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�e aim of this study is to introduce an innovative concept of T-spherical fuzzy matrix, which is a hybrid structure of fuzzy matrix
and T-spherical fuzzy set. �is article introduces the square T-spherical fuzzy matrix and constant T-spherical fuzzy matrix and
discusses related properties. Determinant and the adjoint of a square T-spherical fuzzy matrix are also established, and some
related properties are investigated. An application of the T-spherical fuzzy matrix in decision-making problem with an illustrative
example is discussed here. �en, in the end, to check capability and viability, a practical demonstration of the planned approach
has also been explained.

1. Introduction

In real life, sometimes it is necessary to compare two dif-
ferent things from di�erent perspectives while dealing with
di�erent problems related to machine learning, namely,
decision-making (DM), and image processing. An abun-
dance of data is available in fuzzy and nonfuzzy situations
concerned with the application. Di�erent comparative
measures may be applicable for various problems. �e
under-consideration article, for the most part, is related to
the multi-attribute decision-making (MADM) problems.
MADM is the important problem of deciding science, whose
objective is to get the best choice from the group of similar
choices. Originally in DM, one needed to evaluate the al-
ternate options by many other categories. �e non-coop-
erative behavior management for personalized individual
semantic-based social network group decision-making is
developed in [1], the group consensus-based travel desti-
nation evaluation method with online reviews is discussed in
[2], and the comprehensive star rating approach for cruise
ships based on interactive group DM with personalized
individual semantics is performed in [3]. In order to regulate
it, the concept of a fuzzy set (FS) was initiated by Zadeh [4].
It was a helpful tool to deal with uncertainties in real-life

problems. Some prominent developments in these direc-
tions are mentioned. �e fundamental theory of fuzzy sets
with illustrative examples has been discussed in [5], some
aggregation procedures, choice problems, and treatment of
attributes are examined in [6], DM approaches to vowel and
speaker recognition are studied in [7], multiple objective
DM is discussed in [8], and fuzzy sets and fuzzy decision-
making are discussed by Li and Yen [9]. Following this new
direction in fuzzy theory, the idea of a fuzzy matrix (FM) was
initiated in [10]. Later on, some operations and general-
izations on FM such that FM with row and column have
been developed in [11], and interval-valued FM with rows
and columns is discussed by Pal [12]. �e study of bipolar
FM has been developed in [13]. �e generalized FMs are
discussed in [14]. Pradhan and Pal [15] developed the
concept of the triangular FM norm and its properties. Ragab
discussed the adjoint and determinant of square FM in [16],
and he further developed the concept of min-max com-
position of FMs [17].

�e FS theory has not been able to deliver in some
conditions. In particular, in clear information, the com-
plement of the participation degree (PD) is equal to the
nonparticipation degree (NPD). In such cases, the NPD is
not the complement of the PD. In this situation, the PD and

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 2553811, 13 pages
https://doi.org/10.1155/2022/2553811

mailto:harishg58iitr@gmail.com
https://orcid.org/0000-0001-9099-8422
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2553811


NPD are needed. To handle the situation, Atanassov in-
troduced the concept of intuitionistic fuzzy set (IFS) [18],
which describes the PD and the NPD of an element or object.
Following this new direction in fuzzy theory, the idea of an
intuitionistic fuzzy determinant was initiated in [19]. Later
on, some operations and generalizations on intuitionistic
FM (IFM) such that interval-valued IFM have been exam-
ined by Khan and Pal [20], the concept of generalized inverse
of block IFM is discussed in [21], and intuitionistic fuzzy
incline matrix and determinant have been developed in [22].
Furthermore, Sriram and Murugadas [23] developed the
concept of semiring of IFM, and he also studies the α-cut of
IFM [24].

An IFS is a better tool than Zadeh’s FS as it describes the
NPD as well. But IFS has not been able to deliver in some
conditions. For example, if a person is given 0.7 PD and 0.5
NPD, in that condition IFS will be unable to manage it, i.e.,
0.7 + 0.5 � 1.2> 1. In that condition, IFS has not been kept
in mind. In the same way, some problems were faced in real-
life matters, where the IFS was also deviated. To handle the
situation, Yager [25, 26] initiated the system of Pythagorean
FSs (PyFSs), having the condition (PD)2 + (NPD)2 ∈ [0, 1].
Following this new direction in fuzzy theory, the idea of
Pythagorean FM (PyFM) was initiated in [27]. Later on,
some operations and generalizations on PyFM were de-
veloped in [28, 29].

In various fields of real life, it turns out that to represent a
physical phenomenon two components are not enough. For
example, a disease may have three aspects: positive, neutral,
and negative. To handle such type of data, the IFS model is
not sufficient. To overcome these limitations, Cuong initi-
ated the concept of picture fuzzy set (PFS) in [30, 31], which
described the PD, abstained degree (AD), and NPD of an
element or object. Some picture fuzzy operators are dis-
cussed in [32, 33]. In the generalization of PFSs, the new
concept of picture fuzzy matrix (PFM) was introduced in
[34].

*e PFSs extend the model of FSs and IFSs, but there is
still a limitation in the structure. For example, if a person is
given 0.6 PD, 0.4 AD, and 0.3 NPD, in that condition PFS
will be unable to manage it, i.e., 0.6 + 0.4 + 0.3 � 1.3> 1. In
that condition, PFS has not been kept in mind. In the same
way, some problems were faced in real-life matters, where
the PFS was also deviated. To handle the situation, the
concept of T-spherical fuzzy set (TSFS,) which rectifies these
limitations, was proposed in [35] having the condition
(PD)n + (AD)n + (NPD)n ∈ [0, 1]. Some new similarity
measures for TSFSs have been developed by Ullah et al. [36]
and Saad and Rafiq [37]. *e divergence measure of TSFSs
with their applications in pattern recognition has been
discussed in [38]. A study of correlation coefficients based on
TSFSs has been examined in [39]. Algorithms based on
improved interactive aggregation operators are discussed in
[40], and immediate probabilistic interactive averaging ag-
gregation operators are discussed in [41]. With application
in MADM problems, the Einstein hybrid aggregation op-
erators based on TSFS are discussed in [42]. Wu et al. [38]
discuss the divergence measure of TSFSs and their appli-
cations. Quek et al. [43] discussed the generalized

T-spherical fuzzy weighted aggregation operators on neu-
trosophic sets. Based on TSFSs, the shortest path problem
and the DM approach are discussed by Zedam et al. [44].

