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Decision-making in survey sampling planning is a tricky situation; sometimes it involves multiple objectives, with various decision
variables emanating from heterogeneous and homogeneous populations. Dealing with the entire population under study and its
uncertain nature becomes a challenging issue for researchers and policymakers. Hence, an appropriate sampling design and
optimization methodology are imperative. �e study presents a useful discussion on stochastic multiobjective multivariate
strati�ed sampling (MSS) models theoretically, and the concepts are illustrated with numerical examples. Also, it has been found
that the linearization of sampling variance in survey sampling does not help determine the optimal sampling allocation problem
withminimum variability. Optimal allocation problems under the weighted goal programming, stochastic goal programming, and
Chebyshev goal programming methods are also discussed with numerical examples. Finally, the study discussed the linear
approximation of the MSS problem with examples. �e study is a conceptual and theoretical framework for MSS under a
stochastic environment. �e numerical data is simulated using the stratifyR package.

1. Introduction

�e classical method of optimization for di�erential
calculus is too restrictive and challenging in terms of
applicability to many statistical areas in a real-life situ-
ation. �e lack of numerical algorithms suitable for
solving optimization problems poses some severe limi-
tations in this regard and hence led to the utilization of
some ine�cient statistical procedures in choosing the
objective functions and constraints. For decades, a better
technique for optimization with broader applicability in
statistics, with an increasing computing power able to be
implemented has been forthcoming. Mathematical pro-
gramming is one of such evolving methods with potential
application in statistical methodologies. Several optimi-
zation techniques have various applications in statistical
problems such as designing a speci�c experiment, ex-
tensive survey for data collection, characterizing ob-
served data using a model, drawing inferences about a

population based on sample data, testing of hypothesis,
and estimation in the decision-making process [1]. In all
the applications, one has to optimize (minimize or
maximize) an objective function subject to a set of
constraints, such as cost or other input parameters. �e
sampling problem about the population characteristics
remains deriving information on several populations
statistically. In a sampling survey, the objectives are to
minimize the sampling variance and cost, these depend
on the sample size, the sampling scheme, the size of the
sampling unit or the scope of the study. Alternatively, a
di�erent formulation may be to minimize survey inac-
curacy, given that the survey cost is within the budgetary
limits. �us, the research aims at �nding a solution for
this challenging problem of optimal sample size or
sampling scheme that could help in estimating the de-
sired characteristics of a population under prescribed
properties. �e objective of this research is to successfully
formulate the problems of sample surveys as
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mathematical programming problems and develop an
efficient algorithm or technique to solve them. +e ob-
jective is to identify existing and future works of allo-
cation problems in survey sampling and to investigate
and suggest solutions to them, and also, study the
problems in an uncertain environment, i.e., a stochastic.
+e uncertainty that exists in real life has motivated us to
work on this aspect. +e problems become more com-
plicated when some or all of the parameters involved are
uncertain; it may be either stochastic or fuzzy. +e ob-
jective is to develop an efficient algorithm to solve such
types of sample surveys. +e formulated problems may be
single-objective or multiobjective. For solving the mul-
tiobjective optimization problems, we need to develop
efficient algorithms for the formulated problems. +e goal
programming, fuzzy goal programming, and other new
modified version or extended version of these techniques
will be used to solve the multiobjective optimization
problems.

+is study comprises modeling and optimization of
different sampling design that helps in providing the efficient
allocation of samples simultaneously by achieving the
highest accuracy and minimizing the sampling variances.
+is project provides a useful insight into the decision-
making for implementing strategies in different socio-eco-
nomic sectors for the country based on sampling results. Our
contribution to this project is proposing new models and
techniques for the sampling scheme to determine the op-
timal allocation of samples based on which policymakers can
suggest what kinds of additional efforts can simultaneously
be taken in the planning of socio-economic sectors. +e
problems related to the case studies are usually complicated,
but it has become more complicated when some or all of the
input information parameters involved are uncertain. +e
study provides mathematical optimization problems in
survey sampling, which is a powerful tool to make the best
policy on national planning and industries. +erefore, the
study is an integration of sample surveys, operational re-
search, and computational modeling. Optimal sampling
techniques can play an essential role in annual budgeting,
income and expenditure forecasting for the preparation of
five-year plans in national planning and budgeting. It can
also be used inmajor projects scheduling of national interest,
estimation of country’s population, agricultural yields,
employment, gross national product (GNP), and gross
domestic products (GDP) amongst others. Optimal sam-
pling techniques provide the best (optimal) solutions to the
problem under study.

+ere is a need for Statistical Information in modern
society now more than any time before, in particular,
when data is to be collected periodically to satisfy the
information need on a specified set of elements, known as
finite populations. Surveys played a significant role in
issues relating to real life, if we want to get a sense of a
massive population. Sampling is the best tool that gives us
a fresh idea about the whole population. A sample survey
is one of the most critical data collection modes for
meeting this need. Over time, an extensive literature
survey sampling has developed into a vast array of

