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In this study, the traveling wave solutions of a nonlinear partial di�erential equation (NPDE) called as Geophysics Korteweg-de
Vries (GpKdV) equation are obtained using the modi�ed exponential function method (MEFM). Coriolis e�ect is stated with the
help of this model used in geophysics. �e nonlinear model has a Coriolis coe�cient representing this e�ect.

1. Introduction

Nonlinear partial di�erential equations are mathematical
models that represent many natural phenomena. Such
mathematical models also take an active role in various
branches of science. For example, it is an e�ective model for
analyzing events in many science subjects, such as plasma
physics and geophysics. Researchers need to investigate the
solutions of such nonlinear mathematical models. Because
the obtained �ndings allow the analysis of the event, for this
reason, there are various methods related to numerical or
exact solutions of partial di�erential equations in the lit-
erature. Some of them are respectively the trial equation
method [1], the extended trial equation method [2], the new-
function method [3–7], the improved Bernoulli subequation
function method [8–10], Kudryashov method [11, 12], the
sine-Gordon equation expansion method [13–16], gener-
alized auxiliary equation method [17], �rst integral method
[18], new extended direct algebraic method [19], Hirota
bilinear method and the tanh-coth method [20, 21], the
modi�ed exponential function method [22], and Cheby-
shev–Tau method [23].

�e GpKdv equation, an important model in geophysics,
is analyzed in this study.�is equation is especially preferred
because it contains a coe�cient representing a Coriolis

e�ect, which is in the model and is very important for
science. �e Coriolis e�ect is the name given to the phe-
nomenon that a�ects the scattering of ¥uids such as water or
air in nature while moving on the Earth. For example, while
storms move counterclockwise at the north pole, they move
clockwise at the south pole. �e direction of the circular
air¥ow, which generally occurs in natural events such as
storms, is from the high-pressure region to the low-pressure
area. However, this orientation cannot move vertically be-
cause the factor that prevents this and causes the storm to be
blown is the Coriolis e�ect. �erefore, it can be said that it
has an active role in the occurrence of the di�erence in
direction at the poles.

In order to analyze the Coriolis e�ect, the GpKdv
equation in this study is [24–26]

​ ​ ut − c ux +
3
2
uux +

1
6
uxxx � 0, (1)

where u is a function representing the independent surface
feed and c is the Coriolis coe�cient. �e Coriolis constant c
may di�er from region to region depending on the depth of
the water. Also, it is of great importance to include the
Coriolis term c ux in the KdV equation in order to be able to
observe the e�ect of the Earth’s rotation on the ¥ows in
tsunami waves.
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2. Description of the Method

In this section, the modified exponential function method
that is well known as an effective technique for obtaining
many solution functions such as traveling wave, soliton, and
periodic wave of nonlinear mathematical models will be
introduced [27, 28].

Let us take the general form according to the function
derivative variables used in the GpKdV equation as follows:

P u, ux, ut, uxx, uxxx, . . .( 􏼁 � 0. (2)

'e wave transforms according to derivative variables in
equation (2):

u(x, t) � U(ξ),

ξ � k(x − ct),
(3)

U1,1 (x, t)
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Figure 1: 2D and 3D graphs and graph simulating the coriolis effect of equation (16) with different t values.
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Figure 2: 2D and 3D graphs and graph simulating the coriolis effect of equation (17) with different t values.
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where k represents the height of the wave and c represents
the frequency of the wave. 'e derivative terms in equation
(2) are reduced to the following nonlinear ordinary differ-
ential equation form with a single derivative variable using
the wave transform in equation (3):

N U, U′, U″, U
‴

, . . .􏼒 􏼓 � 0. (4)

'e solution function sought according to the method in
which the nonlinear partial differential equation and the
nonlinear ordinary differential equation obtained by ap-
plying the wave transform to this partial equation are
planned to be provided are as follows, respectively:

U(ξ) �
􏽐

n
i�0 Ai[exp(− Ω(ξ))]

i

􏽐
m
j�0 Bj[exp(− Ω(ξ))]

j

�
A0 + A1 exp(− Ω) + · · · + An exp(n(− Ω))

B0 + B1 exp(− Ω) + · · · + Bm exp(m(− Ω))
,

(5)

where Ai, Bj, (0≤ i≤ n, 0≤ j≤m) are coefficients,
An ≠ 0, Bm ≠ 0.

