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In this article, a new lifetime model, referred to as modified Frechet-Rayleigh distribution (MFRD), is developed by accom-
modating an additional parameter in Rayleigh distribution on the basis of the modified Frechet method. Numerous statistical
properties of the suggested model are derived and discussed. The technique of maximum likelihood (ML) estimation is adopted to
get estimates of the parameters. The suggested model is very flexible and has the capability to model datasets having both
monotonic and nonmonotonic failure rates. The proposed model is applied on two real datasets for checking its performance in
comparison with available well-known models. The suggested model has shown outclass performance in comparison with the
available versions of the Rayleigh distribution used in the literature.

1. Introduction

The distribution has many applications. It can be defined as
follows.

Let X ~N(0,6%°) and Y ~ N(0,8%) be independent
normally distributed random variables. Then, Z=square
root of (X*+ Y?) has a Rayleigh distribution.

Rayleigh distribution is widely used in various fields,
such as life sciences, agriculture, and biological sciences, and
in the analysis of metrological characteristics, such as wind
speed. The Rayleigh distribution has applications in situa-
tions where sizes of normally distributed variables are vital.
Rayleigh distribution is also used in the investigation of wind
velocity into its orthogonal XY coordinates. Furthermore,
assuming that these components are independently and
normally distributed with equal variances and means equal
to zero. Thus, the variable of interest is wind speed and can
be modeled by a Rayleigh distribution. According to Fer-
nandez et al. [1] and Akhter et al. [2], it has useful

applications in the field of medical sciences. In the field of
engineering, it is used to find the expected lifespan of
material objects, reliability investigation, service periods,
and theory of communication. The density function (PDF)
and distribution function (CDF) of RD are specified, re-
spectively, as

f(x)= 2)L2xe_ux)2, x>0,1>0, (1)

Fix)=1-¢ ™ x>01>0. (2)

In the literature, there are many variants of the Rayleigh
model which are used to provide a better fit of data. Voda [3]
developed generalized Rayleigh and left-truncated model,
Gomes et al. [4] suggested the Kumaraswamy generalized
Rayleigh model, Merovci [5] suggested the transmuted
Rayleigh model, Cordeiro et al. [6] suggested the beta
generalized Rayleigh model. In [7], the inverse Rayleigh (IR)
model was proposed to fit survival and reliability data. Voda
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[8] obtained estimates of the parameters of the IR model by
ML estimation, Mukarjee and Maitim [9] discussed certain
important statistical properties of the IR model, and
Gharraph [10] developed expressions of descriptive statistics
of the IR model. Moreover, Soliman et al. [11] and Gharraph
[10] used maximum likelihood and Bayesian estimation
methods to obtain estimates of parameters.

In recent times, the literature of probability models has
been updated by inserting additional parameter(s) in the
existing models using existing techniques available in lit-
erature or by proposing a new method to produce a better
model as compared to the baseline model. Rehman and
Sajjad [12] developed the IR model; Ahmad et al. [13]
suggested transmuted the IR model, beta IR model [14],
modified inverse Rayleigh model [15], generalized inverted
scale family models [16], alpha power exponentiated inverse
Rayleigh model [17], and alpha power Rayleigh distribution
[18]. These newly proposed distributions were obtained and
comparatively provided a better fit of the complex data.

The primary rationale behind producing modified Fre-
chet-Rayleigh distribution (MFRD) is to overcome the in-
adequacy present in the Rayleigh model. The proposed
distribution provides various shapes for hazard rate func-
tions and shows more flexibility as compared to the Rayleigh
distribution.

1.1. Research Problem. In practice, we might deal with data
that exhibit monotonic or nonmonotonic hazard rate
shapes. The available models may fail to be applied in such
cases as in the case of life distributions. Therefore, re-
searchers are trying to derive models that incorporate the
deficiencies of these distributions. So, in this study, our aim
is to propose a model that might efficiently fit such kind of
data. This purpose is achieved by adding an extra parameter
using generators or by the existing models; for detail, we
refer to see [19]. Therefore, the modified Frechet technique is
used to derive the proposed model.