theories, processes, and operations that are used every
day throughout the globe. It is appropriate to speak of a
worldwide survey industry with different sectors, namely,
a government sector, academic sector, a private and mass
media sector, a residual sector consisting of ad-hoc and
in-house surveys. Optimization is the science of selecting
the best among many possible decision alternatives in a
complicated real-life situation. +e ultimate target of any
decision is to either maximize the desired benefit or to
minimize the effort (cost or time) required or incurred in
a particular course of action. In recent times, more au-
thors formulated different types of sampling problem as a
nonlinear mathematical programming problem or inte-
ger programming problem and tried to find the best
solution [2]. An integer compromise allocation in MSS
has been determined using the goal programming ap-
proach [3]. A multiobjective all-integer nonlinear model
for MSS design considering some travelling costs has
been developed, and a compromising solution was ob-
tained using the value function approach, ε − constraint
method, and distance-based method [4]. Also, uncer-
tainties in the MSS problem have been investigated where
some cost parameters were considered as fuzzy parabolic
numbers [5]. +e authors formulated a fuzzy multi-
objective nonlinear programming problem with a qua-
dratic cost function and solved using fuzzy programming.
A case of nonresponse in the MSS problem has been
studied and modeled as an all-integer multiple objective
problem [6]. +e solution was sought using four different
procedures. Several authors have worked in optimum
allocation problems of sampling and parameter estima-
tion, for instance a Multiobjective Integer Nonlinear
Programming Problem has been formulated and con-
verted to a single-objective problem using the value
function technique [7]. Also, they used Lagrange Mul-
tipliers Technique to obtain the continuous sample sizes
formula, which approximates the optimal solutions.
Similarly, traveling costs within strata has been consid-
ered, and a multiple objective nonlinear stochastic pro-
gramming problem was formulated for finding a
compromise allocation in the sample survey [8]. +e
problem was solved using D1 − distance, goal program-
ming, and the Chebyshev approximation technique. A
problem of estimating p − population means considering
nonresponse and nonlinear cost functions have been
investigated, and solution procedures suggested using
lexicographic goal programming [9]. +e dynamic pro-
gramming technique has been employed in proposing an
efficient methodology for optimum stratum boundaries
and determining optimum sample size in survey variables
under the Neyman allocation [10]. A multiple pooling of
the standard deviations of the estimates in an MSS for
more than three strata has been studied and formulated as
a multiobjective (MO) problem, which was solved using
fuzzy programming [11]. Others considered compromise
allocation problems under stratified samples with two-
stage randomized and multiresponse models [12, 13]. An
optimum allocation problem in MSS has been considered
as an integer nonlinear stochastic programming and
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solved with five different techniques [14]. +e authors
suggested the use of coefficient of variations instead of
variances. Also, the MSS problem has been studied with
stochastic optimal design [15, 16], with flexible goals [17],
and with integer solution [18].

Several mathematical models have been designed based
on multiobjective optimization for solving different aspects
of human endeavors. For instance, a mixed-integer linear
programming (MILP) model has been developed for
addressing a closed-looped supply chain network problem
during the coronavirus pandemic. +e study considered
different items such as recycling, reusing, quarantine, col-
lection, distribution, production, supply, and location within
a multiperiod, multiechelon, and multiproduct supply chain
[19]. A multiple criteria decision-making tool has been used
in determining the supply chain performance in a petro-
chemical industry incorporating sustainable strategies [20].
An optimization method has been designed to optimize the
distribution and allocation of scarce resources amongst
individuals during a crisis, based on credibility theory and a
harmony search algorithm considering random simulation
[21]. A scheduling problem has been studied, and a
mathematical model developed with a view to obtain near-
optimal solution using meta-heuristic algorithms (MHA)
[22]. Multiobjective optimization has been widely used in
different sectors considering diverse applications and sce-
narios. For instance, robust optimization with artificial in-
telligence (AI) has been hybridized as multiobjective
optimization applied to the product portfolio problem [23].
Location, allocation, and routing problem have been studied
with the help of an improved harmony search algorithm
[24]. Another important application area is that of dairy
product’s demand prediction, where an integrated approach
based on AI and novel MHA has been used in achieving the
desired future demands [25]. +e MOOP has been used to
formulate socio-economic and environmental issues related
to sustainable development goals in several countries, such
as India [26], Nigeria [27], Saudi Arabia [28], and other
areas, such as municipal waste management system [29].

1.1. Organization of the Paper. +e introduction of the
subject matter, the background of the study, the literature
review, and paper organization are presented in section 1. In
Section 2, the multiobjective MSS techniques are presented.
Section 3 provides single-objective stochastic MSS models.
Section 4 discussed the MO stochastic MSS models. +e
linear approximation of MSS is discussed in Section 5.
Section 7 concludes the article.

2. Multiobjective Multivariate
Stratified Sampling

Let N be the size of the population partitioned into L strata
each of sizes Nh, h � 1, 2, . . . , L. Suppose p is considered as
characteristics (p≥ 2) that are measured on each unit of the
population, and the interest is on p-population character-
istics estimation. Let nh, h � 1, 2, . . . , L be the units taken
randomly from the stratum without replacement.

2.1. SamplingVariance Function. +e population mean (Yj)

for the jth character is

Yj �
1
N

􏽘

L

h�1
􏽘

Nh

i�1
yjhi

� 􏽘
L

h�1
Whyjh; j � 1, 2, . . . , p,

(1)

where Wh � Nh/N is stratum weights and
yjh � (1/Nh)􏽐

Nh

i�1yjhi is a stratum means.
+e sampling means of the jth character is given as

yj,st �
1
n

􏽘

L

h�1
􏽘

nh

i�1
yjhi �; j � 1, 2, . . . , p. (2)

+e sampling variance of the estimator of the mean for
the jth characteristic is given as follows:

yj,st � 􏽘
L

h�1

1
n

−
1

Nh

􏼠 􏼡W
2
hS

2
jh; j � 1, 2, . . . , p, (3)

where S2jh � (1/Nh − 1)􏽐
Nh

i�1(yjhi − Yjh)2 are stratum vari-
ances and yjhi is the value of the ith unit in the hth stratum for
the jth characteristics (j � 1, 2, . . . , p and h � 1, 2, . . . , L).

2.2. Sampling Cost Function. In survey sampling, when
enumeration cost, traveling cost, and labor costs are high
[30, 31], the total cost function is defined as follows:

C � 􏽘
L

h�1
chnh + 􏽘

L

h�1
th

��
nh

√
+ ω 􏽘

L

h�1

nh

λ
, (4)

where ch is the per-unit cost of measurement in the hth

stratum, th is the travel cost for enumerating for a unit of the
j-th character in the h-th stratum, and ω is the cost of labor
for a unit time.+e labor time is available with respect to the
time for a sampling unit within a stratum and follows an
exponential distribution with rate λ.

