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This paper develops a depth-gated recurrent neural network (DGRNN) with self-attention mechanism (SAM) based on long-
short-term memory (LSTM)\gated recurrent unit (GRU) \Just Another NETwork (JANET) neural network to improve the
accuracy of credit spread prediction. The empirical results of the U.S. bond market indicate that the DGRNN model is more
effective than traditional machine learning methods. Besides, we discovered that the Depth-JANET model with one gated unit
performs better than Depth-GRU and Depth-LSTM models with more gated units. Furthermore, comparative analyses reveal that
SAM significantly improves DGRNN'’s prediction performance. The results show that Depth-JANET neural network with SAM
outperforms most other methods in credit spread prediction.

1. Introduction

Credit spread is the risk premium demanded by investors of
credit bonds over the yield of risk-free bonds of the same
maturity, which is the basis of credit bond pricing and risk
management. By grasping the future trend of credit spread,
stakeholders involved in the bond market can make deci-
sions more scientifically. For instance, investors can improve
the accuracy of transactions. Financiers can choose time
scientifically, and regulators can properly prevent and
control financial risks. Besides, credit spread can be utilized
to monitor macroeconomics and warn governments.
However, because the bond market is usually regarded as a
complex system [1], existing techniques cannot perform well
in predicting the credit spread accurately. Therefore, it is
necessary to theoretically and empirically discuss how to
improve the credit spread’s prediction accuracy.

As a representative technology of artificial intelligence,
deep learning methods have developed rapidly in recent years
[2-4]. Deep neural networks have become the most advanced
forecasting method in finance due to its outstanding

performance in time-series prediction [5, 6]. They have been
widely used to predict indicators, such as stock prices, ex-
change rates, gold prices, and housing prices [5, 7-9].

Many studies show that deep neural networks can ef-
fectively fit complex nonlinear relationships between input
variables with a higher fitting degree, reducing the over-
fitting of shallow foundations and local extremum problems.
Besides, deep neural networks have no restrictions on the
form of input variables. Therefore, all relevant information
can be included. Particularly, deep neural networks can
perform generalized learning based on data characteristics,
weakening irrelevant information while learning heteroge-
neous information.

Existing literature on the prediction of the credit spread
is mainly based on linear models [6, 10]. Although the deep
learning methods can help improve the accuracy of credit
spread prediction, it is not clear which algorithm has the best
prediction performance according to the “No Free Lunch
Theorem” proposed by Wolpert. Thus, it is also worthy of in-
depth investigation of the performance of deep learning
algorithms in credit spread prediction [11].
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This paper aims to construct a depth-gated recurrent
neural network with self-attention mechanism (SAM-
DGRNN) to predict credit spreads in the U.S. corporate
bond market. The main contributions are as follows: (1) to
apply the XGBoost algorithm to integrate the selected credit
spread determinants and extract the feature variables with
the highest importance of prediction. (2) To construct
depth-gated recurrent neural networks based on LSTM/
GRU/JANET and compare them with three traditional
nonlinear machine learning models (e.g., support vector
regression, multilayer perception, and the random forest
approaches) and a linear model (e.g., the vector autore-
gressive model). The comparative analysis of their prediction
effects supports the superiority of deep learning methods in
predicting credit spreads. (3) To construct a depth-gated
recurrent neural network with self-attention mechanism
(SAM-DGRNN) to explore the effectiveness of SAM in
credit spread prediction.

The remainder of this paper is organized as follows.
Section 2 provides a brief background. Section 3 discusses
literature review related to the deep learning field. Section 4
introduces the theoretical methods and methodology for
constructing the model of predicting the credit spread.
Section 5 presents the experimental results. Section 6 is the
conclusion section of this paper.

2. Background

2.1. Long-Short-Term Memory (LSTM) Neural Network.
LSTM neural network has three gated units: input gate,
forget gate, and output gate. The gated units allow infor-
mation to affect recurrent neural networks at each moment
selectively. Each gate outputs a value between 0 and 1. The
value refers to how much information can be passed (0
means “no information can pass and one means “all in-
formation is allowed to pass”). The forget gate controls what
information is discarded or saved from the cell state, the
input gate controls how much new information is added to
the cell state, and the output gate controls which part of the
cell state will be output. The schematic diagram of LSTM
neural network structure is shown in Figure 1. The update
rules are shown in equations (1) to (6).