1.2. Modified Frechet (MF) Technique. Alamgir et al. [20]
suggested a novel technique, called modified Frechet
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technique (MFT) for developing new efficient probability
models. The CDF and PDF of the newly developed technique
are specified by the expressions given below:

PO _
IGEDE
af (x)(F(x))* e FO"

(1 _ e—l) 5

In equations (3) and (4), F (x) and f (x) denote the CDF
and PDF of the input model, respectively. This technique is
used to introduce modified Frechet-Rayleigh distribution
(MEFRD). The basic purpose of producing MFRD has a more
flexible distribution to model life time data in comparison to
other versions of Rayleigh distribution.

Gur(x) = x>0. (3)

Iumr (X) = x>0. (4

1.3. Modified Frechet-Rayleigh Distribution (MFRD). This
section of the article introduces modified Frechet-Rayleigh
distribution (MFRD).

The CDF of RD is specified by

F(x)=1- ef(’\x)z,

x>0,A>0. (5)

Definition 1. If X ~ MFR D, then its PDF is specified by

02 \¢ (a—1)
Za)tzxef(“)z’(“e“ ?) {1 - eiw)z} )

Smrrp (%) = - . %A a>0.
(1-¢7)
(6)
The PDF and CDF are plotted in Figure 1.
The CDF of MFRD is specified by
e—(l—e“")z) -1
Fyerp (%) = a, A, x>0, (7)

GE

The hazard rate (HR) function of MFRD is defined by

2“/12“_(“)2_(1_6«“)2)“ {1 - e_(wz} . 1)/(1 - e_l)

>

<e—1 _ e’(l’e“")z)a>/(e’1 3 1)

(8)

3 3 pdf B
MERD ™ curvivalfunction
92 )" (a=1)
2002 xe~ 0= (1) {1 - e_(mz} a
hAMKRD (x) =

T
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F1GURE 1: Graphs of PDF and CDF of MFRD.

Lemma 1. Ifa<1and f(x) is nonincreasing function, then

The survival function (SF) of MFRD is specified by
fmerp (%) is also a nonincreasing function.

ol o (1)’
Sy (1) =~ ©) o .
(e 1_ 1) Proof. If f(x) is differentiable and if (d/dx)log f (x)<0
for X in (0, 00), then f (x) is nonincreasing and vice versa.

Figure 2 exhibits graphs of HF and SF of MFRD. Take (d/dx)log fyprp (x) <0, that is,

2 (1 0x02)¢ a2 (=1
a2 xe— ) (1-e00?) {1 pees) }

d
alog fmerp (%) = Elog (1 B eil)

d d 2 2 —a02 ) ~(x)? _1
alog fMFRD(x):E[log(Zoc/\ )+10gx—(/\x) —(l—e ) +(0c—1)log{1—e }—log(l—e )], (10)

2
d 15 () S\ @D (a-1e™
alongFRD(X):;—lel—oce * (1—6 x ) —m.

Lemma 2. Ifa<1, f(x) is nonincreasing function, and f (x)

For nonnegative and less than 1 values of « and A >0, (9)
is log-convex, then hypp, (x) is a nonincreasing function.

shows that d/dxlog fyerp (%) <0.

Hence, for a<1, fypp(x) 1is nonincreasing
function. O  Proof. 1fd*/dx*f (x) exists and (d*/dx*)log f (x)> 0, then

f (x) referred as log-convex.
By taking second differential of (10), we obtain

2
d* dil - o\ (@-De ™
@longFRD(x)ZE ;—ZAX 1-ae <1—€ ) —m
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FIGUure 2: Graphs of HF and SF of MFRD.

2

d 1 2 2\ (a=1) 5 -1
32 108 Sarro () = [——z -20% = 200%™ (1 —e ™ ) [1 — 207 + 222 (a - Dale W (1 _ e ) ]
X X

-1 -1
20 (a - l)e_(b‘)z(l - e_(kxy) [1 — 2\ - ZAZxZe_(AXf(l - e_(M)2> ] ] (11)

When « is nonnegative and less than land A >0, then
(d*/dx*)log fygrp () > 0.

