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�is study obtains and predicts multifault data in the key transmission and connection systems with gears. Model building is based
on the multikernel extreme learning machine with the method of maximum correlation kurtosis deconvolution and variational
mode decomposition. To this end, the realization form of the life prediction is �rst studied by enhancing the low-frequency signal.
�en, the larger correlation coe�cient is selected as the sensitive feature parameter aiming at mapping to a feature space by the
randomly initialized hidden layer in the learning machine, and the weight value of output layer is obtained using the least square
method. A case study on the fault diagnosis of gear transmission system is conducted in the end to illustrate the
proposed approach.

1. Introduction

�e condition of the key transmission connection systems,
such as gears, has an important e�ect on the safe perfor-
mance of large engineering equipment. In the process of
long-term variable load service and under the in�uence of
various uncertain excitations, the interaction between the
functional components of the entire system elongates the
failure degradation trend cycle. Moreover, the degradation
data volume is large, and many interference frequency
components exist. As a result, �nding failure timely and
making an early warning is di�cult. �erefore, many re-
searchers have focused on extracting the more characteristic
information of the fault as possible from the vibration signal
to realize accurate identi�cation of the fault. �ey have also
focused on ensuring the safety and stability of the equipment
operation process.

An ELM is a simple, easy-to-use, widely used, and ef-
fective single hidden layer feedforward neural network
[1–3]. In recent years, several scholars have used the ELM
method to diagnose faults and predict the life of vulnerable
parts, such as gears. Wei Chao et al. proposed the EEMD
which is singular value decomposition method to extract

fault feature and identify the gear fault of the EEMD–ELM
method based on the study of the gearbox fault diagnosis and
identi�cation models [4]. �e comparison shows that an
ELM has a faster running speed and higher classi�cation
accuracy than an SVM. Yang Lu et al. proposed an opti-
mizing algorithm of the ELM parameters based on the
simulated annealing particle swarm algorithm to diagnose
the faults of the wind turbine gearbox and solve the poor
network structure stability and classi�cation accuracy of
ELMs [5]. �e results show that the method has better
stability and reliability. Qin et al. proposed a gear fault
diagnosis method based on the KELM [6]. �e experimental
results show that the KELM rolling gear fault diagnosis
classi�cation model has higher accuracy and stability than
the SVM and ELM fault classi�cation models.

Zhou et al. used the EEMD method to decompose the
vibration signal for obtaining a fault feature matrix com-
posed of IMF, and a new ELM algorithm combining an
integrated ELM and an evolutionary learning machine was
proposed [7]. �e arti�cial bee colony algorithm was used to
optimize the input weights and the hidden layer bias.
Rodriguez et al. used the stationary wavelet singular entropy
to obtain high-quality fault features and input the obtained
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features into the KELM classifier for solving the difficulty of
the current fault diagnosis method to accurately diagnose
the fault that occurs in the variable-speed rotation phe-
nomenon [8]. For the vibration characteristics and common
faults of the gears, Zhou et al. proposed a cascaded feature
reduction method based on global supervision Laplacian
score and kernel principal component analysis and a mul-
tiple fault recognition method of a binary tree KELM based
on the particle swarm optimization [9]. However, the vi-
bration signal of the gear in this method is only used for
feature extraction, which reduces the accuracy of fault di-
agnosis. Considering the problem of nonstationary and
nonlinearity in the gearbox vibration signal, Wang proposed
an extracting method of feature fault based on the com-
plementary set empirical mode decomposition and the
multiscale permutation entropy [10]. Wang and Wang
proposed a method combining the variational modal de-
composition and ELMmethods to predict the life of the gear,
but the accuracy is insufficiently high [11]. Gu et al. used the
discrete particle swarm optimization to optimize the mul-
tiscale wavelet kernel function of the KELM [12]. &is way
improves the convergence speed and classification accuracy
of the algorithm and has significant effects on the life
prediction of the wind gearbox bearing. Liu and Huang
proposed a personalized diagnosis method of the gear faults
based on finite element simulation and ELM [13]. Liu et al.
proposed a failure early warning method of the wind turbine
gearbox based on security projection, nuclear ELM, and
information entropy [14]. Chen et al. combined the inte-
grated convolutional neural network and ELM in fault di-
agnosis to accurately detect different faults and predict their
life [15].