If in (4) the labor expenses are not significant, then we
have a quadratic cost function given in (5).

C � 􏽘
L

h�1
chnh + 􏽘

L

h�1
th

��
nh

√
. (5)

If in (5) the traveling cost is not significant, then we have
a linear cost function with a fixed overhead cost of sampling
(C0) given in (6).

C � 􏽘
L

h�1
chnh + C0. (6)

In a particularly important case of (6), if ch � c, that is,
if the per-unit cost in all strata is assumed to be the same,
then the enumeration cost terms become constant, and
the fixed cost for optimum allocation reduces to fixed
sample size optimum allocation and is called Neyman
[32].
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2.3. Multiobjective Optimization Problem. +e multi-
objective optimization problem (MOOP) using the above-
given definitions can be defined as

minfj nh( 􏼁 � 􏽘
L

h�1

1
nh

−
1

Nh

􏼠 􏼡W
2
hS

2
jh (i)

subject to :

nh ∈ X (ii)

2≤ nh ≤Nh (iii)
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

j � 1, . . . , p, (7)

where X � X1, orX2, orX3 is the feasible space of the
problem and it is defined as

X1 � nh ∈ R
n
| 􏽘
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n
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(8)

2.4. Weighted Goal Programming for Optimum Allocation
Problem. In the goal programming approach, the p objective
functions goals have been identified by solving the problem
for individual jth objective function ignoring the other (j −

1) objective functions with the feasible set constraints. +e
general form of goal programming is

min
nh∈X

d f nh( 􏼁, 􏽢f􏼐 􏼑, (9)

where 􏽢f � (􏽢f1,
􏽢f2, . . . , 􏽢fp, ) is the targeted goal vector

which has been obtained at individual solutions and
d(f(nh), 􏽢f) is the distance function between
d(f(nh), and 􏽢f in some selected norm. +e function (7) in
the l1 norm is given as

min
nh∈X

d1 f nh( 􏼁, 􏽢f􏼐 􏼑 � 􏽘

p
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􏽘
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2
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+e weighted l1 norm is

min
nh∈X

d
w
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p
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L
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, (11)

where wj ≥ 0 is the weight assigned to the jth objective
function.

+e goal programming can be converted to a single-
objective optimization problem by introducing the auxiliary
variables

d
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2
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(12)

Finally, the weighted goal programming model is

4 Mathematical Problems in Engineering



min􏽘
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where d+
j and d−

j are overachievement and underachieve-
ment functions respectively for the jth goal value. It is further
noted from (13) (iv) that d+

j and d−
j can never be achieved

simultaneously. It means that when overachievement is
more significant than zero, then underachievement func-
tions will be zero and vice versa. If the objective is maxi-
mization type function and hence underachievement
function is not desirable. For this situation w+

j � 0 and
w−

j � 1, and equation (13) (i) objective function is reduced to
min􏽐

p
j�1w

−
j d−

j , where w+
j and w−

j are the weight assigned to
overachievement and underachievement functions, respec-
tively. Conversely, for minimization type objective func-
tions, the underachievement function is not desirable, that
is, w+

j � 0 and w−
j � 1, and (13) (i) objective function is

reduced to min􏽐
p
j�1w

+
j d+

j .

3. Single-Objective Stochastic Multivariate
Stratified Sampling Models

Deciding under uncertainty is challenging and unavoidable
in most real-life problematic situations. +e problems are

mainly aim to optimize a set of function (s) under uncertain
conditions by the decision-maker (s). If some or all of the
constraints’ parameters are unknown and are considered
random, then such an optimization function becomes a
stochastic programming problem.

Any modeling framework that optimized a problem
under uncertainty can be viewed as a stochastic program-
ming problem. +e ultimate goal of these modeling types is
to obtain a set of solution(s) that is feasible and optimal in
some kind of set of data. Most of the models under this
category involve parameters that follow probability distri-
butions and can be known in advance or estimated using
established procedures.

In general terms, stochastic programming can also be
called probabilistic programming if some or all data of the
optimization function follow probability distributions. In
other words, variables that behave randomly in optimization
problems can be regarded as stochastic or probabilistic as the
case may be. Charnes & Cooper [33] developed and con-
verted the chance-constrained programming technique into
its equivalent deterministic nonlinear constraints.Many
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authors have discussed the stochastic optimization problem.
Among them are Prekopa [34], and Charnes and Cooper
[35]. In the context of response surface methodology, Diaz
Gracia et al. [36] had studied the problem under several
stochastic optimization techniques. Diaz Gracia and Ramos-
Quiroga [15, 16] formulated the problem of stratified

sampling. In this problem, the authors have considered the
sampling variances as a random variable. +e sampling
variances s2h have an asymptotically normal distribution.+e
given problem converts into an equivalent deterministic
problem by using a modified-E model.
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Again, Diaz Gracia and Garay Tapia [14] formulated the
problem of stratified sampling. In this problem, authors have
considered stochastic programming for minimizing the cost
function under the constraint to a known bound for the

estimated variance of the mean. +e following problem
converts into an equivalent deterministic problem by using
chance constraints;
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􏼒 􏼓 − 􏽘

L

h�1

W2
h

N2
nh

nh − 1( 􏼁
2 C

4
yh − s

2
h􏼐 􏼑

2
􏼒 􏼓⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

≤Vo (ii)

nh ∈ N, h � 1, 2, . . . , L. (iii)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (17)

where Vo is a known non-negative constant and Kα is the
value of the standard normal variable.