Therefore, for O0<a<l1, fymp(x) is log-convex
[21]. O

1.4. Quantile Function (QF). If X ~ MFRD(a, 1), then
MFRD has the following QF: F(x) =u. This implies
x = F~1(u), where the distribution of u is uniform. The QF
of MFRD is

X, = %[—log{l —(—log(u(ei1 - 1) + 1))1/a}]1/2. (12)

d

1.4.1. Median. By putting u = 1/2 in (12), we get the median
of MFRD as follows:

1 1)\ 117
Median:[ﬂ{—log{l—<—log< > )) }}] . (13)

1.4.2. Mode. To find mode of MFRD, solve the following
for x:

(a=1)

d_foFRD (x) = Oza

1-22%2 |1+ e‘(W(l - e“*")z)%l

200 xe” M (1)’ {1 - ef()txy}
= 0)
(1-¢7)
(14)
-(x) ]
a—1)e
(1<)
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Mode of the distribution satisfies (13).

1.4.3. R" Moment. Let X ~ MFRD (a, 1); then, by definition,

u= E(X")
o Za/\zxef("x)z’(l’e*lx)z)u{1 -(Ax )Z}(‘x Y
=] x dx.
Jo (1 - eil)
(15)
Put e~ 4 = =y in (15) and simplify; we obtain the ex:
pression below (X") =a/(1—e HA" (=1)"? Io

(lOg y)7’/2 - (1-y)* (1 y)(ot— 1)dy
Insert (1 - y)® =z in the above expression; after sim-
plification, it will take the form given below:

- (fi:;7§17( )HZJ‘ [log(1-2")"*e*dz. (16)

Insert series e %= Y5, (—2)"/k! and log(1 —z"%) =
=Y (1) (=zV%)"/m for |z"/*| < 1; from equation (16),
we obtain the final expression as given below:

I _ 1 (—1)™ Jl
b (1 —e_l))\r 0

S (" (=" R (o)
{—mzl — z o dz.

The expression of R™ moment is incomplete integral. It
can be solved numerically using some numerical integration
technique.

(17)

1.4.4. Moment Generating Function (MGF). Suppose X:
~MFRD (&, A); then, the MGF is specified by

E (etx) _ JOO etx
0
zmzxe—ux>2-(1_ew2)“{1 ~

(i)

M, (t) =

o] @D (18)
<)
dx.

e (102 )® a2 (@)
20X xe” = (1= ) {1 —e ™ }

ftx _ oo
Insert e =Y
lation, we obtain

t"x"/r! in (18), and after some calcu-

_ tx\ _ c tr o r
Mﬂﬂ—E@)—gﬁLx
; . 19
a2 xe- = (1-¢%%) {l_e-ux)z}( Y (19)
dx.
(1-¢7)
Using result (15) in (19), we obtain
1 ot -
M= — r42j
”)(bawém() i
(20)

00 (_1)m(_zlla)m 2 o (_Z)k
{_mz—l m = K &

The expression of MGF is an incomplete integral. It can
be solved numerically by adopting any iterative method.

1.5.  Order Statistics. Consider an order statistics
X, X,,...,X, taken from MFRD. Then, the PDF of ith
order statistics X;.,, is specified by

fi:n(x) =

n!

(n—1)
e = F(x)]™ "

F)F)I™ '
(21)

Insert (5) and (6) of MFRD in (21); we obtain i*"
statistic is as follows:

order

n!

fin(x) = G- 1D (n-1i)! (1_6_1)
n!

fi:n(x) = m

2\® (i-1) 92 \¢ (a—1) 92 )® (n—1i)
1 [e—(l—e“ )2) _ 1] 2“A2xe—()tx)2—(l—e“ )2) {1 _ e—(Ax)z} * [e—l _e—(l—e“ ’2) ]

(1-e ) (e -1)""

(22)
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By putting i = 1 in (22), we have expression for first-
order statistic as given below:

n _ 2 (1 002\ _ 57 (a=1) B (a2 )® (n—-1)
fun) - et S [ e

(=) )