In summary, the ELM algorithmhas beenwidely used in the
fault diagnosis and the life prediction of the key transmission
connection systems, such as gears, and has significant effects.
However, the following problems still exist: (1) the prediction
results of the ELM regression model are greatly affected by the
input parameters; the error is larger, and the quality is poor; (2)
the accuracy of the failure trend prediction is unstable, the
learning ability is poor, and the extrapolation ability is weak. On
the basis of the abovementioned analysis, a new algorithm
combining theMCKD-VMDmethodwith themultikernel ELM
is proposed and used in analyzing the gear transmission system
[16, 17]. &e effectiveness of the algorithm is verified by nu-
merical simulation and gear broken tooth fault experiment.

2. Obtaining Methods of Multiple Features

2.1. Basic Principles of the MCKD Method. &e maximum
correlation kurtosis deconvolution is a new convolution tech-
nique proposed on the basis of the minimum entropy decon-
volution to enhance the periodic impact component of the
signal. It fully utilizes the periodic characteristics of impact faults,
which can effectively suppress the influence of noise and other
interference components; its essence is to find an FIR filterf(L)

(L is the length of the filter) for maximizing the correlation
kurtosis of the original impact sequence, and this way, it restores
its characteristics to enhance the signal [18]. Correlation kurtosis
is defined as follows:

KC,M(T) �


N
K�1 

M
m�0 yk− mT 

2


N
k�1 y2

k 
M+1 , (1)

where yk is the original signal the fault signal collected by the
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where T is the period of the impact signal;M is the number of
displacements; L is the length of the filter; f is the filter vector;
and f � [f1, f2, · · · , fL]T.

To solve the objective function, formula (2) can be
differentiated as
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&en, the matrix representation method of filter f(l)

coefficients is given as
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where f � [f1, f2, · · · , fL]T and A � 
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&e filter parameters f(l) are solved by the iterative
method. &e specific process is shown in Figure 1.
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2.2. Basic Principles of VMD. &e VMD is a signal de-
composition estimation method based on constructing
variational problems and solving variational problems. It has
significant effects in many aspects compared with the em-
pirical modal decomposition. In the method, the frequency
center and bandwidth of each component are determined by
iteratively searching for the optimal solution of the varia-
tional model in the process of obtaining the decomposed
components. &is way adaptively realizes the frequency
domain division of the signal and the effective separation of
the components.

Specifically, the signal x(t) is first decomposed into KUs
components by the VMD algorithm, and the variation is
constructed by seeking the bandwidth of the modal com-
ponent Us with the help of methods, such as Hilbert
transformation. &en, the Lagrangian multiplication oper-
ator λ(t) and the quadratic penalty factor α are introduced.
&e alternating direction multiplier method is used to
continuously update eachmode and its center frequency and
gradually demodulates each mode to the corresponding base
frequency band [19]. &e corresponding center frequency of
each mode is extracted. &e expression of the solution
process of modal yn+1

k (ω) is

y
n+1
k (ω) �
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Yk(ω) + λ(ω)/2

1 + 2α ω − ωk( 
2 , (6)

where Y(ω) is the Fourier transforms of y(t); Yk(ω) is the
Fourier transforms of yi(t); λ(ω) is the Fourier transform of
λ(t).

&e time domain signal of eachmodal component can be
obtained by performing the Fourier transform on the filtered
signal. &e center of gravity of the updated current modal
power spectrum is

ωn+1
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where yk(ω) is the modal function in the n+ 1th cycle;
ωn+1

k (ω) is the center of gravity of the power spectrum of the
updated modal function; and λn+1(ω) is the multiplication
operator in the n+ 1th cycle.