Several studies then explore the concepts of DM in FM
and the PFM model. But there are some limitations, as we
are not independent to assign the values to all partici-
pation grades while investigating the data are in picture
fuzzy form [34]. In this situation, we needed a structure in
the FM theory that is independent to assign the values of
different grades that are involved in it. Also, we are for-
bidden to treat the data in T-spherical fuzzy (TSF) context.
Keeping in view the importance of the matrix theory, the
fuzzy matrix, and the broad domain of TSFSs, our aim is to
develop the hybrid structure of FM and TSFSs named as
T-spherical fuzzy matrix (TSFM). *e following point
shows the importance of the proposed work. A lot of
objectives are under consideration to emphasize the need
to build this model. Some of these objectives are men-
tioned as follows:

(1) *e foremost aim to build this model is to overcome
the research loopholes that are found in the existing
methodologies. *e FM and TSFS may also be in-
volved together in decision analysis.

(2) To discuss the concepts of a square T-spherical fuzzy
matrix, constant T-spherical fuzzy matrix and
constant square T-spherical fuzzy matrix and study
their related properties.

(3) To present multiattribute decision-making (MADM)
algorithm to solve the decision-making problems,
the approach has been illustrated with a numerical
example.

*is article is further separated into various sections.
Section 2 reviews some of the essentials of the developed
work. Section 3 introduces a new concept as TSFM and its
features. In section 4, we initiated the decision-making al-
gorithm for solving the problems and provided the nu-
merical examples for justification. Section 5 provides a
comparative study of the work with the existing studies.
Finally, Section 6 concludes the paper.

2. Preliminaries

Here, the notions discussed provided a foundation for our
work. From now onward, we use t, i, and f that act as PD,
AD, and NPD, respectively. Furthermore, mxyt, mxyi, and
mxyf mentioned the PD of the xyth element of M, AD of the
xyth element of M, and NPD of the xyth element of M,
respectively. Furthermore, Pj denotes the set of permuta-
tions on 1, 2, . . . , j , Pjyjx

(Pjxjy
) is a set of all permutations

of a set jx over jy (jx over jy), and X acts as a universal set.

Definition 1 (see [18]). An IFS is of the form
A � x, tA(x), fA(x)|x ∈ X , where t and f are functions
from X to an element in the unit interval [0, 1] with a re-
striction 0≤ t + f≤ 1, and r(x) � 1 − (t + f) is the refusal
degree (RD) of x in A. Here, (t, f) is an intuitionistic fuzzy
number (IFN).
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Definition 2 (see [19]). An IFM M of order j × k is of the
form M � (mxyt, mxyf), where mxyt and mxyf ∈ [0, 1] with
the condition 0≤mxyt + mxyf ≤ 1 for x � 1, 2, . . . , j and
y � 1, 2, . . . , k. An IFM is said to be square IFM (SIFM) if
j � k.

Definition 3 (see [34]). A PFS is of the form
A � x, tA(x), iA(x), fA(x)|x ∈ X , where t, i, and f are
functions from X to an element in the unit interval [0, 1]

with a restriction 0≤ t + i + f≤ 1, and r(x) � 1 − (t + i + f)

is the RD of x in A, where (t, i, f) is a picture fuzzy number
(PFN).

Definition 4 (see [34]). A PFM M of order j × k is of the
form M � (mxyt, mxyi, mxyf), where mxyt, mxyi, and
mxyf ∈ [0, 1] with the condition 0≤mxyt + mxyi + mxyf ≤ 1
for x � 1, 2, . . . , j and y � 1, 2, . . . , k.

Remarks 1 (see [34])

(1) A PFM is said to be square PFM (SIFM) if j � k

(2) An identity PFM I of order j is SPFM with all di-
agonal entries (1, 0, 0) and others (0, 1, 1)

(3) A null PFM of order j is the SPFM with all entries
(0, 1, 1)

Definition 5 (see [34]). For two SPFM
M1 � (m1xyt, m1xyi, m1xyf) and M2 � (m2xyt, m2xyi, m2xyf),
the product is defined as M �

M1 × M2 � (mxyt, mxyi, mxyf), where mxyt � ∨
u
(m1xut∧

m2uyt), mxyi � ∨
u
(m1xui∧m2uyi), and mxyi � ∧

u
(m1xui∨m2uyi)

for x, y � 1, 2, . . . , j. Here, u runs from 1 to j.

Definition 6 (see [34]). For a SPFM M � (mxyt, mxyi, mxyf)

of order j, the |M| is defined as follows:

|M| � ∨
δ∈Pj

m1δ(1)t∧m2δ(2)t∧ . . .∧mjδ(j)t 

∧
δ∈Pj

m1δ(1)i∧m2δ(2)i∧ . . .∧m1δ(j)i 

∧
δ∈Pj

m1δ(1)f∨m2δ(2)f∨ . . .∨mjδ(j)f .

(1)

Definition 7 (see [34]). For a SPFM M � (mxyt, mxyi, mxyf)

of order j, the adj(M) is defined as
adj(M) � R � (rxyt, rxyi, rxyf), where

rxyt � ∨
δ∈Pjyjx

∧
u∈jx

muδ(u)t,

rxyi � ∧
δ∈Pjyjx

∧
u∈jx

muδ(u)i,

rxyf � ∧
δ∈Pjyjx

∨
u∈jx

muδ(u)f.

(2)

Here, jx � 1, 2, . . . , j  − x{ }.
*e PFSs extend the model of FSs and IFSs, but there is

still a limitation in the structure. For example, if a person is
given 0.6 PD, 0.4 AD, and 0.3 NPD, in that condition PFS

will be unable to manage it, i.e., 0.6 + 0.4 + 0.3 � 1.3> 1. In
that condition, PFS has not been kept in mind. In the same
way, some problems were faced in real-life matters, where
the PFS was also deviated. To handle the situation, the
concept of spherical fuzzy set (SFS) and TSFS, which rectifies
these limitations, was proposed in [30] having the conditions
(PD)2 + HD2 + (NPD)2 ∈ [0, 1] and (PD)n + HDn+

(NPD)n ∈ [0, 1], respectively. *is shows the importance
and advantages of TSFSs over existing fuzzy structures.