In the solution function assumed as equation (5), there
are parameters that must be determined, respectively. 'e
first of these is the omega function that is a solution of the
nonlinear differential equation

Ω′(ξ) � exp(− Ω(ξ)) + μ exp(Ω(ξ)) + λ. (6)

While integrating equation (6) according to ξ, various Ω
functions are obtained according to the states of λ and μ in
the omega function as follows [29]:

Family 1: when μ≠ 0, λ2 − 4μ> 0,

Ω(ξ) � ln
−

������

λ2 − 4μ
􏽱

2μ
tanh

������

λ2 − 4μ
􏽱

2
(ξ + E)⎛⎜⎜⎝ ⎞⎟⎟⎠ −

λ
2μ

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(7)

where E is an integration constant.
Family 2: when μ≠ 0, λ2 − 4μ< 0,

Ω(ξ) � ln

�������

− λ2 + 4μ
􏽱

2μ
tan

�������

− λ2 + 4μ
􏽱

2
(ξ + E)⎛⎜⎜⎝ ⎞⎟⎟⎠ −

λ
2μ

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(8)

Family 3: when μ � 0, λ≠ 0 and λ2 − 4μ> 0,

Ω(ξ) � − ln
λ

exp(λ(ξ + E)) − 1
􏼠 􏼡. (9)

Family 4: when μ≠ 0, λ≠ 0, and λ2 − 4μ � 0,

Ω(ξ) � ln −
2λ(ξ + E) + 4
λ2(ξ + E)

􏼠 􏼡. (10)

Family 5: when μ � 0, λ � 0, and λ2 − 4μ � 0,

Ω(ξ) � ln(ξ + E). (11)

After obtaining the omega functions as above, a relation
between m and n is found by applying the balancing
principle to equation (4) according to the second operation
of the method. 'en, by determining a parameter suitable
for m in this resulting relationship, the n parameter is found.
In this way, the boundaries of the total symbols are deter-
mined. 'en, the coefficients A0, A1, . . . , An, B0, B1, . . . , Bm

in equation (5) will be determined. For this, when the
necessary derivative terms of equation (4) are found from
equation (5), and written in their places, an equation is
obtained. 'e algebraic equation system consisting of the
coefficients of the eΩ(ξ) function in the resulting equation is
obtained. A0, A1, . . . , An, B0, B1, . . . , Bm coefficients are ob-
tained by solving this system of equations with the help of
the program.

3. Application

When the derivative terms in the nonlinear mathematical
model (1) are substituted using the wave transform in
equation (3), we obtain the following equation:

(− c − c) u +
3
4

u
2

+
1
6

k
2

u″ � 0. (12)

If the balance procedure is applied to the term u″ with
the highest order derivative in equation (12) and u2 of the
highest order nonlinear term, the balance equation is ob-
tained as follows:

n � m + 2. (13)

Accordingly, if m � 1 in equation (13), it is obtained as
n � 3. If these values are substituted in the solution function
assumed to provide equation (1), the solution function and
the derivative terms in the nonlinear ordinary differential
equation are obtained as follows:

U(ξ) �
ψ
φ

�
A0 + A1e

− Ω(ξ)
+ A2e

− 2Ω(ξ)
+ A3e

− 3Ω(ξ)

B0 + B1e
− Ω(ξ)

,

U′(ξ) �
ψ′φ − ψφ′

φ2 ,

U″(ξ) �
ψ″φ3

− φ2ψ′φ′ − ψφ″ + ψ′φ′( 􏼁φ2
+ 2 ψ′( 􏼁

2ψφ
φ4 .

(14)

After the terms in equation (14) are replaced in equation
(12), the following coefficients are obtained when the system
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of algebraic equations consisting of coefficients is solved by
classifying them according to the powers of eΩ(ξ).

Case 1.