&e realization process of the algorithm is shown in
Figure 2.

&e fault signal data of the key transmission connection
systems, such as gears, have large volume and difficult ex-
traction and are nonlinear and nonstationary when the
variational modal decomposition method is used to directly
decompose the fault signal. &is method cannot accurately
identify the fault frequency and completely extract the
hidden information. &e maximum correlation kurtosis
deconvolution is a new convolution technique that enhances

Determine period T,
displacement number M and filter length L

Calculate the filtered input signal y

Calculate αm and β according to y

Calculate the coefficient of the new filter f

Before and after filtering
∆CKM(T)<ε?

Stop recursion

NO

YES

Calculate the input signal: XT,X0
T, (X0X0

T)–1

Figure 1: Iterative process diagram of the filter f(l) parameter.

According to the formular, Update

According to the formular, Update

According to the formular, Update λ

Figure 2: VMD decomposition algorithm flowchart.
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the periodic impact components of the signal, which can
make the low-frequency submerged components of the
signal obvious. &erefore, the method of combining MCKD
and VMD is used in this study to extract the multiple
characteristics of faults. First, the collected vibration signals
are fused with the correlation functions, and the signals with
higher correlation are merged together to effectively remove
the interference signals. Second, the fusion signal is en-
hanced by the MCKD method to make the low-frequency
signal more obvious.&ird, the signal enhanced byMCKD is
decomposed by VMD to obtain several modal components,
and the components with larger correlation coefficients are
reconstructed. Finally, the power spectrum analysis is per-
formed to identify the gear failure frequency characteristics.

3. Failure Prediction Method Based on
Multikernel ELM

3.1. PredictionModel. We suppose N samples (xi, yi), where
xi � [xi1, xi2, . . . , xij]

T ∈ Rj and yi � [yi1, yi2, . . . , yij]
T ∈ R

k. &en, the network output of an ELM with activation
function g(x) and hidden layer nodes L is

fL(x) � 
L

i�1
βlg al · xi + bl( , xi ∈ R

i
, βl ∈ R

k
, (8)

where αl � [ai1, ai2, . . . , aij]
T is the input weight from the

input layer to the l-th hidden layer node; bl is the deviation of
the l-th hidden layer node; βl � [βi1, βi2, . . . , βik]T is the
output weight connecting the l-th hidden layer node; al · xi is
the inner product of the vector sum; and the excitation
function g(x) includes “sigmoid,” “RBF,” or “sine.”

We suppose that the ELM has L hidden layer nodes
(given in advance); if this feedforward neural network can
approximate these N samples with zero error, then we have
al, bl, and βl:

fL(x) � 
L

i�1
βlg al · xi + bl(  � yi, i � 1, 2, . . . , N. (9)

&ey are simplified as

Hβ � Y, (10)

where H is the hidden layer output matrix, which is given as

H �

g a1 · x1 + b1(  · · · g aL · x1 + bL( 
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g a1 · xN + bL(  · · · g a·LxN + bL)( N×L

.
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ (11)

where Y is the desired output matrix, and β is the output
weight matrix.

&e input weights and deviations in the ELM algorithm
can be given randomly, H is the deterministic matrix, and
the connection weights of the hidden and output layers can
be obtained by the least square solution as

β � H
∗
Y, (12)

where H∗ is the Moore–Penrose generalized inverse matrix
of H (hidden layer output) matrix.

&e KELM mainly uses kernel mapping to replace the
random mapping of ELM and uses the kernel function to
map the input samples to high-order space operations. &is
way greatly improves the stability of the model. &us, the
classification and regression capabilities are better than those
of the kernelless ELM algorithm. &e connection weight of
the input and hidden layers and the threshold of the hidden
layer can be set randomly and do not need to be iteratively
adjusted. &ey are determined by solving the equation set at
one time, which is faster when the learning accuracy is
ensured. &e expression of the KELM is

f(x) �

K x, x1( 

· · ·

K x, xN( 
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where K is the kernel function; C is the penalty function; I is
the diagonal matrix; and T is the expected output vector.

