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In this work, fundamental flow problems, namely, Couette flow, fully developed plane Poiseuille flow, and plane Couet-
te–Poiseuille flow of a third-grade non-Newtonian fluid between two horizontal parallel plates separated by a finite distance in a
fuzzy environment are considered. *e governing nonlinear differential equations (DEs) are converted into fuzzy differential
equations (FDEs) and explain our approach with the help of the membership function (MF) of triangular fuzzy numbers (TFNs).
Adomian decomposition method (ADM) is used to solve fundamental flow problems based on FDEs. In a crisp environment, the
current findings are in good accord with their previous numerical and analytical results. Finally, the effect of the α-cut (α ∈ [0, 1])

and other engineering constants on fuzzy velocity profile are invested in graphically and tabular forms. Also, the variability of the
uncertainty is studied through the triangular MF.

1. Introduction

*e non-Newtonian fluids have gained considerable at-
tention from scientists because of extensive applications in
engineering, science, and industry. Various industrial in-
gredients fall into this bunch, such as biological solutions,
soap, paints, cosmetics, tars, shampoos, mayonnaise, blood,
yoghurt, syrups, and glues, etc. Due to the intricate nature of
non-Newtonian fluids, it is very hard to establish a single
model that can describe the characteristics of all non-
Newtonian fluids. So, the fluids of differential type [1] have
received superior consideration by researchers. Here, we will
consider the third-grade fluids (differential type by a sub-
class), which have been studied effectively in numerous types
of flow mechanisms [2–9]. In fluid dynamics, the study of

three fundamental flows specifically (Couette, Poiseuille, and
generalized Couette flow) attracts the researchers by various
non-Newtonian fluids, due to their uses in science, engi-
neering, and industry. *e unidirectional flows are used in
polymer engineering, for instance, die flow, injection
moulding, extrusion, plastic forming, continuous casting,
and asthenosphere flows [10–13]. ADM was introduced by
Adomian [14–16]. ADM is a reliable, effective, and powerful
technique to calculate linear and nonlinear DEs. It gives
analytical solutions in the form of an infinite convergent
series *e ADM has various imperative points of interest
over other scientific techniques just as mathematical strat-
egies, no linearization, discretization, perturbation, and
spatial transformation. Siddiqui et al., [17] deliberated
parallel plate flow of a third-grade fluid using ADM and
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compare the results with numerical technique.” Pirzada and
Vakaskar [18] calculated the solution of the fuzzy heat
equation with the help of fuzzy ADM. Paripour et al. [19]
studied the analytical solution of hybrid FDEs by using the
fuzzy ADM and predictor-corrector method, which shows
ADM is better than the predictor-corrector method. “Also,
Siddiqui et al., [20] provided a comparison of ADM and
Homotopy perturbation method (HPM) in terms of
squeezing flow between two circular plates. *eir analysis
shows that ADM is better than HPM. In the review of lit-
erature, third-grade fluid problems are studied only for crisp
cases.”

Fluid flow plays the main role in the field of science and
engineering. *e rise is in an extensive range of problems
like chemical diffusion, magnetic effect, and heat transfer,
etc. After governing these physical problems convert into
linear or nonlinear DEs. In general, the physical problems
with involved geometry, coefficients, parameters, initial and
boundary conditions greatly affect the solution of DEs. *en
the coefficients, parameters, initial and boundary conditions
are not crisp due to the mechanical defects, experimental
and measurement errors, etc. So in this situation, fuzzy sets
theory (FST) is an effective tool for a better understanding of
the considered phenomena and it is more accurate than
assuming the crisp physical problems. More precisely, the
FDEs play a major role to reduce the uncertainty and proper
way to describe the physical problem which arises in un-
certain parameters, initial and boundary conditions.

Zadeh [21] established the FST in 1965. FST is an ex-
tremely useful technique for defining situations in which
information is ambiguous, hazy, or uncertain. FST is entirely
defined by its MF or sense of belonging. In FST, the MF
allocates a number between 0 and 1 to each element in the
discourse universe. On the other hand, the degree of non-
belongingness is a complement to “one” of the membership
degree. *e fuzzy number (FN) is a generalization of the
classical real number (which uses absolute 0 and 1 only, and
nothing in between) with additional properties. FN can be
expected as a function whose domain is specified zero to one.
*is domain is called an MF. Every numerical value in the
domain is allocated a definite grade of MF where 0 signifies
the minimum possible grade and 1 is the maximum possible
grade. FNs are competent in modelling epistemic uncer-
tainty and its circulation. FNs are a very useful tool for FDEs,
fuzzy analysis and other applications in fuzzy logic. Arith-
metic operations on FNs were developed by Dubois and
Prade [22]. *e impreciseness or vagueness can be defined
mathematically using FNs. *e information of dynamical
systems modelled by ODEs or PEDs is commonly incom-
plete, vague, or uncertain, while FDEs represent a proper
way to model the dynamical systems under vagueness or
uncertainty. Seikala [23] introduced the fuzzy differentia-
bility concept. Later on, Kaleva [24] presented fuzzy dif-
ferentiation and integration. Kandel and Byatt [25]
introduced the FDEs in 1987. Buckley et al. [26] used two
methods extension principle and FNs for the solution of
FDEs. Nieto [27] studied the Cauchy problem for contin-
uous FDEs. Lakshmikantham and Mohapatra studied the
initial value problems for FDEs that have been commenced

in [28]. Park and Han [29] used successive approximation
methods for the existence and uniqueness solution of FDE.
Hashemi et al. [30] used HAM (Homotopyianalysis method)
to calculate the analytical solutions for the system of fuzzy
differential equations (SFDEs). Mosleh [31] used universal
approximation and fuzzy neural network methods to solve
the SFDEs. Gasilov et al. [32] developed the geometric
method to solve SFDEs. Khastan and Nieto [33] used a
generalized differentiability concept to solve the second-
order FDE. A few decades ago, there have been many studies
revolving around the concept of FDEs. [34–47] Biswal et al.
[48] studied the Natural convection of nanofluid flow be-
tween two parallel plates using HPM in a fuzzy environment.
*e volume fraction of nanoparticles is considered as TFN
and also shows the fuzzy result is better than a crisp result.
Borah et al. [49] discussed the MHD flow of second-grade
fluids in a fuzzy environment using fractional derivatives
Atangana-Baleanu and Caputo-Fabrizio. *e nondimen-
sional governing equations convert into fuzzified governing
equations with the help of the Zadeh extension principle and
triangular fuzzy number. MHD and ohmic heating on the
third-grade fluid in an inclined channel in a fuzzy envi-
ronment was investigated by Nadeem et al. [50]. To discuss
the uncertainty, the triangle membership function was used,
as shown in Figure 1. Furthermore, FST has been employed
by several researchers to accomplish well-known scientific
and engineering conclusions [51–59].