By substituting i = » in (22), the expression for the n™
order statistic will take the form given below:

n e (1 e2)® o) =D e (n—1)
Srn(x) = —— 20\ xe (= (1= ) {1 —e W } [e e . (24)

(1= )

For median’s distribution insert i = n/2 in (22), we have

n'

((n/2) = D! (n - (n/2))!

fn (x) =
—n
2

el ] T e e | e
I-e )e -1

(25)

Lemma 3. The Shannon entropy (SE) of MERD is given by

1/2
21/“_1052/1 2 0 (—1)k (_z—l/oczlla)k & (—z)m 1a Va\ _2-(2/a)

(1 - 671)2 0 k=1 m=0

Proof. The SE of MFRD is given as follows:

ez (1 002\ 2] (@)
st (- fy 0]

(1—671) ’

S.E, = E[-log f(x)] = E|-log

_ 2 (1_ ,0?)* _ 57 (a=1)
2002 xe” B (1me ) {1 —eW } (27)

(=) |

S.E, = -log|E

- 40(2A4 00 B ~ o) ) (2a-2)
(1= ey do
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Substituting 1 — e~ 0 = y in (27), the expression will
be like

2a%) ! w2 2%
S.E, = _log[ﬁ jo (-log(1 —y))”z(l —y)y2 2 dy:|,

1-e

(28)

Using series representation e % =Y
log(1— (2/2)"*) = = Y2, (~1)F (=27 YezVa)k/k in (27), we
get the final expression given below:

2(1/(x) I(XZA

Putting 2y = z in (28), after simplification, it will take
the following form:

2127 \12 2 ja) 12 2 o
e | R O (R )
—e
0
(=2)"/m! and
(~1)k (=2 Vg 1/oc)k> (nj') ( 1/a_z1/a)zz—(z/u) dz]. (30)
m=0

SEE, = —log[

(-

36

The final expression for SE is an incomplete integral. It
can be solved numerically using numerical integration
methods or some iterative procedures. O

1.6. Mean Residual Life Function. Suppose X follows MFRD.
Then, u(t) of MFRD has the expression given below:

1 t
u(t) = s()(E(t) Joxf(x)dx>— £>0. (31)
where
Jt xf (x)dx
0
(32)

. a2y (1-¢4%) {1

:J-Ox (l—e_l)

- e—uxf}(“’”
d

X.

¢ B (_1)1/2 (1_501)2)
Joxf(X)dx_A(l—el) J [

0

Putting, 1 —e” 0? y, the above expression will take

the form given below:
t 112 1—e-(0? )
[ xpean=0E0 [ doga- ey .
0 /1(1 —-e ) 0

(33)

Substitute y* = z in (33); we obtain

1/2 e w?)"
DO g

! _ _ 12 _,
J-Oxf(x)dx—/\(l_e_l) z )] e “dz.

0
(34)

Insert series e %= Y, (—2)*/k! and log(1 -z"%) =
=Y (=1 (=z"%)"/m for |z"*| <1 in (31), we obtain

m1/2 k

°°<1>"’ 2" & (-2)
dz, 35
Zl ;} a4z (35)

o 20a)’te” At)z‘(l‘ew)z)a{l —e_(mz}(a_l)
dt. (36)

E(t):JO LF(8) = J ¢

Substitute 1 — e~ 4" = y in (33) and simplify; we have

(i)



_1\1/2 1 .
% J (log(1 - y)2e™” y* " dy.
/\(1 —e ) 0

Putting y* = z in (37) and simplifying, we obtain

_1\12 1
/\((li)el) J-o [log(l - z““)]uzefz dz.

E(t) = (37)

E(t) = (38)

(_1)1/2( -1 1)

u(t) =

e (& ey (" e o
C D — d
A(l —e_l)<e_1 —e_(l_EW) ) > Hl |: ;;1 m :| = K :
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Substitute series e™% = Y2, (—z)*/k! and log (1 — z"/%) =
=¥ (=1)" (=YY" /m for |zV/%| <1 in (35), to have

G R R SN GV G i I N 9
E(t)_/\(l—el)j [ 2w ] 2 4

0 m=1 k=0

(39)
Put (8), (32), and (36) in (29); we obtain

(40)

The final expression of y(t) is an incomplete integral.
The expression in (40) can be solved numerically using any
iterative method.