&e kernel function of KELM is the core of the KELM
algorithm, which represents the kernel mapping ability of
the KELM algorithm [20]. &e selection of the kernel
function parameters in the model is determined by the
modeling data and is difficult to select accurately. &e
commonly used forms are shown as follows:

Linear kernel function (linear) is given as

K xi, xj  � xi · xj. (14)

Polynomial kernel function (polynomial) is

Kpoly xi, xj  � xi · xj + b 
d
, b≥ 0. (15)

Radial basis kernel function (RBF) is

KRBF xi, xj  � exp −δ xi − xj

�����

�����
2

 , δ > 0. (16)

S-type kernel function (sigmoid) is

K xi, xj  � tanh axi · xj + b , a> 0, v> 0. (17)

Among the abovementioned four kernel functions, the
linear kernel function has a weaker learning ability and
simpler algorithm. &e polynomial kernel function is a
nonstandard kernel function, which is suitable for orthog-
onal normalized data and can effectively solve the “di-
mension disaster” problem in the high-dimensional feature
space operations. However, the parameters are too many.
&e sigmoid kernel function is derived from a neural net-
work, and the calculation amount is more complicated when
used as an activation function. Nevertheless, the function is
smooth and easy to obtain. Considering that the perfor-
mance degradation process of the multifeature failure is
more complicated, the combination of polynomial and
sigmoid is selected and applied to the life trend prediction:

Kmuti−kernel �μKpolynomial x,xi( +(1−μ)KSigmoid x,xi( , (18)

where Kpolynomial is the polynomial kernel function; KSigmoid
is the sigmoid type kernel function; and μ is the proportion
of the polynomial and sigmoid kernel function (0≤ μ≤ 1).
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&emultikernel ELMmodel (referred to as (P-S) KELM)
is

f(x) �
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· · ·
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&e abovementioned formula shows that the number of
hidden layer nodes, initial weights, offsets, and the calcu-
lation of the output matrix H are no longer considered in the
solving process of the (P-S) KELM model. However, the
output function value can be solved in the form of a kernel
function.

3.2. Predicting Algorithm. First, the parameters, such as
samples, input weights, and hidden layer node deviations,
are initialized. &e specific algorithm flowchart is shown as
Figure 3:

3.3. Evaluating Index. To accurately reflect the prediction
accuracy of the (P-S) KELM, three evaluating indicators are
proposed: the mean square error, the mean absolute error,
and the R squared.

(1) Mean square error (MSE) is given as

MSE �
1
m



m

i�1
yi − yl( 

2
, (20)

where yi is the true value in the test set, and yl is the
predicted value in the test set.&e mean square error
is equivalent to the loss function of linear regression,
which can be applied to the test set, and the final
result is equivalent to the loss value.

(2) Mean absolute error (MAE) is given as

MAE �
1
m



m

i�1
yi − yl


. (21)

&e average absolute error is the direct calculation of
the residual error, which represents the average value
of the absolute error between the predicted value and
the true value. It is a linear fraction, and all individual
differences have the same weight on the average.

(3) Accuracy (R squared) can be given as

R
2

� 1 −
i yl − yi( 

2residual
i yl − yi( 

2total
, (22)

where i(yl − yi)
2residual is the sum of squares of

all the errors predicted by the trained model, and
i(yl − yi)

2total is the square of the sum.

Accuracy is the standard measured in the classification
algorithm.&e value is between (0, 1); if the value is closer to
1, then the accuracy becomes higher; otherwise, it becomes
lower.

4. Simulation Signal Analysis

To verify the feasibility of this method, a fault simulation
signal model is established for a gear as

S1(t) � sin(90πt)(1 + 0.2 cos(90πt)),

S2(t) � 0.8 sin(100πt + sin(5πt)),

S(t) � S1(t) + S2(t) + 0.5 sin(1000πt) + w(t).