4. Multiobjective Stochastic Multivariate
Stratified Sampling Models

In this section, we discussed the various nonlinear opti-
mization sampling models under stochastic approaches. For

instance, a problem of attaining several goals targets under
probabilistic intervals was formulated as a linear stochastic
model [37]. Problems involving stochastic MO have been
analyzed considering different efficient concepts and
establishing the relationships between the identified con-
cepts [38]. A Multivariate Stratified random Sampling has
been investigated where the asymptotic normality of the
optimal solution was established, as well as the perturbation

6 Mathematical Problems in Engineering



effect of the stratum variance on the optimal solution [39].
Similarly, a problem of estimating several population means
in an MSS design has been investigated [40]. +e authors
formulated an all-integer nonlinear model and proposed the
solution using dynamic programming concepts with nu-
merical illustrations. A multiobjective goal optimization in
stratified sampling design was conducted by trading off
between the sampling cost and its variance [41]. More than a
single parameter estimation in a stratified sampling problem
has been studied with a fixed budget and nonlinear cost [42].
Beale described the convex functionminimization as a linear
programming problem considering the coefficients as ran-
dom variables [43].

Consider a multiobjective nonlinear programming
problem (MNLPP) is

minfj � 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠ (i)

subject to :

􏽘

L

h�1
cnhn + 􏽘

L

h�1
tn

��
nh

√ ≤C (ii)

2≤ nh ≤Nh (iii)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

j � 1, . . . , p.

(18)

+en, Equation (18) has been defined under the sto-
chastic assumption given as the following stochastic non-
linear programming problem (SNLPP) for the p
characteristics.

min � P 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠≤fj
⎛⎝ ⎞⎠≥ β (i)

subject to :

P 􏽘
L

h�1
cnhn + 􏽘

L

h�1
tn

��
nh

√
≤C⎛⎝ ⎞⎠≥ β (ii)

2≤ nh ≤Nh (iii)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

j � 1, . . . , p.

(19)

Definition 1. A point is called feasible if and only if the
probability measure of the event gj(nh, ξ)≤ 0, j � 1, . . . , p is
at least β. Or equivalently the constraints will be violated at
most (1 − β) times. +e joint chance constraint is separately
defined and is referred to as a separate chance constraint.
+at is,

P gj nh, ξ( 􏼁≤ 0􏽮 􏽯≥ βj, j � 1, . . . , p. (20)

Now, by applying minimax chance constrained pro-
gramming, (18) is as follows:

min
nh

maxfj (i)

subject to :

P 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠≤fj
⎛⎝ ⎞⎠≥ β (ii)

P 􏽘
L

h�1
cnhn + 􏽘

L

h�1
tn

��
nh

√ ≤C⎛⎝ ⎞⎠≥ β (iii)

2≤ nh ≤Nh(iv)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

j � 1, . . . , p.

(21)

where β is the predetermined confidence level and minfj is
the variance term.

We can also formulate a stochastic goal programming
for the problem defined in (21) with target goal values.

min
nh

􏽘

p

j�1
δ+

j (i)

subject to :

P 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠ − δ+
j ≤fj

⎛⎝ ⎞⎠≥ β (ii)

P 􏽘
L

h�1
cnhn + 􏽘

L

h�1
tn

��
nh

√
≤C⎛⎝ ⎞⎠≥ β (iii)

2≤ nh ≤Nh(iv)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

j � 1, . . . , p.

(22)

Remark 1. (i) +e stochastic objective constraints

P 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠≤fj
⎛⎝ ⎞⎠≥ β. (23)

coincide with the form in (20) by defining

gj nh, ξ( 􏼁 � 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠ − fj. (24)

(ii) +e stochastic goal constraints

P 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠ − fj ≥ δ
+⎛⎝ ⎞⎠≥ β. (25)

coincide with the form in (20) by defining
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gj nh, ξ( 􏼁 � fj − 􏽘

L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠ + δ+
. (26)

where δ+ is an overachievement goal.
(iii) +e stochastic problem constraints

P 􏽘
L

h�1
cnhn + 􏽘

L

h�1
tn

��
nh

√ ≤C⎛⎝ ⎞⎠≥ β. (27)

coincide with the form in (20) by defining

gj nh, ξ( 􏼁 � 􏽘
L

h�1
cnhn + 􏽘

L

h�1
tn

��
nh

√
− C. (28)

(iv) +e stochastic problem constraints

P 􏽘
L

h�1
cnhn + 􏽘

L

h�1
tn

��
nh

√ ≤C⎛⎝ ⎞⎠≥ β. (29)

coincide with the form in (20) by defining

gj nh, ξ( 􏼁 � C − 􏽘

L

h�1
cnhn + 􏽘

L

h�1
tn

��
nh

√
+ δ+

. (30)

where overachievement goal.
(v) For a continuous random variable ξ, the value

Pkβ ≤ ξ � 1 − Φ(kβ) holds always, and we have
kβ � Φ− 1(1 − β), where Φ− 1 is the inverse function
of Φ.

4.1. Conversion of Stochastic Inequalities to Equivalent
Deterministic. In (18) (i), the term s2jh is assumed to be a
random variable. In practice, some approximations of these

parameters, which are known from some preliminary or
recent survey, may be used. +e concept of limiting the
distribution of the sample variances in a sampling problem is
used in [39], considering the random variable ξh defined as

ξ �
1

nh − 1
􏽘

nh

i�1
yjhi − Yjh􏼐 􏼑

2
, (31)

where Yjh � (1/Nh)􏽐
Nh

i�1yjhi. Note that ξh has an asymp-
totically normal distribution with mean

E ξh( 􏼁 �
nh

nh − 1
S
2
jh, (32)

and variance

V ξh( 􏼁 �
nh

nh − 1( 􏼁
2 C

4
jh − S

2
jh􏼐 􏼑

2
􏼔 􏼕, (33)

respectively, where

C
4
jh �

1
Nh

􏽘

Nh

i�1
yjhi − Y􏼐 􏼑

4
, (34)

is the fourth central moment of jth character in the hth

stratum. +e sequence of sample variances is given by

S
2
jh � ξh −

nh

Nh − 1
􏽘

Nh

i�1
yjhi − Yjh􏼐 􏼑

2
, (35)

where nh/Nh − 1⟶ 1 and (yjhi − Yjh)2⟶ 0 in proba-
bility and hence under the asymptotically normal property
S2jh⟶

a N(E(ξ),Var(ξ)), h � 1, 2, . . . , L are independents.
Based on the above discussion, the multivariate stratified

sampling variance function with the following expected
function and variance function