Definition 8 (see [35]). A SFS is of the form
A � x, tA(x), iA(x), fA(x)|x ∈ X , where t, i, and f are
functions from X to an element in the unit interval [0, 1]

with a restriction of 0≤ t2 + i2 + f2 ≤ 1, and
r(x) �

��������������
1 − (t2 + i2 + f2)


is the RD of x inA, where (t, i, f)

is a spherical fuzzy number (SFN).

Definition 9 (see [35]). A TSFS is of the form
A � x, tA(x), iA(x), fA(x)|x ∈ X}, where t, i, and f are
function from X to an element in the unit interval [0, 1] with
a restriction of 0≤ tn + in + fn ≤ 1 for n ∈ Z, and
r(x) �

��������������
1 − (tn + in + fn)n


is the RD of x in A, where (t, i, f)

is a T-spherical fuzzy number (TSFN).

3. T-Spherical Fuzzy Matrix

Here, we will define a novel concept TSFM, in the gener-
alization of PFM.

Definition 10. A TFM M of order j × k is of the form M �

(mxyt, mxyi, mxyf), where mxyt, mxyi, and mxyf ∈ [0, 1] with
the condition 0≤mn

xyt + mn
xyi + mn

xyf ≤ 1, n ∈ Z for
x � 1, 2, . . . , j and y � 1, 2, . . . , k.

Remarks 2

(1) For n � 2, a TSFM becomes spherical fuzzy matrix
(2) A TSFM is said to be square TSFM (SIFM) if j � k

(3) An identity TSFM I of order j is STSFM with all
diagonal entries (1, 0, 0) and others (0, 1, 1)

(4) A null TSFM of order j is the STSFM with all entries
(0, 1, 1)

Definition 11. For two STSFM
M1 � (m1xyt, m1xyi, m1xyf)and M2 � (m2xyt, m2xyi, m2xyf),
the product is defined as follows:
M � M1 × M2 � (mxyt, mxyi, mxyf), where mn

xyt �

∨
k
(mn

1xkt∧m
n
2kyt), mn

xyi �∧
k
(mn

1xki∧m
n
2kyi), and mn

xyi �∧
k
(mn

1xkt

∨mn
2kyt) for x,y � 1,2, . . . , j. Here, k runs from 1 to j.

Definition 12. For two STSFM M1 � (m1xyt, m1xyi, m1xyf)

and M2 � (m2xyt, m2xyi, m2xyf), M1 ≤M2 if mn
1xyt ≤mn

2xyt,
mn

1xyi ≤mn
2xyi and mn

1xyf ≥mn
2xyf for x, y � 1, 2, . . . , j.

Definition 13. For a STSFM M � (mxyt, mxyi, mxyf), the
multiplication by a TSFN z � (z1, z2, z3) is defined as
z.M � (zn

1.mn
xyt, zn

2.mn
xyi, zn

3.mn
xyf).
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Definition 14. Let a STSFM M � (mxyt, mxyi, mxyf) and
TSFN z � (z1, z2, z3), for (mxyt, mxyi, mxyf)≥ (z1, z2, z3)

means that, mn
xyt ≥ zn

1, mn
xyi ≥ zn

2 and mn
xyf ≤ zn

3.

Definition 15. For two STSFM M1 � (m1xyt, m1xyi, m1xyf)

and M2 � (m2xyt, m2xyi, m2xyf), the operations of product,
supremum, infimum, transpose, and complement are de-
fined as follows:

(1) M1 ⊙M2 � (mn
1xyt.m

n
2xyt, mn

1xyi.m
n
2xyi, mn

1xyf.mn
2xyf)

(2) M1∨M2 � (mn
1xyt∨mn

2xyt, mn
1xyi∧mn

2xyi, mn
1xyf∧

mn
2xyf)

(3) M1∧M2 � (mn
1xyt∧mn

2xyt, mn
1xyi∧mn

2xyi, mn
1xyf∨

mn
2xyf)

(4) Mt
1 � (mn

1yxt, mn
1yxi, mn

1yxf)

(5) Mc
1 � (mn

1xyf, mn
1xyi, mn

1xyt)

3.1. Some Properties on Square T-Spherical Fuzzy Matrix.
Here, we will discuss some ground properties of STSFM.

Proposition 1. For three STSFM M1 � (m1xyt, m1xyi,

m1xyf), M2 � (m2xyt, m2xyi, m2xyf), and M3 � (m3xyt,

m3xyi, m3xyf), 1 to 7 holds.

(1) M1∧M2 � M2∧M1

(2) M1∨M2 � M2∨M1

(3) (Mt
1)

t � M1

(4) (Mt
1)

t � (Mt
1)

c

(5) M1∧(M2∨M3) � (M1∧M2)∨(M1∧M3)

(6) M1∨(M2∧M3) � (M1∨M2)∧(M1∨M3)

(7) (z.M1)
t � (z.Mt

1)

Proof

(1) We have

M1∧M2 � m
n
1xyt∧m

n
2xyt, m

n
1xyi∧m

n
2xyi, m

n
1xyf∨m

n
2xyf 

� m
n
2xyt∧m

n
1xyt, m

n
2xyi∧m

n
1xyi, m

n
2xyf∨m

n
1xyf 

� M2∧M1.

(3)

(2) We have

M1∨M2 � m
n
1xyt∨m

n
2xyt, m

n
1xyi∧m

n
2xyi, m

n
1xyf∧m

n
2xyf 

� m
n
2xyt∨m

n
1xyt, m

n
2xyi∧m

n
1xyi, m

n
2xyf∧m

n
1xyf 

� M2∨M1.

(4)

(3) We have

M
t
1 � m

n
1xyt, m

n
1xyi, m

n
1xyf 

t
� m

n
1yxt, m

n
1yxi, m

n
1yxf ,

M
t
1 

t
� m

n
1yxt, m

n
1yxi, m

n
1yxf 

t
� m

n
1xyt, m

n
1xyi, m

n
1xyf  � M1,

M
c
1 � m

n
1xyf, m

n
1xyi, m

n
1xyt ,

M
c
1( 

t
� m

n
1xyf, m

n
1xyi, m

n
1xyt 

t
� m

n
1yxf, m

n
1yxi, m

n
1yxt .