1.7. Stress-Strength Parameter (SSP). Let X, and X, be two
random variables, which are independent and follow the
same distribution such that X; ~ MFR D(a;,A) and

I EIEty

2= (1-e 07 ) {1 B e-(wz} (e-1)

12 oo k
Z (—kz') dz H —t.
k=0

X, ~MFRD (a,,1); then, the expression for the SSP is
specified as

0o 2a1/\2xe_(
R- |

0 (l—e_l)

[ee] « -1 «
R= ! J ZaIAerf(Ax)ze’(I’EW)Z) 1 <1 - e’uxY)al ef(lfe“x)z) 2dx - — ! :
0

(G ()

Substitute 1 — e~ 9" = y in (42) and simplify; we obtain
!

Ve wil —ym 1
=mjoe e dy‘m- (43)

Now, putting y* = z in (43), after simplification, we get
the expression given below:

R

i)

1 .«
R= Jezezldz—
0

(GREn] (e

Put  series e % =Y, (~z)"/k!  and
YO (=2 )" /m! in (44); we get the following expression
for SSP:

LS €7
(e -1)

_ gl
e =

R= Jiw £, (0F, (x)dx. (41)
Utilizing (5) and (6) in (41), then SSP is given as
(e
e _ 1 dx,
(e'-1)
(42)
(e'-1)
R 1 ozo: ozo: ( l)k+m
(ei1 - 1)(1 —eil) P o k!'m!
(45)

(evom+1)
k+cm+1 (e’l—l)’
where ¢ = a,/a;.

This is the required result.

1.8. Parameters’ Estimation

1.8.1. MLE. The joint density function has the following
expression:
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Taking natural logarithm of (46), we obtain

2N" 1 _S Ox) =Y (e ) n
Z(M):< m) Y () -3 (1 )1_[

x e i=1 e i=1
e—l
i=1 i=1

(46)

log I(a,A) =n log(2/120c) -n log(l - eil) + ilog X; — i i( - () ) +(a—1) i log(l - ef(’lx"y). (47)
i=1

i=1 i=1 i=1

Differentiate (44) with respect to « and A, respectively, to
have the likelihood equations as

aloga(lx(oc,/l) :g_ c (l_e_()tx,.)z)“log(l_e (Ax) > Zlog<1—e (1x,)* ) _o, (48)

i=1

e o~ (W)’
0log L) 2_”—2le —20c/\zx e (M)< —ef(lx’)>( 1+2M“_1)Z & (49)

aA A P 7(/\ ) )(Ot 1) =

The solution of above equations is obtained using the Again differentiating (45) and (46) with respect to o and
Newton-Raphson method. For large sample size, the ML A, respectively, we obtain
Estimators  are  normally  distributed, that is,
Vn(@—a,A—1) ~ N, (0,%), where ¥ denotes variance co-
variance matrix acquired by inverting Fisher information
matrix F as follows:

9*log I d’log
da® O OA
F = . (50)
0*log I 9’log
Ja 0L 9)\?

2 n 2\ 2
6610§ 1 _ —_Zl_ Z <1 3 e_()txi) ) <log<1 B e—(/\xi) ))2) (51)
o :
2 2\ (a— n 2 2\ (a—
a;j)\f . |i{ —+2Zx +2och e (A=) ( 1—e () >( Y —404/\22&467(“") <1 —e () )( !
i= i=1
+da(a— 1)/\22x4 —2(Ax,) <1 _ e’()‘xi)2>("‘_2) } +{2(0c— 1)ixizef(lx")z(1 _ef(lxif)(_a“) (52)