E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � 􏽘
L

h�1

W
2
hE ξh( 􏼁

nh

−
W

2
hE ξh( 􏼁

Nh

􏼠 􏼡

� 􏽘
L

h�1

W
2
hS

2
jh

nh − 1
⎛⎝ ⎞⎠ −

W
2
hS

2
jh

Nh

⎛⎝ ⎞⎠
nh

nh − 1
� 􏽘

L

h�1

W
2
hS

2
jh

nh − 1
⎛⎝ ⎞⎠ −

W
2
hS

2
jh

Nh

⎛⎝ ⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (36)

as nh is sufficiently large,

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � 􏽘
L

h�1

W
4
hV ξh( 􏼁

n
2
h

−
W

4
hV ξh( 􏼁

N
2
h

􏼠 􏼡

� 􏽘
L

h�1

W
4
h C

4
jh − S

2
jh􏼐 􏼑

2
􏼒 􏼓

nh nh − 1( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ −

W
4
h C

4
jh − S

2
jh􏼐 􏼑

2
􏼒 􏼓

N
2
h

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

nh

nh − 1( 􏼁
2

� 􏽘
L

h�1

W
4
h C

4
jh − S

2
jh􏼐 􏼑

2
􏼒 􏼓

nh nh − 1( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ −

W
4
h C

4
jh − S

2
jh􏼐 􏼑

2
􏼒 􏼓

N
2
h

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (37)
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and as nh is sufficiently large.

Theorem 1. Assume that the stochastic vector ζ degenerates
to a random variable ξ with a probability distributionΦ , and
the function gj(nh, ζ) has the form gj(nh, ζ) � ωj(nh) − ξ.
=en, P gj(nh, ζ)􏽮 􏽯≤ 0≥ β iff ωj(nh)≤ kβ, where kβ is the
maximal value such that P kβ ≤ ξ􏽮 􏽯≥ β. Note that the prob-
ability P kβ ≤ ξ􏽮 􏽯 will be increased if kβ is replaced with a
smaller number.

Theorem 2. Assume that the stochastic function and g(nh, ξ)

has the form

gj nh, ξ( 􏼁 � 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠ − fj. (38)

If s2jh are assumed to be independent normally distributed
random variables, then g(nh, ξ)≤ 0􏼈 􏼉≥ β if and only if

E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +Φ− 1
(􏽢β)

�����������������������

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏽶
􏽴

≤fj, (39)

where Φ is the standardized normal distribution function.

Proof. In the probability model of survey sampling, the
probability that the sampling variance value is smaller or
equal to an absolute goal value is maximized. +at is,

P 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠≤f
∗
j , (40)

where f∗j is the minimum target goal value for the jth
objective function.

Recall the (18) (i), independently normally distributed
random variables s2jh. Moreover, covariance terms will be
zero, and only the variance terms will be remain.

􏽘

L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠≤f
∗
j

� P
fj nh( 􏼁 − E 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

�����������������������������
V 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

􏽱 ≤
f
∗
j − E 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

�����������������������������
V 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� P η≤
f
∗
j − E 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

�����������������������������
V 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � Φ
f
∗
j − E 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

�����������������������������
V 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(41)

where η is the standardized normally distributed random
variable.

From the fact that

Φ
f
∗
j − E 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

�����������������������������
V 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠≥ β, (42)

it is equivalent to

Φ− 1β

�����������������������

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏽶
􏽴

≤f
∗
j

− E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(43)

and from (43), the maximum of β is searched in the interval
(0, 1). +e following function is defined for convenience:

fo nh; β( 􏼁 � E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +Φ− 1β

�����������������������

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏽶
􏽴

− f
∗
j

. (44)
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Here, we assume that for an optimal solution (n∗h , β∗) to
the problem (44), β∗ > 0.5 holds. From this assumption,
Φ− 1(β)> 0, and then for a fixed value of β∗, it follows that
fo(n∗h ; β∗) is convex. □

Proposition 1. Let (n∗h , β∗) be an optimal solution to the
problem (21) with a target value fj larger than

foj � E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (45)

i.e., fj >foj. =en, β∗ > 0.5 holds.

Proof. From the condition fj >foj > 0, of the preposition,
fj − foj > 0, and then we have

Φ
f
∗
j − E 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

�����������������������������
V 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠> 0.5. (46)

Letting

􏽢β � Φ
f
∗
j − E 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

�����������������������������
V 􏽐

L
h�1 W

2
hS

2
jh/nh􏼐 􏼑 − W

2
hS

2
jh/Nh􏼐 􏼑􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (47)

we have

E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +Φ− 1β

�����������������������

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏽶
􏽴

� fj. (48)

=erefore, (􏽢nh, 􏽢β) is a feasible solution to the problem (44)
with the target valuefj. Since the value (n∗h , β∗) is the optimal
solution of (44), it holds.