(5)

Now,

M
t
1 � m

n
1xyt, m

n
1xyi, m

n
1xyf 

t
� m

n
1yxt, m

n
1yxi, m

n
1yxf ,

M
t
1 

c
� m

n
1yxt, m

n
1yxi, m

n
1yxf 

c
� m

n
1yxf, m

n
1yxi, m

n
1yxt .

(6)

*us, (Mt
1)

t � (Mt
1)

c.
(4) We have

M1∧ M2∨M3( 

� m
n
1xyt, m

n
1xyi, m

n
1xyf ∧ m

n
2xyt∨m

n
3xyt, m

n
2xyi∧m

n
3xyi, m

n
2xyf∧m

n
3xyf  

� m
n
1xyt∧ m

n
2xyt∨m

n
3xyt , m

n
1xyi∧ m

n
2xyi∧m

n
3xyi , m

n
1xyf∨ m

n
2xyf∧m

n
3xyf  

� m
n
1xyt∧m

n
2xyt ∨ m

n
2xyt∧m

n
3xyt , m

n
1xyi∧m

n
2xyi ∧ m

n
2xyi∧m

n
3xyi , m

n
1xyf∨m

n
2xyf ∧ m

n
2xyf∨m

n
3xyf  

� m
n
1xyt∧m

n
2xyt, m

n
1xyi∧m

n
2xyi, m

n
1xyf∨m

n
2xyf ∨ m

n
2xyt∧m

n
3xyt, m

n
2xyi∧m

n
3xyi, m

n
2xyf∨m

n
3xyf  

� M1∧M2( ∨ M1∧M3( .

(7)
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(5) We have

M1∨ M2∧M3( 

� m
n
1xyt, m

n
1xyi, m

n
1xyf ∨ m

n
2xyt∧m

n
3xyt, m

n
2xyi∧m

n
3xyi, m

n
2xyf∨m

n
3xyf  

� m
n
1xyt∨ m

n
2xyt∧m

n
3xyt , m

n
1xyi∧ m

n
2xyi∧m

n
3xyi , m

n
1xyf∧ m

n
2xyf∨m

n
3xyf  

� m
n
1xyt∨m

n
2xyt ∧ m

n
2xyt∨m

n
3xyt , m

n
1xyi∧m

n
2xyi ∧ m

n
2xyi∧m

n
3xyi , m

n
1xyf∧m

n
2xyf ∨ m

n
2xyf∧m

n
3xyf  

� m
n
1xyt∨m

n
2xyt, m

n
1xyi∧m

n
2xyi, m

n
1xyf∧m

n
2xyf ∧ m

n
2xyt∨m

n
3xyt, m

n
2xyi∧m

n
3xyi, m

n
2xyf∧m

n
3xyf  

� M1∨M2( ∧ M1∨M3( ,

z.M1( 
t

� z
n
1, z

n
2, z

n
3( . m

n
1xyt, m

n
1xyi, m

n
1xyf  

t

� z
n
1∧m

n
1xyt, z

n
2∧m

n
1xyi, z

n
3∨m

n
1xyf 

t

� z
n
1∧m

n
1yxt, z

n
2∧m

n
1yxi, z

n
3∨m

n
1yxf 

� z
n
1, z

n
2, z

n
3( . m

n
1yxt, m

n
1yxi, m

n
1yxf  � z.M

t
1 .

(8)

□
Proposition 2. For three STSFM M1 � (m1xyt, m1xyi,

m1xyf), M2 � (m2xyt, m2xyi, m2xyf), and M3 � (m3xyt, \

m3xyi, m3xyf),

(1) M1∨M2 ≥M1∧M2

(2) M1∨M3 ≥M2∨M3, when M1 ≥M2

(3) M1∧M3 ≤M2∧M3, when M1 ≤M2

Proof

(1) For two STSFM M1 � (m1xyt, m1xyi, m1xyf) and
M2 � (m2xyt, m2xyi, m2xyf) of order j,

M1∨M2 � m
n
1xyt∨m

n
2xyt, m

n
1xyi∧m

n
2xyi, m

n
1xyf∧m

n
2xyf ,

M1∧M2 � m
n
1xyt∧m

n
2xyt, m

n
1xyi∧m

n
2xyi, m

n
1xyf∨m

n
2xyf .

(9)

Taking

M1 � (0.50, 0.46, 0.64),

M2 � (0.52, 0.49, 0.36) for n � 3,
(10)

M1∨M2 � (0.13∨0.14, 0.10∧0.12, 0.26∧0.05)

� (0.14, 0.10, 0.05),

M1∧M2 � (0.13∧0.14, 0.10∧0.12, 0.26∨0.05)

� (0.13, 0.10, 0.26).

(11)

It is clear that mn
1xyt∨mn

2xyt ≥mn
1xyt∧mn

2xyt, mn
1xyi∧

mn
2xyi ≥mn

1xyi∧mn
2xyi, and mn

1xyf∧m
n
2xyf ≤mn

1xyf∨
mn

2xyf. So,

M1∨M2 ≥M1∧M2. (12)

(2) For three STSFM M1 � (m1xyt, m1xyi, m1xyf), M2 �

(m2xyt, m2xyi, m2xyf), and M3 � (m3xyt, m3xyi,

m3xyf) of order j,
M1 ≥M2⇒mn

1xyt ≥mn
2xyt, mn

1xyi ≥mn
2xyi and mn

1xyf ≤
mn

2xyf

When mn
1xyt ≥mn

2xyt ≥mn
3xyt, mn

1xyt∨mn
3xyt � mn

1xyt

and mn
2xyt∨mn

3xyt � mn
2xyt.

When mn
1xyt ≥mn

3xyt ≥mn
2xyt, mn

1xyt∨mn
3xyt � mn

1xyt

and mn
2xyt∨mn

3xyt � mn
2xyt.

When mn
3xyt ≥mn

1xyt ≥mn
2xyt, mn

1xyt∨mn
3xyt � mn

3xyt

and mn
2xyt∨mn

3xyt � mn
3xyt.