*e above-mentioned works motivated us to develop a
model to describe the fuzzy\uncertain analysis for funda-
mental flow problems, namely, plane Couette, fully devel-
oped plane Poiseuille, and plane Couette–Poiseuille flow of
the third-grade fluid between two parallel plates. *e basic
purpose of this article is to show the uncertain flow
mechanism through FDEs and the generalization to the
work of Siddiqui et al. [17] in the circumstance of fuzzy
environment.

*e article is structured as follows. Basic preliminaries
are given in Section 2. In Section 3, the governing equations
of the proposed study and changed governing equations in
the fuzzy form for solving by a fuzzy ADM are developed.
Results and discussion in graphical and tabular forms are
presented in Section 4. In Section 5, some conclusions are
given.

2. Preliminaries about FST

Definition 1 (see [21, 50]). Fuzzy set Z is defined as a set of
ordered pairs such that Z � x, μ

Z
(x): x ∈ U, μ

Z
(x) ∈

[0, 1]}; here U is the universal set, μ
Z

(x) is MF of Z and
mapping defined as μ

Z
(x): U⟶ [0, 1].

Definition 2 (see [22, 50]). α- cut or α- level of a fuzzy set Z,

defined by 0 Zα � x/μ
Z

(x)≥ α , where Zα is crisp set and
0≤ α≤ 1.

Definition 3 (see [22, 50]). Let Z � (δ, χ, η) with MF μ
Z

(x)

called a TFNs if
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μ
Z

(x) �

1 −
x − χ
δ − χ

, x ∈ [δ, χ],

1 −
x − χ
η − χ

, x ∈ [χ, η],

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

*e TFNs with peak (center) χ, right width η − χ > 0, left
width χ − δ > 0, and representation of ordered pair functions
through α-cut approach is written as Z � [v(x; α),

u(x; α)] � [δ + α(χ − δ), η − α(η − χ)], where 0≤ α≤ 1.

TFNs satisfy the following conditions: (i) v(x; α) is non-
decreasing on [0, 1]. (ii) u(x; α) is nonincreasing on [0, 1].
(iii) u(x; α) � v(x; α) on [0, 1]. (iv) v(x; α) and u(x; α) are
bounded on left continuous and right continuous at [0, 1],
respectively. (v) If v(x; α) � u(x; α) then it is called a crisp
solution.

Definition 4 (see [23, 50]). Let I∓ be an interval such that
I∓ ⊆R. A mapping u: I∓ ⟶ F∗ is called a fuzzy process,
defined as u(x; α) � [v(x; α), u(x; α)], x ∈ I∓ and 0≤ α≤ 1.

*e derivative du(x; α)/dx ∈ F∗ of a fuzzy process u(x; α) is
defined as du(x; α)/dx � [(dv(x; α)/dx), (du(x; α)/dx)].

Definition 5 (see [23, 50]). Let I∓ ⊆R and u(x; α) be a fuzzy
valued function define on I∓. Let u(x; α) � [v(x; α), u(x; α)]

for all α-cut. Assume that v(x; α) and u(x; α) have con-
tinuous derivatives or differentiable, for all x ∈ I∓ and
0≤ α≤ 1 then [du(x; α)/dx]α � [(dv(x; α)/dx),

(du(x; α)/dx)]α. Similarly, the higher-order derivatives can
be defined in the same way. *en [du(x; α)/dx] satisfy the
following conditions: (i) dv(x; α)/dx is nondecreasing on [0,
1]. (ii) du(x; α)/dx is nonincreasing on [0, 1]. (iii)
du(x; α)/dx≥ dv(x; α)/dx on [0, 1].

3. Basic Equations

*e basic equations which govern the flow of an incom-
pressible fluid ignoring the thermal effects are as follows
[17]:

∇ · V � 0, (2)

ρ
dV
dt

� ρf + ∇ · τ, (3)

τ � − p1I + τ1, (4)

where f is the body force, p1 is the pressure, ρ is the density of
fluid, V is velocity vector, d/dt is the material derivative, I is
the unit tensor, τ is the stress tensor, and τ1 is the extra stress
defined as follows:

τ1 � τ2 + ε1τ3 + κ1τ4 + κ2 τ2τ3 + τ3τ2(  + κ3 trτ22 τ2. (5)

Here, μ represents the coefficient of shear viscosity,
κ1, κ2, κ3, ε1 and ε2 are material constants. *e tensors
τ2, τ3 and τ4 are, respectively, given by the following:

τ2 � ∇V +(∇V)
T
,

τ3 �
dτ2
dt

+ τ2 (∇V)
T

+(∇V) ,

τ4 �
dτ3
dt

+ τ3 (∇V) +(∇V)
T

 .

(6)

“For the problem under consideration, we assume a
velocity profile for one-dimensional flow and stress tensor of
the form.”

V � (u(x), 0, 0),

τ1 � τ1(x).
(7)

By utilizing equation (7), the continuity equation (2) is
indistinguishably fulfilled and the equation of motion (3),
without gravitational impact, becomes as follows:

μ
d2u
dx

2 + 6 κ2 + κ3( 
du

dx
 

2 d2u
dx

2 −
dp1

dy
  � 0, (8)

−
dp1

dx
+ 2ε1 + ε2( 

d
dx

 
du

dx
 

2

� 0, (9)

On introducing the modified pressure p∓,

p
∓

� − p1(x, y) + 2ε1 + ε2( 
du

dx
 

2

. (10)

Using equation (10) in (9), we find that

dp
∓

dx
� 0. (11)

From equation (11) p∓ � p∓(x) and as a result, equation
(8) becomes as follows:

μ
d2u
dx

2  + 6β
du

dx
 

2 d2u
dx

2 −
dp
∓

dy
  � 0, (12)

where for simplicity we have introduced β � κ2 + κ3.
“Equation (12) is a second-order nonlinear ordinary

differential equation. *is equation governs the
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Figure 1: Triangular membership function.
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unidirectional flow of a non-Newtonian third-grade fluid
between two horizontal infinite parallel plates.”