Theorem 3. Assume that the stochastic vector
ξ � (c1, c2, . . . , cL, t1, t2, . . . , tL, C) and the function g(nh, ξ)

has the form g(nh, ξ) � 􏽐h�1Lchnh + 􏽐
L
h�1th

��
nh

√
− C. If ci

and C are assumed to be independent normally distributed
random variables, then g(nh, ξ)≤ 0􏼈 􏼉≥ β if and only if

Φ− 1β≤ −
􏽐

L
h�1E ch( 􏼁nh + 􏽐

L
h�1E th( 􏼁

��
nh

√
− E(C)

������������������������������

􏽐
L
h�1V ch( 􏼁n

2
h + 􏽐

L
h�1V th( 􏼁nh + V(C)

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ ,

(49)

or equivalently

􏽘

L

h�1
E ch( 􏼁nh + 􏽘

L

h�1
E th( 􏼁

��
nh

√
+Φ− 1

(β)

��������������������������������

􏽘

L

h�1
V ch( 􏼁n

2
h + 􏽘

L

h�1
V th( 􏼁nh +(C)≤E(C)

􏽶
􏽴

,

(50)

where Φ is the standardized normal distribution function.

Proof. Let chance constraint, that is,

P 􏽘
L

h�1
chnh + 􏽘

L

h�1
th

��
nh

√ ≤C⎛⎝ ⎞⎠≥ β. (51)

It is assumed that C, ch, and th are normally distributed
random variables. Moreover, assume that all are indepen-
dent of each other. We note that

gj nh, ξ( 􏼁 − 􏽐
L
h�1E ch( 􏼁nh + 􏽐

L
h�1E th( 􏼁

��
nh

√
− E(C)􏼐 􏼑

������������������������������

􏽐
L
h�1V ch( 􏼁n

2
h + 􏽐

L
h�1V th( 􏼁nh + V(C)

􏽱 . (52)

Equation (52) is the standard normal random variable
N(0, 1), and it follows

P 􏽘
L

h�1
chnh + 􏽘

L

h�1
th

��
nh

√ ≤C⎛⎝ ⎞⎠

� P
gj nh, ξ( 􏼁 − 􏽐

L
h�1E ch( 􏼁nh + 􏽐

L
h�1E th( 􏼁

��
nh

√
− E(C)􏼐 􏼑

������������������������������

􏽐
L
h�1V ch( 􏼁n

2
h + 􏽐

L
h�1V th( 􏼁nh + V(C)

􏽱⎛⎜⎜⎜⎝

≤ −
􏽐

L
h�1E ch( 􏼁nh + 􏽐

L
h�1E th( 􏼁

��
nh

√
− E(C)

������������������������������

􏽐
L
h�1V ch( 􏼁n

2
h + 􏽐

L
h�1V th( 􏼁nh + V(C)

􏽱 ⎞⎟⎟⎟⎠,

(53)

or equivalent to

P η≤ −
􏽐

L
h�1E ch( 􏼁nh + 􏽐

L
h�1E th( 􏼁

��
nh

√
− E(C)

������������������������������

􏽐
L
h�1V ch( 􏼁n

2
h + 􏽐

L
h�1V th( 􏼁nh + V(C)

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠≥ β ,

(54)

where η is the standardized, normally distributed random
variable. +e above-given constraint holds if and only if

Φ− 1β≤ −
􏽐

L
h�1E ch( 􏼁nh + 􏽐

L
h�1E th( 􏼁

��
nh

√
− E(C)

������������������������������

􏽐
L
h�1V ch( 􏼁n

2
h + 􏽐

L
h�1V th( 􏼁nh + V(C)

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ .

(55)

Hence, the chance constraint (12) (ii) can be transformed
into

􏽘

L

h�1
E ch( 􏼁nh + 􏽘

L

h�1
E th( 􏼁

��
nh

√
+Φ− 1

(β)

���������������������������������

􏽘

L

h�1
V ch( 􏼁n

2
h + 􏽘

L

h�1
V th( 􏼁nh + V(C)≤E(C)

􏽶
􏽴

.

(56)
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It can be further assumed that only ch and th are nor-
mally distributed random variables and independent to each
other where the total budget for the survey is fixed.+e same
procedure as discussed above will be followed and hence the
cost constraint defined in (56) will be defined as follows:

􏽘
L

h�1
E ch( 􏼁nh + 􏽘

L

h�1
E th( 􏼁

��
nh

√
+Φ− 1

(β)

������������������������

􏽘

L

h�1
V ch( 􏼁n

2
h + 􏽘

L

h�1
V th( 􏼁nh ≤C

􏽶
􏽴

.

(57)

□

4.2. Stochastic Goal Programming Sampling Variance Model.
In light of the above discussion, the problem formulated in
(57) is transformed equivalently as follows:

min
nh

� 􏽘

p

j�1
δ+

j , (i)

Subject to :

E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +Φ− 1
(β)

�����������������������

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏽶
􏽴

− δ+
j ≤f
∗
j (ii)

􏽘

L

h�1
E ch( 􏼁nh + 􏽘

L

h�1
E th( 􏼁

��
nh

√
+Φ− 1

(β)

���������������������

􏽘

L

h�1
V ch( 􏼁n

2
h + 􏽘

L

h�1
V th( 􏼁nh

􏽶
􏽴

≤C(iii)

2≤ nh ≤Nh and δ
+
J ≥ 0(iv).

(58)

+e individual sampling variance goal value can be
obtained using the following define equation:

min
j�1,2,...,p

fj � E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +Φ− 1
(β)

�����������������������

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏽶
􏽴

,

Subject to :

􏽘
L

h�1
E ch( 􏼁nh + 􏽘

L

h�1
E th( 􏼁

��
nh

√
+ Φ− 1

(β)

���������������������

􏽘

L

h�1
V ch( 􏼁n

2
h + 􏽘

L

h�1
V th( 􏼁nh

􏽶
􏽴

≤C

2≤ nh ≤Nh.

(59)

4.3. Chebychev Goal Programming Sampling Model. In this
method, first, we set goals for each objective that we want to
attain. Let some goals g � (g1, g2, . . . , gk)′ be identified for the
objective functions f � (f1(xh), f2(xh), . . . , fk(xh))′. Let
the objective functions f � (f∗1(xh), f∗2(xh), . . . f∗k (xh))′ be
defined as close as possible to goals g � (g1, g2, . . . , gk)′.