Now, when mn
1xyi ≥mn

2xyi ≥mn
3xyi, mn

1xyi∧mn
3xyi �

mn
3xyi and mn

2xyi∧mn
3xyi � mn

3xyi.
When mn

1xyi ≥mn
3xyi ≥mn

2xyi, mn
1xyi∧mn

3xyi � mn
3xyi

and mn
2xyi∧mn

3xyi � mn
2xyi.

When mn
3xyi ≥mn

1xyi ≥mn
2xyi, mn

1xyi∧mn
3xyi � mn

1xyi

and mn
2xyi∧mn

3xyi � mn
2xyi.

Also, when mn
1xyf ≤mn

2xyf ≤mn
3xyf, mn

1xyf∧m
n
3xyf �

mn
1xyf and mn

2xyf∧m
n
3xyf � mn

2xyf.
When mn

1xyf ≤mn
3xyf ≤mn

2xyf, mn
1xyf∧m

n
3xyf �

mn
1xyf and mn

2xyf∧m
n
3xyf � mn

3xyf.
When mn

3xyf ≤mn
1xyf ≤mn

2xyf, mn
1xyf∧m

n
3xyf �

mn
3xyf and mn

2xyf∧m
n
3xyf � mn

3xyf.
*erefore, ⇒mn

1xyt∨mn
3xyt ≥mn

2xyt∨mn
3xyt, mn

1xyt∧
mn

3xyt ≥mn
2xyt∧mn

3xyt and mn
1xyt∧mn

3xyt ≤mn
2xyt∧mn

3xyt

for x, y � 1, 2, . . . , j. Consequently, M1∨M3 ≥
M2∨M3.

(3) *e proof is similar to 2.
While investigating the TSFSs, the convex combi-
nation (CC) defined in [34] has found some limi-
tations, as we are not independent to assign the
values to the PD, RD, and NPD. To overcome the
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problem, we will define the CC of two matrixes in a
T-spherical fuzzy context.

Definition 16. For two STSFM M1 and M2 of order j, the
CC is denoted and defined as follows:

M1 ∗M2 � mxyt, mxyi, mxyf , (13)

where mn
xyt � δmn

1xyt + (1 − δ)mn
2xyt,m

n
xyi � δmn

1xyi+

(1 − δ)mn
2xyi, and mn

xyf � δmn
1xyf + (1 − δ)mn

2xyf for
x, y � 1, 2, . . . , j, 0≤ δ ≤ 1.

So, it is observed that the CC of two STSFM is the CC of
their entries.

Definition 17. A STSFM M � (mxyt, mxyi, mxyf) is called
idempotent w.r.t. some operation “. ⃘” if M ∘M � M.

Proposition 3. Every STSFM is idempotent concerning CC
“∗.”

Proof. For an STSFM M � (mxyt, mxyi, mxyf) of order j, let
M∗M � (m1xyt, m1xyi, m1xyf), where mn

1xyt � δmn
xyt +

(1 − δ)mn
xyt � mn

xyt

m
n
x1yi � δm

n
xyi +(1 − δ)m

n
xyi � m

n
xyi. (14)

mn
1xyf � δmn

xyf + (1 − δ)mn
xyf � mn

xyf for x, y �

1, 2, . . . , j, 0≤ δ ≤ 1.
*erefore, M∗M � M.

3.2. Determinant of STSFM. Here, we will define determi-
nants and some related results along with a numerical
example.

Definition 18. For a TSFM M of order j, the |M| is defined
as follows:

|M| � ∨
δ∈Pj

m
n
1δ(1)t∧m

n
2δ(2)t∧ . . .∧mn

jδ(j)t 

∧
δ∈Pj

m
n
1δ(1)i∧m

n
2δ(2)i∧ . . .∧mn

jδ(j)i 

∧
δ∈Pj

m
n
1δ(1)f∨m

n
2δ(2)f∨ . . .∨mn

jδ(j)i .

(15)

Example 1. Let M be a STSFM of order 3, for n � 3

M �

(0.63, 0.53, 0.31) (0.63, 0.43, 0.53) (0.53, 0.33, 0.51)

(0.41, 0.26, 0.47) (0.42, 0.18, 0.44) (0.25, 0.46, 0.43)

(0.51, 0.38, 0.45) (0.71, 0.34, 0.34) (0.50, 0.50, 0.50)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (16)

To find determinant, it is necessary to find all permu-
tations on 1, 2, 3{ }.

δ1 �
1 2 3
1 2 3

 , δ2 �
1 2 3
1 3 2

 , δ3 �
1 2 3
2 1 3

 ,

δ4 �
1 2 3
2 3 1

 , δ5 �
1 2 3
3 1 2

 , δ6 �
1 2 3
3 2 1

 .

(17)

*e participation degree of |M| is as follows:

m
3
1δ1(1)t∧m

3
2δ1(2)t∧m

3
3δ1(3)t ∨ m

3
1δ2(1)t∧m

3
2δ2(2)t∧m

3
3δ2(3)t ∨

· m
3
1δ3(1)t∧m

3
2δ3(2)t∧m

3
3δ3(3)t ∨ m

3
1δ4(1)t∧m

3
2δ4(2)t∧m

3
3δ4(3)t ∨

· m
3
1δ5(1)t∧m

3
2δ5(2)t∧m

3
3δ5(3)t ∨ m

3
1δ6(1)t∧m

3
2δ6(2)t∧m

3
3δ6(3)t 

� m
3
11t∧m

3
22t∧m

3
33t ∨ m

3
11t∧m

3
23t∧m

3
32t ∨ m

3
12t∧m

3
21t∧m

3
33t ∨

m
3
12t∧m

3
23t∧m

3
31t ∨ m

3
13t∧m

3
21t∧m

3
32t ∨ m

3
13t∧m

3
22t∧m

3
31t 

� (0.2500∧0.0741∧0.1250)∨(0.2500∧0.0156∧0.3589)

∨(0.2500∧0.0689∧0.1250)∨(0.2500∧0.0156∧0.1327)

∨(0.1489∧0.0689∧0.3579)∨(0.1489∧0.0741∧0.1327)

� 0.0741∨0.0156∨0.0689∨0.0156∨0.0689∨0.0741
� 0.0741.