3.1. +e Adomian Decomposition Method (ADM). In this
section, we briefly outline the decomposition method [14].
To clarify the basic idea, we write the underlying nonlinear
differential equation as follows:

L1u
∓
(x) + N1u

∓
(x) � q(x), (13)

where L1 and N1 are linear and nonlinear operators, re-
spectively, and q is the source term.

In general, the operator L1 can be written in the form

L1 � L + R1, (14)

where L is the highest order derivative in L1 and is assumed
to be easily invertible, R1 is the remaining operator in L1
whose order is less than the order of L.

Using equation (14) in (13), we have the following:
Lu
∓
(x) � q(x) − R1u

∓
(x) − N1u

∓
(x). (15)

Applying L
− 1 on the above equation, we have the

following:

u
∓
(x) � − L

− 1
R1u
∓
(x) − L

− 1
N1u
∓
(x) + g(x), (16)

where g(x) signifies the terms arising after integration of
q(x) and calculate the constants of integration with the help
of initial/boundary conditions. According to Adomian
[14–16], u∓(x) and N1u

∓(x) can be uttered individually in
the form

u
∓
(x) � 

∞

n�0
u
∓
n (x), (17)

N1u
∓
(x) � 

∞

n�0
A
∗
n (x). (18)

where A∗n , s are called Adomian polynomials [14, 15].
*e algorithm of the general ADM can be communi-

cated as follows:

u0
∓
(x) � g(x), (19)

un+1
∓
(x) � − L

− 1
A
∗
n (x) − L

− 1
R1un
∓
(x), n≥ 0. (20)

*us, by calculating all components of u∓(x), the so-
lution can be written as follows:

u
∓
(x) � 

∞

k�1
uk
∓
(x). (21)

Many researchers have established the convergence of
this method [16]. In this continuation, we apply the ADM in
the fuzzy sense to three flow problems d problems.

3.2. Plane Couette Flow. Let us consider the steady laminar
flow of an incompressible third-grade fluid between two
infinite horizontal parallel plates. *e lower plate is fixed
while the upper plate at a distance x � d is moving with
unvarying speed U. Also assume that x − axis is normal to
the flow while y − axis is taken in the direction of flow as
shown in Figure 2. In the absence of pressure gradient, the
resultant differential equation (12) for such flow with
boundary conditions reduces to the following:

μ
d2u
dx

2 + 6β
du

dx
 

2 d2u
dx

2  � 0, (22)

u(x) � 0 at x � 0, (23)

u(x) � U at x � d. (24)

Introduce the following dimensionless parameters

x
∓

�
x

d
,

u
∓

�
u

U
,

β∓ �
βU

2

μd
2 .

(25)

*e boundary value problem (22) and (24) after drop-
ping “∓” becomes

d2u
dx

2 + 6β
du

dx
 

2 d2u
dx

2  � 0, (26)

u(x) � 0 at x � 0, (27)

u(x) � 1 at x � 1. (28)

3.2.1. Solution of the Problem in Fuzzy Environment. To
handle these problems, we have taken TFNs and dis-
cretization in the form of (δ, χ, η) and (d, e, f) for the fuzzy
parameters.*is discretization is used in the boundary of the
parallel plates for certain flow behavior because the
boundary is taken as fuzzified. In above, the governing
equation (26) is taken as FDE

d2u(x; α)

dx
2 + 6⊙ β⊙

d2u(x; α)

dx
2 ⊙

du(x; α)

dx
 

2

� 0. (29)

Subject to fuzzy boundary conditions by using the α- cut
approach, the fuzzy boundary conditions can be decom-
posed into an interval form regarding the α- cut. *erefore,
under the α- cut, the interval boundary conditions can be
written as follows:
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u(0; α) � [δ + α(χ − δ), η − α(η − χ)],

u(1; α) � [α(e − d) + d, fα(f − e)],

u(x; α) �
α − 1
100

,
1 − α
100

  at x

u(x; α) �
2α − 2
100

,
2 − 2α
100

  at x

(30)

where operator ⊙ defines the multiplication of fuzzy
numbers with a real number and u(x; α) � [v(x; α), u

(x; α)], 0≤ α≤ 1, is a fuzzy valued function [23]. Also
u(x; α), say, is the fuzzy velocity profile, du(x; α)/dx and
d2u(x; α)/dx2 represent the fuzzy first and second-order
derivatives. *en v(x; α) and u(x; α) are the lower and
upper bounds of fuzzy velocity profiles, respectively, while
(30) are the fuzzy boundary conditions. So, equation (29)
with fuzzy boundary conditions becomes

d2v(x; α)

dx
2 + 6β

dv(x; α)

dx
 

2d2v(x; α)

dx
2 � 0, (31)

v(x; α) �
α − 1
100

at x � 0,

v(x; α) �
2α − 2
100

at x � 1.

(32)

d2u(x; α)

dx
2 + 6β

du(x; α)

dx
 

2d2u(x; α)

dx
2 � 0, (33)

u(x; α) �
1 − α
100

at x � 0,

u(x; α) �
2 − 2α
100

at x � 1.

(34)

For lower bound of velocity profile, we apply the ADM to
equation (31) with the fuzzified boundary conditions (32) as
follows:

L1v(x; α) � − 6β
dv(x; α)

dx
 

2 d2v(x; α)

dx
2 , (35)

where L1 � d2/dx2 and inverse operator is
L

− 1
� J(·)dx dx. Applying L

− 1 on both sides of equation
(35), we have the following:

v(x; α) � c1x + c2 − 6βL
− 1 dv(x; α)

dx
 

2d2v(x; α)

dx
2

⎡⎣ ⎤⎦, (36)

where the constants of integration are c1 and c2.
To solve equation (36) by the ADM, we let

v(x; α) � 
∞

n�0
vn(x; α), (37)

N1v(x; α) � 
∞

n�0
A
∗
n (x; α), (38)

where

N1v(x; α) �
dv(x; α)

dx
 

2d2v(x; α)

dx
2 . (39)

In view of equations (37)–(39), equation (36) provides
the following:



∞

n�0
vn(x; α) � c1x + c2 − 6βL

− 1
A
∗
n (x; α) . (40)

We identify the zeroth-order component as follows:

v0(x; α) � c1x + c2. (41)

And the remaining components as the recurrence
relation,

vn+1(x; α) � − 6βL
− 1

A
∗
n (x; α) , (42)

where A∗n are the Adomian polynomials that represent the
nonlinear term in (39). *e first few Adomian polynomials
are as follows:

d

u (x)

0

x

y

U

Figure 2: Geometry of the pure Couette flow.
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A
∗
0(x; α) �

d2v0(x; α)

dx
2

dv0(x; α)

dx
 

2

,

A
∗
1(x; α) �

dv0(x; α)

dx
 

2 d2v1(x; α)

dx
2  + 2

dv0(x; α)

dx

dv1(x; α)

dx

d2v0(x; α)

dx
2 ,

A
∗
2(x; α) �

dv1(x; α)

dx
 

2 d2v0(x; α)

dx
2  + 2

dv0(x; α)

dx

dv2(x; α)

dx

d2v0(x; α)

dx
2 ,

+ 2
dv0(x; α)

dx

dv1(x; α)

dx

d2v1(x; α)

dx
2  +

dv0(x; α)

dx
 

2 d2v2(x; α)

dx
2 .

⋮

(43)

*e corresponding fuzzy boundary conditions, after
using (37) in (32), become as follows:

v0(x; α) �
α − 1
100

at x � 0,

v0(x; α) �
2α − 2
100

at x � 1.

(44)

And

vn(x; α) � 0 at x � 0,

vn(x; α) � 0 at x � 1, n≥ 1.
(45)

Solving equations (41) and (44), we obtain the zeroth-
order solution as follows:

v0(x; α) �
(α − 1)(x + 1)

100
. (46)

Using polynomial (43) into (42), with the boundary
conditions (45), we obtain the following:

v1(x; α) � v2(x; α)

� v3(x; α) � 0, an d vn(x; α) � 0, n≥ 1.
(47)

Inserting equations (46) and (47) in (37), the solution of
the differential equation (31) takes the form

v(x; α) �
1
100

(α − 1)(x + 1). (48)

Similarly, the upper bound of velocity profile is as
follows:

u(x; α) �
1
100

(1 − α)(x + 1). (49)

Equations (48) and (49) represent the solutions of the
fuzzy velocity profile for the flow of a fuzzified third-grade
fluid between two parallel plates. In these solutions, the non-
Newtonian parameter β does not appear. Hence, solutions of
fuzzy velocity profile give the same solution as for a New-
tonian fluid.

3.3. Fully Developed Plane Poiseuille Flow. We consider the
steady laminar flow of a third-grade fluid between two
stationary infinite parallel plates under a constant pressure
gradient. Assume that distance between two plates is 2d and
origin of the rectangular coordinates in between the plates as
shown in Figure 3.

*us, the resulting differential equation for the problem
under consideration takes the form of equation (12) with the
following boundary conditions 2d

du(x)

dx
� 0 at x � 0, (50)

u(x) � 0 at x � d. (51)

Introducing the dimensionless parameters

y
∓

�
y

d
,

x
∓

�
x

d
,

u
∓

�
u

U
,

β∓ �
βU

2

μd
2 ,

p
∓

�
p d

μU
.

(52)

Equations (12) and (51) after dropping “∓” take the
following form:

d2u
dx

2 + β
du

dx
 

2 d2u
dx

2 −
dp

dy
  � 0, (53)

du(x)

dx
� 0 at x � 0, (54)

u(x) � 0 at x � 1. (55)
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Now, convert equations (53) and (55) into the form of
FDE as follows:

d2u(x; α)

dx
2 + 6⊙ β⊙

d2u(x; α)

dx
2 ⊙

du(x; α)

ddx
 

2

�
dp

dy
, (56)

du(x; α)

dx
�

α − 1
100

,
1 − α
100

  at x � 0,

u(x; α) �
2α − 2
100

,
2 − 2α
100

  at x � 1.

(57)

Lower and upper bounds of velocity profile are as
follows:

d2v(x; α)

dx
2 + 6β

dv(x; α)

dx
 

2d2v(x; α)

dx
2 �

dp

dy
, (58)

dv(x; α)

dx
�

1
100

(− 1 + α) at x � 0,

v(x; α) �
1
50

(α − 1) t x � 1.

(59)

d2u(x; α)

dx
2 + 6β

d2u(x; α)

dx
2

du(x; α)

dx
 

2

�
dp

dy
, (60)

du(x; α)

dx
�
1 − α
100

at x � 0,

u(x; α) �
1 − α
50

at x � 1.

(61)

For lower bound of velocity profile, we apply the ADM to
equation (58) as we have applied in Section 3.2.1, with the
fuzzified boundary conditions (59)

L1v(x; α) �
dp

dy
− 6β

dv(x; α)

dx
 

2 d2v(x; α)

dx
2 , (62)

where L1 � d2/dx2. Applying the inverse operator
L

− 1
� J(·)dxdx on both sides of equation (62) yields the

following:

v(x; α) � c1x + c2 + L
− 1dp

dy
− 6βL

− 1 dv(x; α)

dx
 

2 d2v(x; α)

dx
2 ,

(63)

where the constants of integration are c1 and c2.
Given equations (37) and (38), equation (63) is provided

as follows:



∞

n�0
vn(x; α) � c1x + c2 + L

− 1 dp

dy
  − 6βL

− 1
A
∗
n (x; α) ,

(64)

Consequently, the decomposition method yields the
recurrence relation,

v0(x; α) � c1x + c2 + L
− 1 dp

dy
 , (65)

vn+1(x; α) � − 6βL
− 1

A
∗
n (x; α) . (66)

where the first few terms of the Adomian polynomial that
represent the nonlinear term are defined in (43). Insight of
expressions (66), we know that

v1(x; α) � − 6βL
− 1

A
∗
0(x; α) ,

v2(x; α) � − 6βL
− 1

A
∗
1(x; α) ,

v3(x; α) � − 6βL
− 1

A
∗
2(x; α) ,

⋮

(67)

*e corresponding fuzzy boundary conditions become
as follows:

dv0(x; α)

dx
�
1 − α
100

at x � 0,

v0(x; α) �
α − 1
50

at x � 1,

(68)

And so on

dvn(x; α)

dx
� 0 at x � 0,

vn(x; α) � 0 at x � 1, n≥ 1.