+e difference between f � (f∗1(xh), f∗2(xh), . . . , f∗k
(xh))′ and g � (g1, g2, . . . , gk)′ is defined as the deviation
function D(f(nh), g). In a sampling optimization problem, the
aim is to find an n∗h ∈ X, whichminimizes D(f(nh), g), that is,

n
∗
h � argmin

nh∈X
D f nh( 􏼁, g( 􏼁, (60)

where

D f nh( 􏼁, g( 􏼁 � max D f1 nh( 􏼁, g1􏼁, . . . , fk nh( 􏼁, gk􏼁􏼈 􏼉, (61)

is the maximum deviation of individual goals. Finally, a
preferred solution is then defined as one that minimizes the
maximum deviations from the goals. In light of the above
discussion, the problem formulated in (55) is transformed
equivalently with an auxiliary variable δ as follows:
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min
nh

δ, (i)

subject to :

E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠ +Φ− 1β

��������������������

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠

􏽶
􏽴

(ii)

􏽘
L

h�1
E th( 􏼁

��
nh

√
+Φ− 1β

���������������������

􏽘

L

h�1
V ch( 􏼁n

2
h + 􏽘

L

h�1
V th( 􏼁nh

􏽶
􏽴

− C≤ δ (iii)

2≤ nh ≤Nhδ and δ ≥ 0 (iv)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (62)

4.4. Stochastic Sampling CostModel. Similar to the sampling
variance model, in a sampling cost model, we minimize the

objective cost function subject to variance constraints. +at
is,

min
nh

� 􏽘
L

h�1
E ch( 􏼁nh + 􏽘

L

h�1
E th( 􏼁

��
nh

√
+Φ− 1

(β)

�����������������������

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏽶
􏽴

Subject to :

E 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +Φ− 1
(β)

�����������������������

V 􏽘
L

h�1

W
2
hS

2
jh

nh

−
W

2
hS

2
jh

Nh

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏽶
􏽴

≤f
∗
j

2≤ nh ≤Nh and j � 1, 2, . . . , p.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (63)

where C∗ is the target goal value.

5. Linear Approximation of Multivariate
Stratified Sampling Problem

+e objective function in (7) fj is linearized at the individual
optimum points [44]. +us, for j � q at the point
n∗q � (n∗q1, n∗q2, . . . , n∗qh), fq

′ may be approximated by the
linear function with nh as

fq
′ � fq n

∗
qh􏼐 􏼑 + ∇′fq n

∗
qh􏼐 􏼑 nh − n

∗
qh􏼐 􏼑, (64)

where fq
′ is the variation term and ∇′fq(n∗qh) is the value of

the vector of partial derivatives of fq with respect to nqh(h �

1, 2, . . . , L) at the point n∗qh given as follows:

∇′fq
′ n
∗
qh􏼐 􏼑 � −

W
2
1S

2
q1

n
∗
q1􏼐 􏼑

2
⎛⎜⎝ ⎞⎟⎠, −

W
2
2S

2
q2

n
∗
q2􏼐 􏼑

2
⎛⎜⎝ ⎞⎟⎠, . . . , −

W
2
LS

2
qL

n
∗
qL􏼐 􏼑

2
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦.

(65)
+is gives

∇′fq
′ n
∗
qh􏼐 􏼑 nh − n

∗
qh􏼐 􏼑

� 􏽘
L

h�1

W
2
hS

2
qh

n
∗
qh

⎛⎝ ⎞⎠ − 􏽘
L

h�1

W
2
hS

2
qh

n
∗
qh

⎛⎝ ⎞⎠nh
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭,

fq
′ � 2 􏽘

L

h�1

W
2
hS

2
qh

n
∗
qh

⎧⎨

⎩

⎫⎬

⎭ − 􏽘
L

h�1

W
2
hS

2
qh

n
∗
qh

⎛⎝ ⎞⎠nh

⎧⎨

⎩

⎫⎬

⎭ � fq
′(say).

(66)

After dropping the constant terms in the linear objective
function, the NLPP (6) can be approximated, and the final
problem is equivalent to maximizing (− fk

′). +at is,

maxfj � 􏽘
L

h�1

W
2
hS

2
jh

n
∗
jh􏼐 􏼑

2
⎛⎜⎝ ⎞⎟⎠nh, (i)

subject to :

􏽘

L

h�1
cnhn ≤C (ii)

2≤ nh ≤Nh (iii)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

j � 1, 2, . . . , p. (67)
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6. Numerical Results

+is section presents some numerical examples to illustrate
the various theoretical concepts discussed above.

Example 1. A simulation study is used to show the com-
putational procedure for the theoretical discussion of
multiobjective MSS.+e R package (stratifyR) [45] is used to
simulate the data for the two different characteristics, which
are divided into four strata. +e information on simulation
studies is given in Table 1.

+e available budget for the survey is C0 � $2500.
Using (7), in Section 2.3, the best individual optimal

solutions for both characteristic j � 1, 2 are obtained as
follows:

f1 � 1218.183, n1 � 26, n2 � 33, n3 � 99, n4 � 74 and
.f2 � 494.3353, n1 � 29, n2 � 36, n3 � 92, n4 � 77. +e
Weighted Goal Programming discussed in 2.4 is applied to
obtain the compromised allocations using (13) with the help
of the LINGO optimization package [46], as follows: f1 �

1219.624, f2 � 496.7824, n1 � 27, n2 � 35, n3 � 96, n4 � 75.

Example 2. A simulation study is used to show the com-
putational procedure of the stochastic multiobjective mul-
tivariate stratified sampling.+e R package (stratifyR) [45] is
used to simulate the data for the two different characteristics,
which are divided into four strata. +e information on
simulation studies is given in Table 2.