““2(“—1>fo4€_(”")2<1—e-(axff)(ﬁn—z;(a 1222 Z 2(w( —e-(Axff)aH.
i=1

I
—

i=1
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TaBLE 1: Simulation results.
Parameter N MSE (@) MSE (1) Bias (&) Bias (1)
a=0.3635288 50 0.002578026 0.2981227 0.01997809 —0.2981874
1 :0.4765585 100 0.001316036 0.1959489 0.003959582 —0.195388
e 200 0.000679110 0.05703854 0.003634784 —0.05379642
a=03735288 50 0.0029977 0.2109166 0.008424304 -0.2712479
1 :0.3735288 100 0.001779635 0.1441912 0.004146879 —0.1916479
e 200 0.000819825 0.09560007 0.003931851 —0.1200957
@ = 04048975 50 0.004289024 0.2029563 0.02249881 —0.2622389
/\:0'3565585 100 0.00210558 0.1442519 0.01043012 —0.1901263
e 200 0.000884641 0.07766141 0.004018672 —0.10063
@ = 04335288 50 0.005570932 0.2722905 0.01798329 —0.3314039
1 : 0'3865585 100 0.001580699 0.1930487 0.006078905 —0.236486
e 200 0.001143901 0.09653606 0.001407309 —0.1170932
= 0.4535288 50 0.005564972 0.2572082 0.0184824 —-0.3021972
/1:0.4065585 100 0.002564085 0.2113778 0.01034615 -0.2478211
e 200 0.001494582 0.1127926 0.007373421 -0.1322202
o= 0.4648975 50 0.004006028 0.2210296 0.02249881 —0.2946936
1 :0.3565585 100 0.002153703 0.1737456 0.00791557 —0.231912
e 200 0.001177539 0.0773178 0.002197945 —0.1055793
o= 04735288 50 0.005596782 0.2460749 0.02127052 —0.3002337
1 :0'3865585 100 0.00203143 0.1974326 0.00842539 —0.245515
e 200 0.001512619 0.07987172 0.005135786 —0.09911058
TaBLE 2: Goodness of fit result for dataset 1.
Model MLE AIC CAIC BIC HQIC K-S p—Value
MFRD 0.9691 0.3959 208.0488 208.2227 212.6022 209.8615 0.1194 0.2561
RD —0.4542 212.2285 212.2856 214.5051 213.1348 0.1404 0.1172
MIRD 1.2641 —0.0484 247.3044 247.4783 251.8578 249.1171 0.2347 0.0007
GIRD 0.3924 2.2022 290.9948 291.1687 295.5482 292.8075 0.7977 2.2e-16
TIRD 0.3558 —0.9404 294.6214 294.7953 299.1747 296.4341 0.3506 4.106e — 08
EIRD 0.2285 2.0379 341.9955 342.1694 346.5488 343.8082 0.4750 1.554e—-14
Again differentiating (45) w.r.t A, we obtain 1 &
Bias = — Z(bi - b),
6210g I )2 i ,(,\x,)2<1 7()“_)2)(“—1)1 w5
=20"a Y x;e V' —e o
da O L5 5 (55)
N 1S~ 2
(53) MSE =3 (b; - b)’,

(1 y (“")2) 121 Z s )

= (1 - e*(*xf)'

Asymptotic (1-{)100% confidence intervals for pa-
rameters of MFRD are obtained by & + hZ(/zw/zu and
A+ Z¢p/Zy,, where Z; denote the upper {" percentile of
the standard normal distribution.

1.9. Simulation Study. To assess the consistency of MLE, the
MSE and bias are measured based on W= 1000 simulations.
Samples having sizes 50, 100, and 200 are generated from
MFRD using the following expression of the quantile
function:

X, =1[og]1 ~(Hog(u(e ~1) + 1)}, 59

where U follows uniform distribution over [0, 1]. Bias and
MSE of MERD are computed by the following expressions:

I=1

where b= (a,1). Simulation results were obtained for
various values of & and A. The results are shown in Table 1.
The consistency pattern can easily be observed as estimates’
approach to their true values by increasing the sample size.
Furthermore, the values of error measures of the parameter
estimates’ decrease for all combinations of parameter values.
Hence, it can be concluded that MLE procedure produces
consistent estimates in estimating the parameters of MFRD.
The same consistency of parameters has been observed for all
choices of parameter values. It is also evident from Table 1
that bias for the estimators are decreasing with increase in
the sample sizes and parameter a. Therefore, we conclude
that these estimators are asymptotically unbiased.