First, the forget gate discards
information:

ft = 0(foxt + thht71 + bf) (1)

useless  historical

Second, the input gate updates the state with input data
and historical information:

i, = o (Wigx, + Wyhy_y +b;), (2)
¢, = tanh (W= x, + Wo h,_, + br), (3)
¢ = fiXcy +i, XCp (4)

Third, the output gate outputs current information:
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FiGure 1: Structure of LSTM neural network.

0y = U(Woxxt + Wohht—l + bo)’ (5)

h, = o, x tanh(c,), (6)

where x, is the input vector at time t, h,_, is the output vector
at time £ —1, W, W, Wi, Wy, Wo ., W5, W, W, are
the weight matrixes, by, b;, b, b, are the bias vectors, o is
the logistic sigmoid function with the form of
o(x) = (1+e %) ! tanhis the hyperbolic tangent activation
tunction, f,,1i,,0, are the states of forget gate, input gate, and
output gate at time t, respectively, and ¢, is the state of the

memory unit at time ¢.

2.2. Gated Recurrent Unit (GRU) Neural Network. GRU
neural network consists of two gated units. The update gate
is used to control the degree to which previous state in-
formation is brought into the current state. The smaller its
value is, the less information it brings and the smaller the
impaction the current hidden layer is. The reset gate is used
to control the degree of state information that is ignored at
the previous moment. The larger its value is, the less in-
formation is overlooked. GRU neural network synthesizes
the input gate and the forget gate in LSTM neural network
into a single update gate and combines the cell state and the
hidden state. These features not only maintain the advan-
tages of LSTM in solving long-term dependency problems
but also lead to a more straightforward structure, with fewer
parameters and higher training efficiency. The schematic
diagram of GRU neural network structure is shown in
Figure 2. Update rules are shown in equations (7) to (10).
First, the reset gate determines the degree of the alter-
native state h, depending on the previous state 4, ;:

ry = O(Wrxxt + thht—l + br)’ (7)

h, = tanh(WZxx[ + Worih  + b;) (8)

Second, the update gate determines the weights of his-
torical information inheriting from the previous state h,_,
and new information the current alternative state accepts:



Mathematical Problems in Engineering

Reset Gate Update Gate
-4----------------: ------ -\
/ T h[ \
Ll »{ O == tanh (W) » O F \|
" Ah A 7 3 |
|
|
|
: Z, Y
| (Wz) OF=» i
| ? |
| |
| |
' l
|
hiyy |
L h, /
X% S e e——em—e——————_ _ P4
\ 4

FiGure 2: Structure of GRU neural network.

Zy = U(szxr + W hy + bz)’ )

h, :(l—zt)th+ztht, (10)

where x;, is the input vector at time £, ,_; is the output vector
at time t-1, b,b,b, are the bias vectors,
W, W, W~ W~ sz’th are the weight matrixes, o is
the logistic mgmmg'functlon tanh is the hyperbolic tangent
activation function, and r,, z, are the output state of the reset
gate and update gate at time t, respectively.

2.3. Just Another NETwork (JANET) Neural Network.
JANET neural network, with dramatically less training time,
performs better on multiple benchmark data sets than LSTM
neural network. The schematic diagram of JANET neural
network structure is shown in Figure 3. The update rules are
shown in equations (11) to (14).

fo=0(Wpx, + Wb +by), (11)
¢, = tanh (W5 x, + Wz h,_, +b), (12)
¢ = fixe +(1-f,)5, (13)
h, = ¢, (14)

where x, is the input vector at time t, h,_, is the output vector
at time £ — 1, Wy, W, W, Wo;, are the weight matrixes,
b I b are the bias vectors, o is the logistic sigmoid function,
tanh is the hyperbolic tangent activation function, f, is the
output state of the forget gate at time ¢, and ¢, is the state of

memory unit at time f.

2.4. Self-Attention Mechanism (SAM). SAM is an im-
provement in the basic attention mechanism. It uses an
attention mechanism to dynamically generate the weights of
different connections between the input and output of the
same layer (not the model’s final output) to obtain this
layer’s output. SAM considers the logical connection be-
tween the upper and lower sequences. Assume that the input
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FiGUure 3: Structure of JANET neural network.

sequence of a layer is X = [x,x,,...,xy], and the output
sequence is H = [h}, h,, ..., hy] with the same length. First,
deduce three vector sequences through a linear
transformation:

Q=WyX € RZN,

K = WgX € ROV, (15)

V =W,X e R%%¥,

where Q, K,V are the query vector sequence, key vector
sequence, and value vector sequence, respectively, and
Wa Wi, Wy are the learning parameters.