+e available budget for the survey is C0 � $2000.
+e calculated parameters used in this study are pre-

sented in Table 3.
+e individual solutions of numerical Example 2 for

both characteristics j � 1, 2 are obtained using (59) of
Section 4.2 as follows:

f1 � 0.1517723, n1 � 20, n2 � 26, n3 � 64, n4 � 52. and
f2 � 0.3982894, n1 � 19, n2 � 22, n3 � 67, n4 � 52. +e sto-
chastic Goal programming discussed in Sec. 4.2 is applied to
obtain the compromised allocations using (58) as follows:
f1 � 0.03982894, f2 � 0.03982894, n1 � 19, n2 � 22, n3
� 67, n4 � 52. +e Chebychev Goal programming discussed
in Section 4.3 is applied to obtain the compromised allo-
cations using (62) as follows: f1 � 0.03982894, f2

� 0.03982894, n1 � 19, n2 � 22, n3 � 67, n4 � 52. +e Sto-
chastic Sampling Cost Model discussed in Section 4.4 is
applied to obtain the compromised allocations using (63) as
follows: C � 1997.716, n1 � 21, n2 � 24, n3 � 67, n4 � 49.

Example 3. Here, the linearization of sampling variance are
discussed numerically. Using the data of Table 1 in (67), the
following sample allocations for j � 1 are n11 � 2, n12 � 195,

n13 � 75, n14 � 2 are obtained with the sampling variance of
flinear � 􏽐

L
h�1((1/nh) − (1/Nh))W2

hS2jh � 1465.552. Solving
the nonlinear sampling variance problem defined in (7) with
the same data, the sample allocation was perceived to be
n11 � 26, n12 � 33, n13 � 99, n14 � 74 with sampling variance
of fnonlinear � 1218.183. It is observed that the sample al-
location from the nonlinear problem is better than the
linearized one. Also, the sampling variability is higher in the
linearized model than in the nonlinear. +erefore, it can be
concluded that linearization of the sampling problem does
not give better sample allocations as well as minimum
sample variance.

Example 4. Here, the linear approximation of sampling
variance are numerically presented. Using the data of Table 1
in (67), the following sample allocations for j � 2 are n21 �

2, n22 � 3, n23 � 203, n24 � 2 are obtained with the sampling
variance flinear � 􏽐

L
h�1(1/nh − 1/Nh)W2

hS2jh � 595.91. Solv-
ing the nonlinear sampling variance problem with the same
data, the sample allocation was perceived to be
n21 � 29, n22 � 36, n23 � 92, n24 � 77 with sampling variance
of fnonlinear � 494.3353. It is again observed that the sample
allocation from the nonlinear problem is better than the
linearized one as in the case of Example 3. Also, the sampling
variability is higher in the linearized model than in the
nonlinear. +erefore, it can be concluded that linearization
of the sampling problem does not give optimal sample al-
locations as well as minimum sample variance.

In general, It can be concluded that linearization of
nonlinear sampling variance in a survey sampling problem
does not help to determine the optimal sample allocations
with minimum variability since approximation of nonlinear
into a linear function will not sufficiently optimize the
function value as a result of a loss of generality during the

Table 1: Data for two characteristics and four strata.

h Nh S2h1 S2h2 Wh ch

1 174 268535.9 136457.3 0.11233 9
2 196 322381.3 146465.2 0.12653 8
3 676 355325.6 127272 0.43641 12
4 503 324026.4 141460.7 0.32473 11

Table 2: Data for two characteristics and four strata.

h Nh Wh S2h1 S2h2 C4
h1 C4

h2 E(ch) V(ch) E(th) V(th)

1 174 0.11233 21.12788 6.393020 1812.391 106.4593 9 2.10 2.00 0.35
2 196 0.12653 24.56889 5.326552 1635.366 66.60126 8 1.75 2.45 0.75
3 676 0.43641 22.81545 6.220776 1517.975 112.4234 12 2.50 2.30 0.60
4 503 0.32473 23.37032 6.076825 1750.445 106.6261 11 2.25 2.10 0.55
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linear transformation of sampling variance. In such cases, it has
been observed that the optimal global solution (Pareto optimal
solution) of a function can suffer. Suppose if the original
nonlinear function is convex and we approximate it into the
linear function, we know that the linear function can be convex
or concave. Indeed, the transformation process of nonlinear to
a linear function could compromise several properties of the
nonlinear based on the fact that a nonlinear function has a high
convergence rate to a linear function. Hence, it can be verified
that the linearized sampling variance case optimal allocation
has high variability compared to the actual sampling problem.
Hence, it can be concluded that the need for linearizing the
sampling variance function for obtaining the optimal sample
allocation is not an optimal decision in a sampling survey. Since
the linearization of sampling design under deterministic does
not give an efficient solution, there is no need to carry out the
same under stochastic, and therefore, the study did not consider
linearization under the uncertainty. Other interested re-
searchers can explore the context of different sampling designs.

7. Conclusion

In sample design, allocating samples efficiently and attaining
maximum accuracy in minimizing variances plays an im-
portant role. Various techniques, theorems, properties and
prepositions, and stochastic models were studied, discussed,
and presented for the multiobjective multivariate stratified
sampling scheme. +e discussion is supported with numerical
examples in each case.+is research is a theoretical framework
and conceptual methodology for survey sampling in optimal
allocation problems in a certain and stochastic environment.
Based on the discussion and numerical illustrations, it can be
deduced that sampling variance values resulting from the
linearization have higher variability than the nonlinear sam-
pling variance case. +erefore, the study suggests that there is
no need for linearizing the original sampling variance function
with the hope of getting an optimal decision regarding
sampling allocation in survey sampling. +e interested re-
searchers can further demonstrate the usefulness and power of
the techniques and methods presented in this study. In the
future, the study could be extended to more sampling designs
in optimal allocation problems for survey sampling.
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