2. Applications

To assess the performance of the MFRD, two practical
datasets are used and the results are compared using some
standard model selection criteria’s. The proposed model is



Mathematical Problems in Engineering

TaBLE 3: Goodness-of-fit result for dataset 2.
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Model MLE AIC CAIC BIC HQIC K-S p-value
MEFRD 1.1859 —0.0603 394.472 394.686 398.627 396.094 0.160 0.095
RD 0.0638 397.421 397.491 399.499 398.232 0.172 0.060
MIRD 8.4846 12.2370 416.948 417.162 421.103 418.570 0.253 0.001
GRD 1.0295 0.0643 399.393 399.607 403.548 401.015 0.177 0.049
Histogram and theoretical densitie Empirical and theoretical CDFs
1.2 —
2
fat o
| | |
4 5 7
data data
—— MEFRD --- GIRD —— MFRD --- GIRD
--- RD --- TIRD --- RD --- TIRD
rrrrrr MIRD EIRD ------ MIRD EIRD
FiGURE 3: Comparison of MFRD with other competitive models for dataset 1.
Empirical and theoretical CDFs

Density

Histogram and theoretical densitie

—— MFRD e MIRD
--- RD --- GRD

FIGURE 4: Comparison of MFRD with other competitive models for dataset 2.

CDF
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FiGUure 5: Plots of MFRD for dataset 1.
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compared with Rayleigh distribution (RD) [22], modified
inverse Rayleigh distribution (MIRD) [15], generalized in-
verse Rayleigh distribution (GIRD) [16], transmuted inverse
Rayleigh distribution (TIRD) (Ahmad et al., 2014), expo-
nentiated inverse Rayleigh distribution (EIRD) [12], and
generalized Rayleigh distribution (GRD) [23].

2.1. Dataset 1. Dataset 1 was taken from Bjerkedal [24]. The
data points are given below: 0.1, 0.33, 1.08, 1.08, 1.08, 0.44,
0.56, 0.59, 0.72, 0.74, 0.77, 2.54, 2.78, 2.93, 3.27, 3.42, 0.92,
0.93,0.96, 1, 1, 1.02, 1.05, 1.07, 07, 1.09, 1.12, 1.13, 1.15,1.36,
1.39, 1.44, 1.83, 1.95, 1.96, 1.97, 2.02, 1.16, 1.2, 1.21, 1.22,
1.22,1.24, 1.3, 1.34, 2.13, 1.46,1.53, 1.59, 1.6, 1.63, 1.63, 1.68,
1.71, 1.72, 1.76, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51,
2.53,2.54, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

2.2. Dataset 2. Dataset 2 is taken from Nassar and Nada [25].
The data points are as follows: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8,
6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17, 8.6, 9.7,
39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7,
21.3,35.4,14.3,8.5,10.6,19.1,20.5,7.1,7.7,18.1, 16.5,11.9, 7,
8.6, 12.5,10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1,
10.8.

P-value and some well-known standard model selection
criteria’s are used for comparison purposes. The results are
displayed in Tables 2 and 3 of dataset 1 and 2, respectively.
Comparative analysis of different distributions based on two
data points are shown in Figures 3 and 4, respectively.

The results of Tables 2 and 3 indicate that MFRD pro-
vides improved result in comparison to other versions of the
Rayleigh model on the basis of well-known model selection
criteria. Figure 5 and 6 provide PP-plots, QQ-plots, plots of
PDF, and CDF for the two datasets.

3. Conclusion

In this article, we suggested a new lifetime model referred to
as modified Frechet-Rayleigh distribution (MFRD) using
the modified Frechet technique. Several statistical properties
of the MFRD were obtained such as moments, MGF, and
median in closed form, stress-strength parameter, Quantile
function, mean residuals’ life function, order statistics, and
the expression for entropies. The parameters of the proposed
model were estimated using the MLE approach. The sim-
ulation results revealed that the estimates of the parameters
of MFRD are consistent and asymptotically unbiased. The
performance of MFRD was evaluated on the basis of real
datasets. The results indicated better performance of MFRD
as compared to various versions of Rayleigh distribution.
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