The output vector is

N
Z a;v; Z soft max(s(kj, qi))vj

=

h; = att (K, V), q;)

i exp(s(k;>4;))

< Yexp( s(kna)
(16)

where (K, V) = [(k;, ), (ky, ¥5), ... (ky, ¥y)] is the key-
value pair, representing the input information. i, j € [1, N]
are the positions of input and output vector sequences, and
the connection weight a;; is dynamically generated by the
attention mechanism. softmax ensures that the sum of all
weights is 1.

3. Related Work

Deep learning methods have been widely used in many
fields. As one of the classic deep learning models, long-short
term memory (LSTM) neural network has great advantage
in mining long-term dependencies of sequence data. It was
first proposed by Hochreiter and Schmidhuber to solve long-
term memory problems in recurrent neural network by
considering the “gated units” [12]. Wang et al. applied LSTM
to speech enhancement and proposed a LSTM convolution
network, which includes transpose convolution and jump
connection [13]. Ma et al. introduced convolution operation
into traditional LSTM and proposed a CLSTM learning
algorithm to extract time-frequency information and ob-
tained features through convolution [14]. Petmezas et al.



combined LSTM with convolutional neural networks
(CNN) and proposed the CNN-LSTM model. Through
CNN, signal features are transmitted to LSTM to realize
dynamic memory [15]. Yu et al. applied LSTM to a nonlinear
system model and proposed an improved depth LSTM.
Combining the strengths of LSTM and multilayer percep-
tion, the stability of the training method is verified by the
Lyapunov function. At the same time, the model is pref-
erable to other existing models in a nonlinear system [16].

Due to many parameters involved, the LSTM neural
network performs a lower training efficiency. To improve
this drawback, Cho et al. proposed a more simplified gated
recurrent unit (GRU) neural network based on LSTM neural
network and proved that the prediction performance of the
GRU Neural network is better than that of standard LSTM
neural network [17]. Particularly, GRU can significantly
simplify the structure of LSTM, reduce the number of pa-
rameters, and greatly shortens the training time. Liu et al.
used GRU to replace the LSTM in the neural programmer
interpreter for changing the core structure [18]. Based on the
classification results of LSTM and full convolution network
LSTM-ECN, Nelsayed et al. found that GRU has higher
classification accuracy and simpler hardware implementa-
tion in time-series classification problems, which are of
smaller architecture and less computation [19]. Wu et al.
combined GRU with CNN to propose a GRU-GNN hybrid
neural network model. In the GRU-GNN model, GRU is
responsible for extracting the feature vector of time-series
data, and CNN extracts the feature vector of high-dimen-
sional data [20]. Pan et al. applied the GRU-GNN combined
model to the water level prediction of the Yangtze River.
Through the 30-year water level data of the Yangtze River
and comparative analysis, it is confirmed that the model is
superior to wavelet neural network, LSTM, and statistically
integrated moving average autoregressive model ARIMA
[21]. Given the excellent performance of the GRU neural
network after eliminating redundant gates, Westhuizen and
Lasenby further explored the necessity of three gated units in
the LSTM neural network to build more efficient models
[22]. They proposed a JANET (Just Another NETwork) with
only a forget gate and chronologically initialized bias terms.

Attention mechanisms are widely used in neuroscience
and computational neuroscience. This common mechanism
comes from the fact that many animals only focus on specific
parts of their vision to give enough response. Therefore,
many neural computing studies have concluded that people
only need the most relevant information, rather than all
information, for further neural processing. In recent years,
this mechanism has also been widely used in deep learning
research, such as image re-rolling and voice recognition.
Recent studies have found that considering the self-attention
mechanism in deep learning can effectively extract the most
critical information for current tasks to enhance predictive
power. Attention mechanism has become one of the most
important topics in the deep learning literature following the
research by Vaswani et al. [23]. Zhao et al. designed a long-
short term memory (LSTM) neural network structure model
with attention mechanism based on the dynamic sequence in
the internet financial market [24]. The empirical results
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showed that their attention mechanism model outperformed
others. Chen and Ge applied an LSTM neural network with
attention mechanism to predict the stock price trend in
Hong Kong and achieved satisfactory prediction results [25].