(18)
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*e refusal degree of |M| is as follows:

m
3
1δ1(1)i∧m

3
2δ1(2)i∧m

3
3δ1(3)i ∧ m

3
1δ2(1)i∧m

3
2δ2(2)i∧m

3
3δ2(3)i ∧,

· m
3
1δ3(1)i∧m

3
2δ3(2)i∧m

3
3δ3(3)i ∧ m

3
1δ4(1)i∧m

3
2δ4(2)i∧m

3
3δ4(3)i ∧,

· m
3
1δ5(1)i∧m

3
2δ5(2)i∧m

3
3δ5(3)i ∧ m

3
1δ6(1)i∧m

3
2δ6(2)i∧m

3
3δ6(3)i ,

� m
3
11i∧m

3
22i∧m

3
33i ∧ m

3
11i∧m

3
23i∧m

3
32i ∧ m

3
12i∧m

3
21i∧m

3
33i ∧,

m
3
12i∧m

3
23i∧m

3
31i ∧ m

3
13i∧m

3
21i∧m

3
32i ∧ m

3
13i∧m

3
22i∧m

3
31i ,

� (0.1489∧0.0058∧0.1250)∧(0.1489∧0.0973∧0.0393),

∧(0.0795∧0.0176∧0.1250)∧(0.0795∧0.0973∧0.0549),

∧(0.0359∧0.0176∧0.0393)∧(0.0359∧0.0058∧0.0549),

� 0.0058∧0.0393∧0.0176∧0.0549∧0.0176∧0.0058,

� 0.0058.

(19)

*e nonparticipation degree of |M| is as follows:

m
3
1δ1(1)f∨m

3
2δ1(2)f∨m

3
3δ1(3)f ∧ m

3
1δ2(1)f∨m

3
2δ2(2)f∨m

3
3δ2(3)f ∧,

· m
3
1δ3(1)f∨m

3
2δ3(2)f∨m

3
3δ3(3)f ∧ m

3
1δ4(1)f∨m

3
2δ4(2)f∨m

3
3δ4(3)f ∧,

· m
3
1δ5(1)f∨m

3
2δ5(2)f∨m

3
3δ5(3)f ∧ m

3
1δ6(1)f∨m

3
2δ6(2)f∨m

3
3δ6(3)f ,

� m
3
11f∨m

3
22f∨m

3
33f ∧ m

3
11f∨m

3
23f∨m

3
32f ∧,

· m
3
12f∨m

3
21f∨m

3
33f ∧ m

3
12f∨m

3
23f∨m

3
31f ∧,

· m
3
13f∨m

3
21f∨m

3
32f ∧ m

3
13f∨m

3
22f∨m

3
31f ,

� (0.0298∨0.0852∨0.1250)∧(0.0298∨0.0795∨0.0393),

∧(0.1489∨0.1038∨0.1250)∧(0.1489∨0.0795∨0.0911),

∧(0.1327∨0.1038∨0.0393)∧(0.1327∨0.0852∨0.0911),

∧(0.1327∨0.1038∨0.0393)∧(0.1327∨0.0852∨0.0911),

� 0.1250∧0.0795∧0.1489∧0.1489∧0.1327∧0.1327,

� 0.0795.

(20)

From equations (18)–(20),

|M| � (0.0741, 0.0058, 0.0795). (21)

Proposition 4. Let M be a STSFM, and Mt is a transpose of
M. �en, |Mt| � |M|.

Proof. It is trivial, so we omit here.

Proposition 5. Let M be a STSFM. If a row is multiplied by a
TSFN z � (z1, z2, z3), then

|z.M| � z.|M|. (22)

Proof. It is trivial, so we omit here.

3.3.Adjointof STSFM. Here, we will define adjoint and some
related results on it.

Definition 19. For a TSFM M of order j, the adj(M) is
defined as follows: adj(M) � R � (rxyt, rxyi, rxyf), where

r
n
xyt � ∨

δ∈Pjyjx

∧
u∈jx

m
n
uδ(u)t,

r
n
xyi � ∧

δ∈Pjyjx

∧
u∈jx

m
n
uδ(u)i,

r
n
xyf � ∧

δ∈Pjyjx

∨
u∈jx

m
n
uδ(u)f.

(23)
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Here, jx � 1, 2, . . . , j  − x{ }. Example 2. Let M be a STSFM of order 3, for n � 3,

M �

(0.40, 0.60, 0.30) (0.30, 0.30, 0.30) (0.30, 0.40, 0.50)

(0.60, 0.40, 0.30) (0.40, 0.40, 0.40) (0.40, 0.50, 0.40)

(0.30, 0.30, 0.30) (0.40, 0.50, 0.40) (0.40, 0.60, 0.30)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (24)

For x � 1 and y � 1, jy � 1, 2, 3{ } − 1{ } � 2, 3{ } and

jx � 1, 2, 3{ } − 1{ } � 2, 3{ }. *en, Pjyjx
is as follows: 2 3

2 3 

and 2 3
3 2 .

So,

m
n
22t∧m

n
33t( ∨ m

n
23t∧m

n
32t(  � (0.0640∧0.0640)∨(0.0640∧0.0640) � 0.0640∨0.0640 � 0.0640,

m
n
22i∧m

n
33i( ∨ m

n
23i∧m

n
32i(  � (0.0640∧0.2160)∨(0.1250∧0.1250) � 0.0640∨0.1250 � 0.1250,

m
n
22f∨m

n
33f ∧ m

n
23f∨m

n
32f  � (0.0640∨0.0270)∧(0.0640∨0.0640) � 0.0640∧0.0640 � 0.0640.

(25)

For x � 1 and y � 2, jy � 1, 2, 3{ } − 1{ } � 2, 3{ } and

jx � 1, 2, 3{ } − 2{ } � 1, 3{ }. *en, Pjyjx
is as follows: 1 3

2 3 

and 1 3
3 2 

So,

m
n
12t∧m

n
33t( ∨ m

n
13t∧m

n
32t(  � (0.0270∧0.2160)∨(0.0270∧0.0640) � 0.0270∨0.0270 � 0.0270,

m
n
12i∧m

n
33i( ∨ m

n
13i∧m

n
32i(  � (0.0270∧0.2160)∨(0.0640∧0.1250) � 0.0270∨0.0640 � 0.0640,

m
n
12f∨m

n
33f ∧ m

n
13f∨m

n
32f  � (0.0270∨0.0270)∧(0.1250∨0.0640) � 0.0270∧0.1250 � 0.0270.

