e., GA-ADP, provides cost-
effective optimal solution to the problem. The proposed GA-
ADP provides a cost-effective optimal routing plan to the
sales representative. It is observed that as the number of
vehicles increases solution value also increases, so removal of
a vehicle from the fleet can reduce the workers. Hence, this
gives managerial interpretation for the optimal fleet sizing
and route designing.

6. Conclusion and Future Works

This paper developed a simple GA and four hybrid HGAs for
solving the asymmetric distance-constrained vehicle routing
problem (ADVRP). The proposed GA used random initial

population followed by sequential constructive crossover
and swap mutation. The HGAs improved the initial solution
using 2-opt search method and incorporated local search
techniques along with an immigration procedure to find
better solution to this problem. Experimental study has been
carried out among the proposed GA and HGAs, by solving
some TSPLIB asymmetric instances of various sizes.

Three sets of experiments were performed on asym-
metric TSPLIB instances. The first experiment was unre-
stricted ADVRP that used a very big predefined maximum
distance for every vehicle, in the 2nd experiment, the pre-
defined maximum distance was restricted by multiplying 0.9
to the maximum distance obtained in the 1st experiment,
and the third experiment used the maximum distance as 0.9
multiple of maximum distance obtained in 2nd experiment.
Our computational experience reveals that the suggested
HGAs are very good. From the experiments, we found that
HGA using adaptive search is the best, and HGA using swap
search is the second best for the restricted and unrestricted
ADVRP instances. We further performed Student’s t-test
and confirmed our claim. However, since no research re-
ported the exact solutions for the instances, hence, we could
not claim how good our obtained solutions are. So, one can
verify the optimality of our best solutions, which is also
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under our next investigation. However, it is observed that as
the distance-constrained becomes tight finding feasible
solution becomes difficult. Finally, we reported a compar-
ative study between our GA-ADP and a state-of-the-art
algorithm on asymmetric capacitated VRP and found that
our algorithm is better than the state-of-the-art algorithm
for the instances.

Though the proposed HGAs found very effective solu-
tions with small differences among average solutions, we
acknowledge that still there is possibility to enhance the
solutions by merging better local search approaches and/or
heuristic procedures and perturbation technique to the al-
gorithms which will be our investigation. Also, proposing a
new metaheuristic procedure for solving many other in-
stances effectively could be very interesting for the
researchers.
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