(69)

By solving equations (65) and (66) with the fuzzified
boundary conditions (68) and (69), using expression of
adomian polynomials (43), equation (63) gives the solution
of lower bound of velocity profile as follows:

x

2d

x = d

x = –d

u(x)
y

Figure 3: Velocity profile of the fluid flow between two parallel
plates.
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v(x; α) �
1
2

px
2

+ 2F(x + 1) − p  +
β
2p

E
4

− (px + F)
4

+ 8pF
3
(x − 1)  +

2β2

p
(px + F)

6

− 4β2F3
(px + F)

3
+
9β2E5

F
3

p
− 12β2F5

+ 6β2F6
+
2(FE)

3
− E

6

3p
2β2 

− 6β3 2(px + F)
8

−
24pF

3
+ 15F

3

10p
(px + F)

5
 − 2pF

2
+ x 12pF

7
−
112F

7

7
 

− 2pF
6

−
2E

8

p
−
12E

5
F
3

5
+
112F

3

7
− 12pF

7
−
15F

7

2
,

(70)

where F � (α − 1)(p + 1)/100 and E � 100p + (α − 1)

(1 + p)/100.

Equation (70) is the approximate solution of the fully
developed plan Poiseuille flow and β is a non-Newtonian

parameter. By setting β � 0, we have the solution for a
viscous fluid.

Similarly, we can find the solution of the upper bound of
velocity profile as follows:

u(x; α) �
1
2

− p + 2A1(x + 1) + px
2

  +
β
2p

A
4
2 − px + A1( 

4
 +8pA1

3
(x − 1) +

2β2

p
px + A1( 

6

− 4β2A1
3

px + A1( 
3

+
9β2A5

2A1
3

p
− 12β2A1

5
+ 6β2A1

6
+
2 A1A2( 

3
− A

6
2

3p
2β2 

− 6β3 2 px + A1( 
8

 −
24pA1

3
+ 15A1

3

10p
px + A1(  − 2pA1

2
+ x 12pA1

7
−
112A1

7

7
 

− 2pA1
6

−
2A

8
2

p
−
12A

5
2A1

3

5
+
112A1

3

7
− 12pA1

7
−
15A1

7

2
,

(71)

where A1 � (p + 1)(1 − α)/100 and A2 � 100p + (1 − α)

(p + 1)/100.

3.4. Plane Couette–Poiseuille flow. Again consider the
steady laminar flow of a third-grade fluid between two
infinite horizontal parallel plates at a distance d apart. *e
upper plate is moving with constant speed U while the
lower plate is stationary. We choose y − axis along with
the lower plate and x − axis perpendicular to it as shown
in Figure 4. *e resulting differential equation in di-
mensionless form is (53) and the corresponding dimen-
sionless form boundary conditions for this flow are given
as follows.

u(x) � 0 at x � 0,

u(x) � 1 at x � 1.
(72)

Now we convert equations (53) and (72) into the form of
FDE as follows:

d2u(x; α)

dx
2 + 6⊙ β

d2u(x; α)

dx
2

du(x; α)

dx
 

2

�
dp

dy
,

(73)

u(x; α) �
α − 1
100

,
1 − α
100

  at x � 0,

u(x; α) �
α − 1
50

,
1 − α
50

  at x � 1.

(74)

Lower and upper bounds of velocity profiles with fuzzy
boundary conditions are as follows:

d2v(x; α)

dx
2 + 6β

d2v(x; α)

dx
2

dv(x; α)

dx
 

2

�
dp

dy
, (75)

v(x; α) �
α − 1
100

at x � 0,

v(x; α) �
α − 1
50

at x � 1.

(76)

d2u(x; α)

dx
2 + 6β

du(x; α)

dx
 

2d2u(x; α)

dx
2 �

dp

dy
, (77)

u(x; α) �
1 − α
100

at x � 0,

u(x; α) �
1 − α
50

at x � 1.

(78)

Following the same process as in previous sections and
applying ADM to equation (75) with the fuzzified boundary
conditions (76), we find the solution of lower bound of
velocity profile as follows:
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v(x; α) � A(x + 1) + p
x
2

2
+ Dx + A  − pβ

p
2
(x + D)

4

2
+ 3A

2
x
2

 + p(2 D + 1)(x + D)
3

−
p
2
D

4

2

− x
p
2
D

4

2
+ pD

3
(2 D + 1) + 3A

2
+

p(D + 1)

2
+ p(2 D + 1)(D + 1)

3
  − pD

3
(2 D + 1)

− 6β2 Ap
3

x
4

+ 2 Dx
3

  +
4p

5
(x + D)

6

15
−

A
2
p
3
(x + D)

4

4
 − Ap

2
x
2

+
p
3
x
3

3
+ Dp

3
x
2

 

×
p
2
D

4

2
 +pD

3
(2 D + 1) + 3A

2
+

p(D + 1)

2
+ p(2 D + 1)(D + 1)

3
 − 3pA

2
x
2
(A + 2p D)

−
p
2
(p + A)(x + D)

4

2
−
3p

4
A(x + D)

5

5
−

p
2
A
3
(x + D)

3

2
+ x 6p

2
A
2
D +

p
4

5
(D + 1)

5
(3A − 1)

−
p
4

15
(D + 1)

6
+

p
2
A

4
(D + 1)

4
(2p + Ap + 2)+

p
2
A
3

2
(D + 1)