(23)

&e simulated signals are shown in Figure 4.
&e fault pulse is more obvious when the fault feature is

extracted from the fault simulation signal. &e fault fre-
quency can be observed in its simple spectrum diagram.&e
low-frequency signal can be observed through the spectrum
diagram before and after the MCKD signal is increased, as
shown in Figure 5(b).&e fault can be identifiedmore clearly
by strengthening, and the fault features are most obvious at
49.99 and 499.99Hz. &e time domain waveform and fre-
quency spectrum diagrams are obtained by further VMD
decomposition of the simulated signal. &ey are shown in
Figure 6.

Initialization

Determine the hidden layer
Number of neurons

Randomly set the connection weight of the input and
hidden layers and the threshold of the hidden layer unit

Choose an infinitely differentiable function as the
activation function of the hidden layer neuron

ε → 0 ?

End

Given input matrix X
Expectedoutput matrix Y

NO

YES

Calculate the output matrix H of the hidden layer

Calculate the weight of the output layer β*

Figure 3: Process of the (P-S) KELM algorithm.
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&e correlation coefficient values of the five modal
components and the simulation signal are calculated, as
shown in Figure 7. &e figure shows that the correlation
between components U1, U3, and U4, and the original signal
is relatively higher. &is condition indicates that they are
more sensitive to the gear failures.&erefore, the three modal
components are selected as the frequency domain charac-
teristic values for the trend prediction of the gear failures.

Specifically, the three components U1, U3, and U4 are
merged into a matrix to form a new frequency domain
eigenvalue as the input value of the (P-S) KELM model. &e
simulation signals after 6 s are intercepted to be used as the
true value of the trend prediction of the simulated signal. As
observed, the true trend of the simulated signal is the same as
the predicted trend. However, individual data have errors,
and the error reaches a maximum of 1500Hz as the
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Figure 5: Time domain waveform and frequency spectrum of the simulated signal after MCKD. (a) Time domain waveform after MCKD.
(b) Frequency spectrogram after MCKD.
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frequency gradually rises. According to the results, the (P-S)
KELMmodel predicts the trend of gear failure signals and is
therefore feasible and accurate.

5. Experimental Verification

5.1. Acquisition of the Gear Failure Experiment Data. &e
gear fault diagnosis experiment in the fixed-axis gearbox on
the American DDS power transmission fault diagnosis
comprehensive test bench (Figure 8) is conducted to verify
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Figure 6: Time domain waveform and frequency spectrum after VMD decomposition. (a) Time domain waveform. (b) Frequency
spectrogram.
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Figure 8: Fault diagnosis comprehensive test bench.
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the effectiveness and practicability of the proposed method
in extracting the fault features of the gear. &e test bench is
the electric motor①, the planetary gearbox②, the fixed-axis
gearbox③, the position of the sensor④, and the magnetic
powder brake⑤ from left to right. &e number of the teeth
and the transmission ratios of each transmission gear are
shown in Table 1, and the relevant frequencies of the
transmission system are shown in Table 2.&e sensor adopts
an acceleration sensor (SN178383).

&e experiment is based on the state of normal, wear,
and broken tooth simulation failure experiments of the gear
in the gearbox. Six sensors are used for measuring point
arrangement. Each sampling time is 20 s. Each sampling
obtains six sets of vibration data, which are collected 10
times: [x11(t)), · · · , x16(t)], [x21(t), · · · , x26(t)], · · · ,,
[x61(t), · · · , x66(t)]. By using the data correlation fusion
algorithm, every six sets of data are merged into one set of
data. &e faulty gear is located at the third-stage meshing
position of the planetary gear in the intermediate shaft, the
sampling frequency is 25600Hz, and the state of each gear is
intercepted for 30 s. &e locations of the sensor are shown in
Figure 9.