In the training of deep neural network models, the gradient
vanishing and overfitting often result in unsatisfactory learning
effects. Studies have shown that batch-normalization (B. N.)
method can alleviate the gradient vanishing by pulling the data
back to a standard normal distribution with a mean of 0 and a
variance of 1 [26]. Furthermore, Dropout can prevent over-
fitting to a certain extent by preventing neuronal coadaptation
during the training phase [27]. However, improper use of both
methods will generate the opposite effect. Li et al. found that
placing Dropout in all B. N. layers or modifying Dropout’s
formula to reduce the sensitivity of variance could improve the
coordination between B. N. and Dropout [28]. Luo et al.
suggested that by adopting differentiable learning, the
switchable-normalization method (S. N.) could determine the
appropriate normalization operation for each normalization
layer in a deep network [29]. As a result, it is more advan-
tageous than B. N. in avoiding gradient disappearance.
Therefore, in our deep neural network design, we add the S. N.
layer and Gaussian Dropout layer to optimize its structure. A
reasonable combination of the S. N. layer and Dropout layer
will improve the performance of the neural networks.

4. Methodology

4.1. Depth-Gated Recurrent Neural Network with Self-At-
tention Mechanism (SAM-DGRNN). We add the S. N. layer
and Gaussian dropout layer to optimize its structure in the
deep neural network. A reasonable combination of the S. N.
layer and dropout layer will improve the performance of the
neural networks. Specifically, the main structure of the
depth-gated recurrent neural network constructed in this
paper includes an attention mechanism layer, a three-layer
LSTM/GRU/JANET neural layer, and two fully connected
layers (of which the first neural layer has 128 neurons, the
second has 64 neurons, the third has 32 neurons, and the two
fully connected layers have 32 neurons and one neuron,
respectively). An S.N. layer is added in front of each LSTM/
GRU/JANET neural layer. A Gaussian Dropout layer is
added at the back of the LSTM/GRU/JANET neural layer,
and the drop rate is set to 0.2. The structure of the deep
LSTM/GRU/JANET neural network is shown in Figure 4,
and the neural network structure is shown in the dotted box.

4.2. Training Method, Loss Function, and Optimizer Selection.
We apply the mini-batch gradient descent method to train
the deep learning neural network. In order to predict future
credit spreads, the mean square error (MSE) is selected in the
loss function. We choose Adam optimizer (adaptive mo-
ment estimation) to perform optimization training. Com-
pared with other self-adaptive learning rate algorithms, the
Adam algorithm is more robust in selecting hyper-
parameters, with higher training efficiency, and can generate
more effective results [30]. The experimental environment of
this paper is shown in Table 1.
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F1GURE 4: Depth-gated recurrent neural network with self-atten-
tional mechanism.

TaBLE 1: Experiment environment.

Operating system Windows 7
Processor Intel(R) core (TM) i7-2760QM
Random-access memory 8.00 GB

Version of python Python 3.7.0

Version of spyder Spyder 3.3.1

Version of keras Keras 2.2.4

Tensorflow 1.13.1
Adam optimizer

Version of tensorflow
Optimizer

4.3. Control Models. In the depth-gated recurrent neural
network model, we employ the rolling-window prediction
method and use the data of n trading days to predict the
credit spread on the next day. This paper first integrates
indicators with XGBoost (extreme gradient boosting) al-
gorithm, extracting the predictor variables with higher
importance ranking. XGBoost algorithm combines random
forest algorithm, which can further reduce calculation
complexity. When dealing with a large amount of data,
XGBoost can operate parallel and divide the data according
to different characteristics to form a tree sequence. This
algorithm is simpler and more effective. It can transfer
complex data to an orderly and concise arrangement form.
Then the feature variables with a higher importance ranking
are selected as the model input.

To comprehensively evaluate the prediction effect of
depth-gated recurrent neural network, one benchmark
deep learning model RNN and three traditional machine
learning models (support vector machines (SVR), multi-
layer perceptron (MLP), and random forest (RF)) in fi-
nancial prediction are selected as nonlinear control models.
Research has put VAR as a linear control model. [6]. Deep
RNN selection and depth-gated recurrent neural network
have the same structure. The parameter combination in
SVR is set as “Radial Basis Function (RBF), penalty pa-
rameter C=1, gamma=auto”. We also select the classic
MLP neural network with three layers. The prediction
methods of RNN, SVR, MLP, and R. F. are consistent with
depth-gated recurrent neural network. The prediction idea
of a VAR model is as follows: first, the stationarity of all

sequences is comprehensively judged by the ADF test,
KPSS test, and P. P. test and decide whether to carry out the
corresponding order difference to obtain the stationary
sequence according to the test results. Second, the VAR
model is established. The order of the VAR model is de-
termined by integrating AIC and BIC information criteria.
Third, the VAR model was estimated, and the model’s
stability was tested. Finally, the credit spread sequence is
predicted based on the stable VAR model. The prediction
flowchart is shown in Figure 5.