3
+ 3pA

3
− Ap

3
− 2 DA p

3
,

(79)

where A � α − 1/100, D � α − 51/100. Similarly, the solution
of an upper bound of the velocity profile is as follows:

u(x; α) � B(x + 1) + p
x
2

2
+ B1x + B  − pβ

p
2

x + B1( 
4

2
+ 3B

2
p
2

 + p 2B1 + 1(  x + B1( 
3

− x
p
2
B
4
1

2
+ pB

3
1 2B1 + 1(  + 3B

2
 +

p 1 + B1( 

2
+ p 1 + 2B1(  1 + B1( 

3
 −

p
2
B
4
1

2

− pB
3
1 2B1 + 1(  − 6β2 Bp

3
x
4

+ 2B1x
3

  +
4p

5
x + B1( 

6

15
−

B
2
p
3

x + B1( 
4

4
 −

Bp
2
x
2

+
p
3
x
3

3
+ B1p

3
x
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p
2
B
4
1

2
+ pB

3
1 2B1 + 1(  + 3B

2
 +

p 1 + B1( 

2
+ p 1 + 2B1(  B1 + 1( 

3


− 3pB
2
x
2

B + 2pB1(  −
p
2
(p + B) B1 + x( 

4

2
−
3p

4
B B1 + x( 

5

5
−

p
2
B
3

B1 + x( 
3

2

+ x 6p
2
B
2
B1 +

p
4

5
B1 + 1( 

5
(3B − 1) −

p
4

15
B1 + 1( 

6
 +

p
2
B

4
B1 + 1( 

4
(2p + Bp + 2)

+
p
2
B
3

2
B1 + 1( 

3
+ 3pB

3
− Bp

3
− 2BB1p

3
,

(80)

d

u (x)

0

x

y

U

Figure 4: Geometry of the Couette–Poiseuille flow.
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where B � 1 − α/100 and B1 � − (α + 49/100).

4. Results and Discussion

In this section, we present a numerical solution of Plane
Couette flow, fully developed plane Poiseuille flow, and
plane Couette–Poiseuille flow for the third-grade non-
Newtonian fluid with fuzzified boundary conditions. Firstly,
convert the governing equations of these problems into
FDEs, then find the solutions for fuzzy velocity profiles by
using ADM. Achieved fuzzy velocity profiles are plotted in
Figures 5–17 for different values of α-cut (α � 0, 0.3, 0.7, 1).

It can be observed that as α increases from 0 to 1, we have a
narrow width of fuzzy velocity profiles and uncertainty
decreases drastically, which finally provide crisp results for
α � 1.

Tables 1–3 show the comparison of the crisp velocity
profile with Siddiqui et al. [4] and Yürüsoy [9]. *e vali-
dation of the present study findings was determined to be in
excellent agreement.

4.1. For Plane Couette Flow. *e non-Newtonian parameter
β does not exist in this solution. As a result, solutions for
fuzzy velocity profiles are the same as for a Newtonian fluid.

4.2. For Fully Developed Plane Poiseuille Flow.
Figures 5–8 show the effect of non-Newtonian parameter β
on the fuzzy velocity profiles with constant pressure gradient
p � dp/dy at different values of fuzzy parameter α. It is
observed that the lower and upper bounds of velocity
profiles decrease with increasing non-Newtonian parameter
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v(x,α) at β = 0

u(x,α) at β = 0
v(x,α) at β = 0.1

u(x,α) at β = 0.1
v(x,α) at β = 0.2

u(x,α) at β = 0.2

ū

Figure 5: Fuzzy velocity profiles for influence of β.
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u(x,α) at β = 0.1
v(x,α) at β = 0.2

u(x,α) at β = 0.2

Figure 6: Fuzzy velocity profiles for influence of β.
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β as well fuzzy parameter α. Figure 8 shows the good
agreement of crisp solution or classical solution that lower
and upper bounds of velocity profiles are the same at α � 1.

Figure 9 describes the lower and upper bounds of fuzzy
velocity profiles at the different values of α. So, for α � 1 the
fuzzy velocity profile falls into classical velocity profile,
which shows the present problem is a generalization of
Siddiqui et al. [17]. Figure 10 shows the uncertain behavior
in terms of the triangular fuzzy plot by fixing the values of x

and p � dp/dy. *e horizontal axis display the velocity
profile and the vertical axis expresses the α − cut which range
from 0 to 1. In this figure, uncertain width gradually de-
creases with increasing α-cut. We observed that v(x; α)

increases and u(x; α) decreases with increasing of α-cut, so
the solution is strong. When α increases the width between

lower and upper bounds of fuzzy velocity profiles decreases
and when α � 1 they concur with one another. Also, the
width between v(x; α) and u(x; α) for different values of
beta is the same. *is means that the uncertainty of fuzzy
velocity is minimum. Table 4 shows the analysis of lower,
mid and upper bounds of velocity profiles at different values
of x with constant pressure gradient p� − 0.4. *e mid-value
of a TFN concurs with the crisp or classical value of the
original problem.

4.3. For Plane Couette–Poiseuille Flow. Figures 11–14 shows
the effect of non-Newtonian parameter β on the fuzzy ve-
locity profiles with constant pressure gradient at different
values of fuzzy parameter α. *e fuzzy velocity profiles
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ū

Figure 7: Fuzzy velocity profiles for influence of β.
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Figure 8: Fuzzy velocity profiles for influence of β.
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increases with increasing non-Newtonian parameter β and
fuzzy parameter α. Figure 14, shows the good agreement of
crisp solution or classical solution for v(x; α) and u(x; α) of
velocity profiles at α � 1. Figure 15 describes the lower and
upper bounds of fuzzy velocity profiles at the different values
of α. So, for α � 1 the fuzzy velocity profile fall into classical
velocity profile, which shows the present problem is a
generalization of Siddiqui et al. [17]. Figure 16 represents the
fuzzy velocity profile for different ranges of the imposed
pressure gradient. Figure 17 shows the uncertain behavior in
terms of a triangular fuzzy plot by fixing the values of x � 0.1
and p � − 0.6. We observed that v(x; α) increases and
u(x; α) decreases with increasing α, so the solution is strong.
*e crisp or classical solution lies among the fuzzy solutions

when α increases the width between lower and upper bounds
of fuzzy velocity profiles decreases and at α � 1 the coherent
with one another. Since the boundary conditions are fuzzy,
the uncertain width gradually decreases with increasing α
and non-Newtonian parameter β. Table 5 shows the analysis
of lower, mid, and upper bounds of velocity profiles at
different values of xwith constant pressure gradient p� − 0.6.
*e mid-value of a TFN concurs with the crisp or classical
value of the original problem. Furthermore, fuzzy velocity
profiles always change with a certain range for any fixed
α-cut and the range gradually decreases with increasing the
values of α- cut.