(26)

Calculating similarly,

adj(M) �

(0.0640, 0.1250, 0.0640) (0.0270, 0.0640, 0.0270) (0.0270, 0.0270, 0.0640)

(0.0640, 0.0640, 0.0270) (0.0640, 0.2160, 0.0270) (0.0640, 0.1250, 0.0640)

(0.0640, 0.0640, 0.0640) (0.0640, 0.1250, 0.0270) (0.0640, 0.0640, 0.0270)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (27)
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Proposition 6. Let M be a STSFM. �en,
adj(Mt) � (adj(M))t.

Proof. Let M be a STSFM of order j and
adj(M) � (rxyt, rxyi, rxyf), then

M
t

� m
n
1xyt, m

n
1xyi, m

n
1xyf 

t

� m
n
1yxt, m

n
1yxi, m

n
1yxf .

(28)

*en, by definition of adjoint, we have

adj M
t

  � ryxt, ryxi, ryxf , (29)

where

r
n
yxt � ∨

δ∈Pjxjy

∧
u∈jy

m
n
uδ(u)t, r

n
yxi � ∧

δ∈Pjxjy

∧
u∈jy

m
n
uδ(u)i, r

n
yxf

� ∧
δ∈Pjxjy

∨
u∈jy

m
n
uδ(u)f.

(30)

Here, jy � 1, 2, . . . , j  − y .
Hence,

adj(M) � rxyt, rxyi, rxyf , (31)

where

r
n
xyt � ∨

δ∈Pjyjx

∧
u∈jx

m
n
uδ(u)t, r

n
xyi � ∧

δ∈Pjyjx

∧
u∈jx

m
n
uδ(u), r

n
xyf

� ∧
δ∈Pjyjx

∨
u∈jx

m
n
uδ(u)f.

(32)

Here, jx � 1, 2, . . . , j  − x{ }.

adj(M)
t

� ryxt, ryxi, ryxf , (33)

where

r
n
yxt � ∨

δ∈Pjxjy

∧
u∈jy

m
n
uδ(u)t, r

n
yxi � ∧

δ∈Pjxjy

∧
u∈jy

m
n
uδ(u)i, r

n
yxf

� ∧
δ∈Pjxjy

∨
u∈jy

m
n
uδ(u)f.

(34)

Here, jy � 1, 2, . . . , j  − y .
From equations (29) and (33),

adj M
t

  � adj(M)
t
. (35)

Definition 20. A STSFM M of order j is called a CSTSFM if
(mn

xkt, mn
xki, mn

xkf) � (mn
ykt, mn

yki, mn
ykf) for x, y, k �

1, 2, . . . j.

Proposition 7. For a CSTSFM M, the adj(M)t is constant.

Proof. It is trivial, so we omit here.

Proposition 8. For a CSTSFM M, the M.adj(M) is
constant.

Proof. It is trivial, so we omit here.

4. Proposed Decision-Making Algorithm
and Illustration

*e TSFM is the most generalized idea in fuzziness; it is
applicable for various DM problems. Let promotion test is
passed by the n administrative officers (AOs). Over goal is to
pick m out of n based on the AO’s approach to government
(Govt) performance, because all members of Govt are from
different groups. *e solution of this problem is to find out
how close the AO’s ideology is to the Govt performance.*e
performance is a linguistic term and has no special meaning.
We use fuzzy logic to handle such conditions, more spe-
cifically T-spherical fuzzy logic. *is is the most generalized
fuzzy structure in the existing fuzzy theory. *e choice of
AOs must meet certain conditions, and many counts are
required. *e algorithm defined below finds the appropriate
AOs among many candidates.

*e proposed algorithm is depicted in Figure 1, as a
flowchart. *e step-by-step explanation of the proposed
algorithm is given as Algorithm 1.

Example 3. Let AA1, AA2, and AA3 are three political
parties coming from different Govts. G1, G2, and G3. *e A1,
A2, A3, A4, and A5 are AOs qualified for promotion. Now, a
TSFM M1 � (m1xyt, m1xyi, m1xyf) of order 5 × 3, which
shows the view of AOs to the party-backed Govt.

M1 �

A1

A2

A3

A4

A5

(0.70, 0.60, 0.65) (0.70, 0.80, 0.30) (0.60, 0.60, 0.60)

(0.64, 0.64, 0.40) (0.46, 0.30, 0.80) (0.70, 0.60, 0.70)

(0.50, 0.70, 0.50) (0.70, 0.50, 0.60) (0.64, 0.50, 0.40)

(0.46, 0.30, 0.60) (0.60, 0.50, 0.40) (0.46, 0.40, 0.80)

(0.46, 0.30, 0.80) (0.40, 0.70, 0.80) (0.50, 0.70, 0.50)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

*e works performed by the Govt and their commit-
ments are in M2 during the election period, followed by the
party.
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Start 

Read two TSFMx M1 and M2

Extract all TSFSs from them over the same set of 
universe

Arrange the DOCs in descending order depending 
on the entries of distance matrix 

Construct a distance matrix by using the distance 
formula between two TSFSs

Print selected results in tabular form as 
desired 

Stop 

Figure 1: Flowchart of the proposed algorithm.

Aim: Obtain a picked list of AOs based on the AO’s approach to Govt performance.
Input: From two given TSFM, first indicates the AO’s view of the Govt by the political party, and the second one “the work done by
the Govt. during election period.”
Output: For different Govts, the selected list of AOs.
Step 1: Extract all TSFSs from the given TSFM over the set of parties.
Step 2: Using the distance formula between two TSFSs, compute a distance matrix as follows:

c(A1, A2) �

�������������������������������������������������

1/3p 
p
u�1[(xu − xu

′)2 + (yu − yu
′)2 + (zu − zu

′)2 + (su − su
′)2]



,

where xu � tn
A1

(au), yu � inA1
(au), zu � fn

A1
(au), and su � 1 − xu − yu − zu,

xu
′ � tn

A2
(au), yu

′ � inA2
(au), zu
′ � fn

A2
(au), and su

′ � 1 − xu
′ − yu
′ − zu
′ are PD, RD, NPD, and HD of au: u � 1, 2, . . . , p  in A1 and A2,

respectively, where is a universal set understudy?
Step 3: Arrange the degree of closeness (DOCs) in descending order based on their distance to find selected AOs.