5.2. Predicting Analysis of the Gear Failure. &e input model
data should be accurate and of high quality to predict the
trend of the faulty gear. &e redundant data should be
eliminated when analyzing the fault signal. &e gear fault
signal has the characteristics of weakness, nonlinearity, and
nonstationary. &us, the cross-correlation function fusion
calculation of the collected fault signal is first conducted, and
the signals with high correlation degree can be retained and
merged together while removing the excess noise signal.
&en, the signal is enhanced by the MCKD method and
decomposed by the VMDmethod to obtain a series of modal
components. Finally, the component with the larger cor-
relation coefficient that is most sensitive to the gear fault
characteristics are extracted as the frequency domain
characteristic parameters of the gear broken tooth by the
calculation of the correlation coefficient between the com-
ponents and the original signal to predict the fault trend.

&e time domain waveform and frequency spectrum
diagrams of the vibration signal of the gear broken tooth
fault are shown in Figure 10. According to the analysis, the
fault characteristics cannot be identified and some high-
frequency impact components exist due to the influence of

Table 1: Gear teeth number and transmission ratio of each stage in the gearbox.

Transmission
system

Primary transmission (planetary
gear)

Secondary transmission (fixed-axis
gear)

&irdly transmission (fixed-axis
gear)

Number of teeth Sun gear28
ring gear100

High-speed shaft gear29
intermediate shaft gear100

Intermediate shaft pinion36
output shaft gear90

Transmission ratio 4.5714 3.4483 2.5

Table 2: Relevant frequencies of the transmission system (unit: Hz).

Rotation
frequency of the
input shaft

Rotation
frequency of the
high-speed shaft

Rotation frequency
of the intermediate

shaft

Rotation
frequency of the
output shaft

Meshing
frequency in the

first level

Meshing
frequency in the

third level

Meshing
frequency in the
second level

40 2.5375 8.7501 1.015 1120 91.35 253.75

1

2

(a)

3

4

(b)

5

6

(c)

Figure 9: Measuring point position of the sensor. (a) Measuring point position on the upper box. (b) Measuring point position on the right
box. (c) Measuring point position on the left box.
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Figure 10: Time domain waveform and frequency spectrum of the gear broken tooth fault signal. (a) Time domain waveform. (b) Frequency
spectrogram.
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Figure 11: &e time domain waveform and the frequency spectrum after MCKD processing. (a) Time domain waveform. (b) Frequency
spectrogram.
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Figure 12: Time domain waveform diagram and figure.
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the noise in the gearbox operation and the accuracy factors
of the equipment.&e fault signal is enhanced by the MCKD
method to obtain the time domain waveform and the
spectrogram, which are shown in Figure 11. &e figure
shows that the time domain waveform of the fault signal has
obvious impact components, and the low-frequency com-
ponents in the spectrogram are enhanced and become
obvious.

&e signal enhanced by the MCKD method is decom-
posed by the VMDmethod. &e VMD decomposition result
and the corresponding spectrogram are shown in Figure 12.
&e correlation coefficient values of five modal components
and the original gear broken tooth fault signal are calculated,
as shown in Figure 13.&e figure shows that the decomposed
components U1, U3, and U4 have a higher correlation with
the original signal. &is condition indicates that they are
more sensitive to gear failures. &e three modal components
are selected as the frequency domain characteristic values for
the trend prediction of the gear failure. &e analysis result is
consistent with the abovementioned simulation analysis
result. &e flowchart of the gear failure trend prediction is
shown in Figure 14.

On the basis of the abovementioned analysis, the fre-
quency domain sensitive characteristic values are selected: U1
, U3, and U4, which are selected as the standard of gear failure
trend prediction. &e establishment steps of the (P-S) KELM
model are shown in Figure 15. &e abovementioned three
components (under normal and worn gears) are merged into
a matrix to form a new frequency domain eigenvalue as the
input value of the (P-S) KELMmodel, as shown in Figure 16.
&e predicted result is compared with the fusion frequency
domain characteristic value of the measured gear broken
state. &e prediction effect of the (P-S) KELM model is
evaluated by three evaluation indicators: the mean square
error (MSE), the mean absolute error (MAE), and the ac-
curacy (R2). &e prediction result is shown in Figure 17.