*is whole discussion concludes that the fuzzy velocity
profile of the fluid is a better option as compared to the crisp
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Figure 9: Fuzzy velocity profiles for different values of α-cut (0≤ α≤ 1).
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Figure 10: Triangular membership function of fuzzy velocity profiles for influence of β.
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Figure 11: Fuzzy velocity profiles for influence of β.
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Figure 13: Fuzzy velocity profiles for influence of β.
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Figure 12: Fuzzy velocity profiles for influence of β.
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Figure 15: Fuzzy velocity profiles for different values of α- cut (0≤ α≤ 1).

14 Mathematical Problems in Engineering



ū

β = 0.1

β = 0.1
β = 0.2

β = 0.2
β = 0.3

β = 0.3

1

0.8

0.6

α-
cu

t

0.4

0.2

0
0.02 0.022 0.024 0.026 0.028 0.03 0.032

V(x;α)

x = 0.1, p = -0.6

u(x;α)

Figure 17: Triangular MFs of fuzzy velocity profiles for influence of β.

Table 2: Comparison of analytical results for the crisp velocity profile of Poiseuille flow when β � 0.1, p � − 0.5, and α � 1.

x HPM [4] PM [9] ADM present results
0 0.049141 0.049792 0.048812
0.1 0.048818 0.049211 0.048314
0.2 0.046718 0.047801 0.045140
0.3 0.045168 0.045314 0.044141
0.4 0.041015 0.041830 0.040019
0.5 0.037180 0.037351 0.036124
0.6 0.031417 0.031876 0.031109
0.7 0.025001 0.025404 0.024914
0.8 0.017912 0.017934 0.017819
0.9 0.009214 0.009466 0.009164
1 0 0 0

Table 1: Comparison of analytical results for the crisp velocity profile of Couette flow when β � 0.1, p � − 0.5, and α � 1.

x HPM [4] PM [9] ADM present results
0 0 0 0
0.1 0.0814178 0.091211 0.076017
0.2 0.1618119 0.181128 0.151478
0.3 0.2618251 0.301241 0.249145
0.4 0.3410156 0.374915 0.330151
0.5 0.4721819 0.467189 0.476182
0.6 0.5215171 0.572820 0.518251
0.7 0.6214168 0.667189 0.610425
0.8 0.7514268 0.771810 0.741516
0.9 0.8810148 0.882185 0.871816
1 1 1 1
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or classical velocity profile of the fluid. Crisp or classical velocity
profile of fluid gives the single flow situation of the fluid while
fuzzy velocity profile of fluid gives the interval flow situation
like lower and upper bounds of the velocity profile.

4.3.1. Fully Developed Plane Poiseuille Flow. Fuzzy velocity
profiles are provided in Figures 5–10.

4.3.2. Plane Couette–Poiseuille Flow. Fuzzy velocity profiles,
influence of pressure gradient, and triangular MFs of fuzzy
velocity profiles are shown in Figures 11–17, respectively.

5. Conclusions

In this work, we have studied the three basic fundamental
flow problems in a fuzzy environment. *e dimensionless
nonlinear governing equations are converted into FDEs with
fuzzified boundary conditions and find their solutions using
ADM. For the case of a plane Couette flow, we find the same
solution as in the incident of viscous fluid. For plane
Poiseuille and generalized Couette flows, triangular fuzzy
numbers are used for uncertainty on the dynamic behavior
of fuzzy velocity profiles. *e most important findings are
presented below:

Table 5: Fuzzy solution of lower, mid and upper bounds of velocity profiles at different values of x with constant pressure gradient p� − 0.6.

x v(x; α) Mid value u(x; α)

0 − 0.0043186926 − 0.0002926560 0.0037333806
0.1 0.0223634776 0.0267255366 0.0310875957
0.2 0.0453558474 0.0499846994 0.0546135514
0.3 0.0644547391 0.0692807804 0.0741068218
0.4 0.0795257286 0.0844783261 0.0894309236
0.5 0.0904934414 0.0955015114 0.100509581
0.6 0.0973341525 0.1023287586 0.1073233647
0.7 0.1000709293 0.1049909429 0.1099109565
0.8 0.0987710557 0.1035731870 0.1083753183
0.9 0.0935454754 0.0982202415 0.1028950076
1 0.0845499956 0.0891454549 0.0937409143

Table 3: Comparison of analytical results for the crisp velocity profile of Couette–Poiseuille flow when β � 0.1, p � − 0.5, and α � 1.

x HPM [4] PM [9] ADM present results
0 0 0 0
0.1 0.081018 0.091401 0.044181
0.2 0.121481 0.020762 0.109168
0.3 0.194415 0.300141 0.191620
0.4 0.281510 0.411359 0.266405
0.5 0.380151 0.521415 0.361791
0.6 0.481141 0.591618 0.471819
0.7 0.601486 0.691619 0.599160
0.8 0.721412 0.791819 0.714991
0.9 0.881514 0.900410 0.871680
1 1 1 1

Table 4: Fuzzy solution of lower, mid and upper bounds of velocity profiles at different values of x with constant pressure gradient p� − 0.4.

x v(x; α) Mid-value u(x; α)

0 0.1895776184 0.1970011712 0.2044247240
0.1 0.1819776137 0.1900011710 0.1980247283
0.2 0.1703775897 0.1790011570 0.1876247244
0.3 0.1547774055 0.1640010163 0.1732246271
0.4 0.13517655524 0.1450003147 0.1548240742
0.5 0.11157377629 0.1219979280 0.1324220798
0.6 0.08396651205 0.0949915265 0.1060165410
0.7 0.05235022580 0.0639769107 0.0756035957
0.8 0.01671756767 0.0289472010 0.0411768343
0.9 − 0.0229426059 − 0.0101081214 0.0027263631
1 − 0.0666463604 − 0.0532043200 − 0.0397622795
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(i) Fuzzy velocity profiles increases with increasing the
non-Newtonian fluid parameter β and fuzzy pa-
rameter (α ∈ [0, 1]).

(ii) *e results are indicated that the range of calculated
lower and upper-velocity profiles depends upon a
fuzzy parameter.

(iii) *e results are always an envelope of solutions with
a crisp solution between the upper and lower
bounds of the solutions. So fuzzy velocity profiles
are the generalization of the crisp velocity profile for
third-grade fluid between two parallel plates.

(iv) Furthermore, it is observed that, in triangular MFs,
if the width of fuzzy or uncertain velocity becomes
more, then the boundary conditions are more
sensitive, while for less width of fuzzy or uncertain
velocity, the assumed boundary conditions are less
sensitive.