ALGORITHM 1
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M2 �

G1

G2

G3

(0.30, 0.60, 0.80) (0.80, 0.70, 0.40) (0.70, 0.40, 0.70)

(0.70, 0.70, 0.40) (0.40, 0.34, 0.50) (0.40, 0.80, 0.40)

(0.50, 0.60, 0.40) (0.50, 0.40, 0.80) (0.40, 0.34, 0.50)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (37)

In M1 and M2, AA1, AA2, and AA3 represent the three
columns, respectively.

Step 1. *e TSFM is extracted as follows:

A1 � AA1, (0.70, 0.60, 0.65)( , AA2, (0.70, 0.80, 0.30)( , AA3, (0.60, 0.60, 0.60)(  ,

A2 � AA1, (0.64, 0.64, 0.40)( , AA2, (0.46, 0.30, 0.80)( , AA3, (0.70, 0.60, 0.70)(  ,

A3 � AA1, (0.50, 0.70, 0.50)( , AA2, (0.70, 0.50, 0.60)( , AA3, (0.64, 0.50, 0.40)(  ,

A4 � AA1, (0.46, 0.30, 0.60)( , AA2, (0.60, 0.50, 0.40)( , AA3, (0.46, 0.40, 0.80)(  ,

A5 � AA1, (0.46, 0.30, 0.80)( , AA2, (0.40, 0.70, 0.80)( , AA3, (0.50, 0.70, 0.50)(  ,

G1 � AA1, (0.30, 0.60, 0.80)( , AA2, (0.80, 0.70, 0.40)( , AA3, (0.70, 0.40, 0.70)(  ,

G2 � AA1, (0.70, 0.70, 0.40)( , AA2, (0.40, 0.34, 0.50)( , AA3, (0.40, 0.80, 0.40)(  ,

G3 � AA1, (0.50, 0.60, 0.40)( , AA2, (0.50, 0.40, 0.80)( , AA3, (0.40, 0.34, 0.50)(  .

(38)

Step 2. *e distance matrix D is computed, by applying the
distance formula for n � 3.

D �

A1

A2

A3

A4

A5

0.1789 0.3339 0.3384

0.3135 0.2726 0.2731

0.2435 0.2586 0.1808

0.2971 0.3019 0.2816

0.2695 0.3545 0.2685

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

where columns show the G1, G2, and G3, respectively.

Step 3. *e results made from the matrix D are as follows:

DOC A2, G1( >DOC A4, G1( >DOC A5, G1( >DOC A3, G1( >DOC A1, G1( ,

DOC A5, G2( >DOC A1, G2( >DOC A4, G2( >DOC A2, G2( >DOC A3, G2( ,

DOC A1, G3( >DOC A4, G3( >DOC A2, G3( >DOC A5, G3( >DOC A3, G3( .

(40)

As a result, the selected list of AOs is presented in
Table 1.

For first government, A2 and A4, for second A5 and A1,
and for third A1 and A4 are selected. Also, note that A1 and
A4 are selected for more than one Govt.

5. Comparative Study

Here, we will analyze the proposed work with existing work
and compare it in the light of suitable examples.

Remarks 3. We consider Definition 10:

(1) For n � 2, TSFM becomes SFM
(2) For n � 1, TSFM becomes PFM, developed in [34]
(3) For n � 2 and mxyi � 0, TSFM becomes PyFM, de-

veloped in [27]

(4) For n � 1 and mxyi � 0, TSFM becomes IFM, de-
veloped in [19]

(5) For n � 1, mxyi � 0, and mxyf � 0, TSFM becomes
FM, developed in [10]

From the above remarks, it is clear that TSFM is most
generalized among all existing fuzzy matrix structures.

Another advantage of our proposed work is that it can be
used where all existing structures failed to find the results.
Considering Example 3, the sum of all grades of the data
given in the matrix M1 exceeds from the unit interval [0, 1]

for n � 1, in Table 2, so the information is not in picture
fuzzy form and the method proposed in [34] is unable to
handle the information. By observing Table 3, it is seen that
the sum of all grades of the data given in M1 is also rose
above from the unit interval [0, 1] for n � 2, so the infor-
mation is not spherical fuzzy form and the so far proposed
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methods are unable to handle the information. FromTable 4,
it is observed that the data are in T-spherical fuzzy form for
n � 3. *e proposed method is only to handle such type of
data, which shows the importance of the proposed article.

Sum of all grades of the data given in M1 for n � 2 is
given in Table 3.

Sum of all grades of the data given in M1 for n � 3 is
given in Table 4.

From all the above discussion, it is clear that TSFM is the
most generalized in all the existing fuzzy structures.

6. Conclusions

In this paper, a concept of T-spherical fuzzy matrix is
presented by taking the importance of the matrix theory,
fuzzy matrix, and the T-spherical fuzzy sets.*e key findings
of the present study are listed as below as follows:

(1) *e concept of T-spherical fuzzy matrix is intro-
duced, which is an extension of matrix and fuzzy
matrix.

(2) *e concepts of a square T-spherical fuzzy matrix,
constant T-spherical fuzzy matrix, and constant
square T-spherical fuzzy matrix with their related

properties are defined, and their related properties
are investigated with examples.

(3) Determinant and adjoint of square T-spherical fuzzy
matrix with their related results are discussed.

(4) An algorithm for multiattribute decision-making
problems is presented to solve the decision-making
problems.

(5) A numerical example is solved using the developed
algorithm, where the appropriate AOs among many
candidates are selected. A comparative study has
been made to show the importance and novelty of
the proposed work.

In our next study, our aim is to explore the concept. In
further, our aim is to extend the proposed work to develop
some applicable results in the matrix theory in the context of
T-spherical fuzzy matrix and to utilize them in decision-
making problems.
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