&e actual performance of the gear broken tooth fault is
that a large impact signal begins to appear, and the frequency
is obviously increased and unstable. &e trend comparison
charts of the predicting result of the KELM method, the (P-
S) KELMmethod, and the broken tooth fault data are shown

in Figure 17. &e analysis shows that the true value curve of
the frequency domain characteristic of the gear broken state
is consistent with the predicting curve of the (P-S) KELM
method. &e gear failure becomes more obvious as time
increases. &e frequency domain characteristic value sig-
nificantly increases up to 1600Hz after 12 s. At the same
time, the predicting curve of the KELMmethod is consistent
with the trend of the true value. However, a large error in the
value exists, and the error becomes obvious with the increase
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Figure 14: Flowchart of the trend forecast.
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parameter set (C)
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(P-S) KELM

Forecasting result
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Figure 15: Establishment steps of the (P-S) KELM model.
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intime. &e error is most obvious when time is 13 s, which is
consistent with the true value. &e value difference is ap-
proximately 1000Hz.

Table 3 shows that the gear broken tooth failure is
consistent with the forecasting trend of the (P-S) KELM
method, and the errors are within a very small range. &e
mean square error (MSE) is 0.0096, the average absolute
error (MAE) is 0.0176, and the accuracy (R2) reaches 91.83%.
Regarding the predicted values by the KELM model, the
mean square error is 0.0091, the average absolute error
reaches 0.0253, and the accuracy is 90.04%.

In summary, the following conclusions can be drawn: the
feature parameters based on the MCKD-VMD method are
obtained as the sensitive feature parameters of the (P-S)
KELM predicting model; the model can greatly improve the
predicting accuracy, and its accuracy is much higher than
the predicting result by the traditional KELM method. It
provides a key technology for early warning and judgment of
the gear failure because it avoids economic loss and safety
hazards.

6. Conclusion

(1) &emethod of acquiring multiple feature parameters
based on MCKD-VMD can effectively suppress the
interference noise, enhance the impact component
of the fault signals, and overcome the modal aliasing
and end effects. &us, the effective sensitive feature
parameters are obtained.

0
0

500

1000

1500

1 2 3 4 5 6 7
Time (s)

Fr
eq

ue
nc

y 
do

m
ai

n 
ei

ge
nv

al
ue

 (H
z)

8 9 10 11 12 13 14 15

Figure 16: Fusions of the gear feature parameter fusion.
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Figure 17: Comparisons of the gear trend forecast.

Table 3: &ree evaluation index values under the condition of gear
broken.

Evaluation index MSE MAE R 2

(P-S) KELM value 0.0096 0.0176 0.9183
KELM value 0.0091 0.0253 0.9004
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(2) &e ELM model based on polynomial and sigmoid
kernel functions merge multiple parameters together
to solve the multidimensional number problem
during high-dimensional feature space operations.
&e problem that the predicting results of the tra-
ditional ELM algorithm models are greatly influ-
enced by the input parameter is solved. As a result,
the stability of the learning machine model is im-
proved, and the predicting accuracy of the gear
failure trend is ensured.

(3) &e decomposed multicharacteristic parameters are
input to predict the life of the gear by the simulation
analysis and the gear broken tooth failure experi-
ment. At the same time, three evaluation indicators
of mean square error, average absolute error, and
accuracy are used to evaluate the predicting results.
&e results show that the predicting results of this
method are consistent with the trend of the actual
failure status. &is consistency guarantees the val-
idity and accuracy of the input parameters of the
prediction model. &e accuracy of the failure pre-
diction is greatly improved. &us, the key technol-
ogies for the safety and maintenance of the large-
scale engineering equipment are provided.

&e proposed algorithm is mainly verified to predict the
broken tooth fault trend of the gear transmission system. No
experimental verifications for other types of faults are
conducted due to factors, such as time and equipment. &e
wide applicability of the algorithm should be further verified
in the future.
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