A0 � −
4
3
k
2μB0,

A1 � −
4
3
k
2 λB0 + μB1( 􏼁,

A2 � −
4
3
k
2

B0 + λB1( 􏼁,

A3 � −
4
3
k
2
B1,

c � − c +
1
6
k
2 λ2 − 4μ􏼐 􏼑.

(15)

'ese coefficients are replaced in the solution func-
tions and derivatives in equation (14). 'en, the omega
functions in the following family cases are put into the
solution function. Also, it is checked that the solution
function satisfies the nonlinear ordinary differential
equation, Figure 1 and then the nonlinear partial Figure 2
differential equation is performed with the help of the
Mathematica.

Family 1:

u1,1(x, t) �
4k

2μ λ2 − 4μ􏼐 􏼑

3 λ cosh[1/2Ψ] +

�������

λ2 − 4μ
􏽱

sinh[1/2Ψ]􏼒 􏼓
2,

(16)

where Ψ � (E + k(− ct + x))

������

λ2 − 4μ
􏽱

.
Family 2:

u1,2(x, t) �
3k

2μ λ2 − 4μ􏼐 􏼑

3 λ cos[1/2Υ] −

��������

− λ2 + 4μ
􏽱

sin[1/2Υ]􏼒 􏼓
2,

(17)

where Υ � (E + k(− ct + x))

�������

− λ2 + 4μ
􏽱

.
Family 3:

u1,3(x, t) � −
1
3
k
2λ2csch

1
2

(E + k(x − ct))λ􏼔 􏼕
2
. (18)

Family 4:

u1,4(x, t) �
k
2

(E + ξ)λ(4 + Eλ + ξ) λ2 − 4μ􏼐 􏼑 − 16μ􏼐 􏼑

3(2 + Eλ + ξλ)
2 .

(19)

Family 5:

u1,5(x, t) � −
4k

2

3(E + ξ)
2. (20)
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Figure 3: 2D and 3D graphs and graph simulating the coriolis effect of equation (18) with different values.
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Case 2.

A0 �
1
4
B0

λ2A3

B1
+ 8(c + c)􏼠 􏼡,

A1 �
1
4
λA3 λ +

4B0

B1
􏼠 􏼡 + 2B1(c + c),

A2 � A3 λ +
B0

B1
􏼠 􏼡,

k �
i

����
3A3

􏽰

2
��
B1

􏽰 ,

μ �
λ2

4
+
2B1(c + c)

A3
.

(21)

In this case, the following families of solutions are ob-
tained by calculating the parameter k representing the height
of the wave with the coefficients and the parameter μ.

Family 1:

u2,1(x, t) �
sech[1/2Ψ]

2 λ2 − 4μ􏼐 􏼑 − 2μ + λ2 − 2μ􏼐 􏼑cosh[Ψ] + +λ
������

λ2 − 4μ
􏽱

sinh[Ψ]􏼒 􏼓A3 + +8 2μ + λ2 − 2μ􏼐 􏼑cosh[Ψ] + λ
������

λ2 − 4μ
􏽱

sinh[Ψ]􏼒 􏼓B1(c + c)􏼒 􏼓

4B1 λ +

�������

λ2 − 4μ
􏽱

tanh[1/2Ψ]􏼒 􏼓
2

􏼠 􏼡

.

(22)

Family 2:

u2,2(x, t) �
sec [1/2Υ]2 λ2 − 4μ􏼐 􏼑 − 2μ + λ2 − 2μ􏼐 􏼑cos[Υ] + +λ

�������

− λ2 + 4μ
􏽱

sin[Υ]􏼒 􏼓A3 − − 8 − 2μ − λ2 − 2μ􏼐 􏼑cos[Υ] + λ
�������

− λ2 + 4μ
􏽱

sin[Υ]􏼒 􏼓B1(c + c)􏼒 􏼓

4B1 λ −

��������

− λ2 + 4μ
􏽱

tan[1/2Υ]􏼒 􏼓
2

􏼠 􏼡

. (23)
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Figure 4: 2D and 3D graphs and graph simulating the coriolis effect of equation (19) with different t values.
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Family 3:

u2,3(x, t) �
λ2A3coth [1/2(E + ξ)λ]

2

4B1
. (24)

Family 4:

u2,4(x, t) �
λ2A3

(2 + Eλ + ξλ)
2
B1

+ 2(c + c). (25)

In the case of Family 5, the solution function is deter-
mined as undefined since λ and μ are zero and λ2 − 4μ � 0 is
zero. For this reason, no graphic drawings related to the
mathematical model could be made.