(v) *e present crisp results obtained from ADM are
found to be in excellent agreement as compared to
existing results.

(vi) In future work, for easier comprehension, the TFN
is visualized. As a result, TFNs may be used to a
variety of heat transfer challenges.
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[40] J. Casasnovas and F. Rosselló, “Averaging fuzzy biopolymers,”
Fuzzy Sets and Systems, vol. 152, no. 1, pp. 139–158, 2005.

[41] G. L. Diniz, J. F. R. Fernandes, J. F. C. A. Meyer, and
L. C. Barros, “A fuzzy cauchy problem modeling the decay of
the biochemical oxygen demand in water,”vol. 1, pp. 512–516,
in Proceedings Joint 9th IFSA World Congress and 20th
NAFIPS International Conference, vol. 1, IEEE, Vancouver,
BC, Canada, July 2001.

[42] A. Bencsik, B. Bede, J. Tar, and J. Fodor, “Fuzzy differential
equations in modeling hydraulic differential servo cylinders,”
in In: Proceedings of the +ird Romanian-Hungarian joint
symposium on applied computational intelligence (SACI),
Timisoara, Romania, 2006.

[43] B. Bede, I. J. Rudas, and J. Fodor, “Friction model by fuzzy
differential equations,”vol. 4529, pp. 23–32, in Proceedings of
the Foundations of Fuzzy Logic and Soft Computing, 12th
International Fuzzy Systems AssociationWorld Congress, IFSA
2007, vol. 4529, pp. 23–32, Springer-Verlag, Cancun, Mexico,
June 2007.

[44] M. S. El Naschie, “From experimental quantum optics to
quantum gravity via a fuzzy Kähler manifold,” Chaos, Solitons
& Fractals, vol. 25, no. 5, pp. 969–977, 2005.

[45] T. Allahviranloo and S. Salahshour, “Applications of fuzzy
Laplace transforms,” Soft Computing, vol. 17, no. 1,
pp. 145–158, 2013.

[46] M. Oberguggenberger and S. Pittschmann, “Differential
equations with fuzzy parameters,” Math. Mod. Syst, vol. 5,
pp. 181–202, 1999.

[47] S. Hajighasemi, T. Allahviranloo, M. Khezerloo,
M. Khorasany, and S. Salahshour, “Existence and uniqueness
of solutions of fuzzy Volterra integro-differential equations,”
Communications in Computer and Information Science,
vol. 81, pp. 491–500, 2010.

[48] U. Biswal, S. Chakraverty, and B. K. Ojha, “Natural con-
vection of nanofluid flow between two vertical flat plates with
imprecise parameter,” Coupled Systems Mechanics, vol. 9,
no. 3, pp. 219–235, 2020.

[49] G. Borah, P. Dutta, and G. C. Hazarika, “Numerical study on
second-grade fluid flow problems using analysis of fractional
derivatives under fuzzy environment,” Soft Computing
Techniques and Applications. Advances in Intelligent Systems
and Computing, vol. 1248, 2021.

[50] M. Nadeem, I. Siddique, F. Jarad, and R. N. Jamil, “Numerical
study of mhd third-grade fluid flow through an inclined
channel with ohmic heating under fuzzy environment,”
Mathematical Problems in Engineering, vol. 2021, Article ID
9137479, 17 pages, 2021.

[51] U. Biswal, S. Chakraverty, B. K. Ojha, and A. K. Hussein,
“Study of Jeffery-Hamel flow problem for nanofluid with
fuzzy volume fraction using double parametric based
Adomian decomposition method,” International Com-
munications in Heat and Mass Transfer, vol. 126, Article ID
105435, 2021.

[52] E. l. Allaoui, S. Melliani, and L. S. Chadli, “A mathematical
fuzzy model to giving up smoking,” in Proceedings of the IEEE
6th Inter. Conference on Optimization and Appication,
pp. 1–6, ICOA, Beni Mellal, Morocco, April 2020.

[53] R. M. Zulqarnain, X. L. Xin, I. Siddique, W. Asghar Khan, and
M. A. Yousif, “TOPSIS method based on correlation coeffi-
cient under pythagorean fuzzy soft environment and its ap-
plication towards green supply chain management,”
Sustainability, vol. 13, no. 4, 1642 pages, 2021.

[54] R. M. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Samad, and
T. Abdeljawad, “Neutrosophic hypersoft matrices with ap-
plication to solve multiattributive decision-making prob-
lems,” Complexity, vol. 2021, Article ID 5589874, 17 pages,
2021.

[55] R. M. Zulqarnain, I. Siddique, R. Ali, D. Pamucar,
D. Marinkovic, and D. Bozanic, “Robust aggregation oper-
ators for intuitionistic fuzzy hypersoft set with their appli-
cation to solve MCDM problem,” Entropy, vol. 23, no. 6,
688 pages, 2021.

[56] R. M. Zulqarnain, I. Saddique, F. Jarad, R. Ali, and
T. Abdeljawad, “Development of TOPSIS technique under
pythagorean fuzzy hypersoft environment based on correla-
tion coefficient and its application towards the selection of
antivirus mask in COVID-19 pandemic,” Complexity,
vol. 2021, Article ID 6634991, 27 pages, 2021.

[57] I. Siddique, R. M. Zulqarnain, R. Ali, F. Jarad, and A. Iampan,
“Multicriteria decision-making approach for aggregation
operators of pythagorean fuzzy hypersoft sets,” Computa-
tional Intelligence and Neuroscience, vol. 2021, pp. 1687–5265,
Article ID 2036506, 2021.

18 Mathematical Problems in Engineering



[58] M. Nadeem, A. Elmoasry, I. Siddique et al., “Study of tri-
angular fuzzy hybrid nanofluids on the natural convection
flow and heat transfer between two vertical plates,” Com-
putational Intelligence and Neuroscience, vol. 2021, Article ID
3678335, 15 pages, 2021.

[59] I. Siddique, R. M. Zulqarnain, M. Nadeem, and F. Jarad,
“Numerical simulation of mhd couette flow of a fuzzy
nanofluid through an inclined channel with thermal radiation
effect,” Computational Intelligence and Neuroscience,
vol. 2021, Article ID 6608684, 16 pages, 2021.

Mathematical Problems in Engineering 19