Case 3.

A0 � 0, A1 �
1
6

λ2 + 2μ􏼐 􏼑A3, A2 � λA3, B0 � 0, c � −
1
6
k
2 λ2 − 4μ􏼐 􏼑 − c.

(26)
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Figure 5: 2D and 3D graphs and graph simulating the coriolis effect of equation (20) with different t values.
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Here, the following families of solutions are obtained by
calculating the c parameters and coefficients representing
the frequency of the wave.

Family 1:

u3,1(x, t) � −
2k

2sech[1/2Ψ]
2 λ2 − 4μ􏼐 􏼑 − 4μ + λ2 − 2μ􏼐 􏼑cosh[Ψ] + +λ

������

λ2 − 4μ
􏽱

sinh[Ψ]􏼒 􏼓􏼒 􏼓

9 λ +

�������

λ2 − 4μ
􏽱

tanh[1/2Ψ]􏼒 􏼓
2

􏼠 􏼡

. (27)
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Family 2:

u3,2(x, t) �
2k

2sec [1/2Υ]2 λ2 − 4μ􏼐 􏼑 4μ − λ2 − 2μ􏼐 􏼑cos[Υ] + +λ
�������

− λ2 + 4μ
􏽱

sin[Υ]􏼒 􏼓􏼒 􏼓

9 λ −

��������

− λ2 + 4μ
􏽱

tan[1/2Υ]􏼒 􏼓
2

􏼠 􏼡

. (28)
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Family 3:

u3,3(x, t) � −
1
9
k
2λ2 2 + 3 csch

1
2

(E + ξ)λ􏼔 􏼕
2

􏼠 􏼡. (29)

Family 4:

u3,4(x, t) �
1
9
k
2 λ2(− 8 +(Eλ + ξλ)(4 + Eλ + ξλ))

(2 + Eλ + ξλ)
2 − 4μ􏼠 􏼡.

(30)

Family 5:
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u3,5(x, t) �
1
9

−
4k

2

3(E + ξ)
2􏼠 􏼡. (31)

4. Conclusion

In this study, we successfully obtained the new traveling
wave solutions of the GpKdv equation using the modified
exponential function method. When the types of solution
functions that provide the mathematical model are analyzed,

it is seen that hyperbolic and trigonometric functions with
periodic functions are singular solitons. We plotted the
contour surfaces under appropriate constants, where all
wave solutions are two and three-dimensional, and the
Coriolis effect represented by the mathematical model is
effectively seen. In Figures 1–14, the simulated graphs
representing the mathematical model, the behavior of the
solution function u representing the free surface progres-
sion, and the Coriolis effect accordingly are seen. 'e
mentioned method is understood to be very effective in
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Figure 13: 2D and 3D graphs and graph simulating the coriolis effect of equation (30) with different t values.
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Figure 14: 2D and 3D graphs and graph simulating the coriolis effect of equation (31) with different t values.
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obtaining the wave solutions of such nonlinear differential
equations. Because there is an exponential function in the
solution function u, which is preferred as a hypothesis
according to the method. In addition, the omega function,
which is used as the power of the exponential function, is
also a function that satisfies the Riccati equation. Consid-
ering all these situations, it allows obtaining solution
functions with periodicity compared to other methods. 'is
gives the researchers information about the behavior of the
mathematical model used in a desired time interval. In
addition, as far as we know, the obtained solution functions
are included in the literature for the first time. When the
literature is searched for this mathematical model, it is seen
that various soliton solutions are also obtained using nu-
merical methods, the homotopy perturbation method, finite
element, and the Hirota bilinear method, which is expressed
as an analytical method. Consequently, we believe the ob-
tained solutions can effectively demonstrate the Coriolis
effect in geophysics.
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