5. Empirical Prediction Analysis

5.1. Variable Selection. We collect daily closing data from
2009 to 2019. The 2517 trading days during this period are
divided into a training set (includes the first 85% of trading
days) and a test set (includes the remaining 15% of trading
days).

Table 2 shows variables in the literature that have been
verified as significant credit spread determinants. The credit
spread sequence is a forecast indicator, and additional
variables are used as the characteristics to predict credit
spreads. The detailed indicators are discussed as follows.

Risk-free interest rate term structure: the risk-free
interest rate is an important variable in the structural
model. The information contained in the shape of the
riskless yield curve can improve the prediction per-
formance of credit spreads [6].

Credit spread term structure: the credit spread curve’s
level, slope, and curvature are the principal variables for
predicting the future credit spread [6].

Fama-French factor returns: credit spreads indicate the
extra compensation of holding risky assets as an
analogy to stock risk premiums. Therefore, financial
markets would transfer the explanatory power of stock
returns, represented by Fama-French factor returns, to
the bond market [31].

Return on Stock Index: stocks are also yield-producing
securities. The equity market is the most plausible al-
ternative to the fixed-income market, and equity
market indexes measure capital market investment
levels. Therefore, the return on the stock index could be
relevant to corporate bond credit spreads [32].

Volatility of Stock Index: VIX Index, often referred to
as the market’s “fear gauge,” can be correlated with
credit spreads, which capture the future probability of
default as a common forward-looking risk metric. As a
result, stock market volatility is a significant variable for
explaining credit spread changes [33].

Exchange rate: the prevailing economic theory, such as
uncovered interest rate parity, suggests that there
should be an empirical relationship between exchange
rates and interest rates. Given exchange rate fluctua-
tions, foreign investors will be attracted to invest in U.S.
corporate bonds. The foreign exchange rate is a here-
tofore overlooked variable for explaining credit spread
changes [33].
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TaBLE 2: Variables and data.

Variables Data
Credit spread ICE BofAML US corporate master option-adjusted spread®

The first principle component extracted

Level . - - - .
factor From a large cross section of credit spreads of various maturities and various
oS
. ratings
Credit spread term - &
Slop The second principal component extracted
structure . . . s $
factor From a large cross section of credit spreads of various maturities
Curve The third principle component extracted
factor From a large cross section of credit spreads of various maturities®
Level The long-term factor of Nelson and Siegel term structure decomposition
factor  extracted from a large cross section of treasury yields of various maturities®®
Risk-free interest rate Slop The short-term factor of Nelson and Siegel term structure decomposition
. . term structure factor  extracted from a large cross section of treasury yields of various maturities®®
Financial market . - I,
Curve The mid-term factor of Nelson and Siegel term structure decomposition

factors . . . o
factor  extracted from a large cross section of treasury yields of various maturities®®

Excess return on the market

Fama-French factor Small-minus-big return

returns ; i
High-minus-low return

Return on stock index Return on S&P 500
Volatility of stock index Volatility of S&P 500

Exchange rate U.S. Dollar index

Oil prices Crude oil prices: West Texas intermediate (WTT)
TED spread Difference between 3-month LIBOR based on U.S. dollars and 3-month treasury bill

Swap spread Difference betweenl0-year swap rate and 10-year treasury yield

Commodity price index RJ/CRB index

Note: Data are obtained from https://fred.stlouisfed.org; $ ICE BofAML US Corporate 1-3\3-5\5-7\7-10\10-15\15+ \AAA\AA\A\BBB\BB\B\CCC Option-
Adjusted Spread;$$ 3\6-month and 1\2\3\5\10-year treasury yields.

Oil Prices: energy prices, as the cost of economic ac- indication of credit spreads. Credit spreads will increase
tivities, are captured by oil prices to study their in- with swap spreads [35].

fluence on credit spreads. Commodity Price Index: it is widely used to analyze
TED spread: TED spread captures additional macro- price fluctuations in commodity markets and macro-
economic and interest rate information from inter- economy. CPIindex is a better indicator of inflation [6].

national fixed-income markets. LIBOR and U.S.
treasury yields are often used to price complex financial
derivative products, and the difference is an important
predictive variable [34].

The importance score based on the XGBoost algorithm is
shown in Figure 6. The y-axis represents the feature, x-axis
represents the importance score, and the score is between 0
and 1.

Swap spread: swap spread is highly correlated with Figure 6 shows the mutual information of selected
credit spreads because it is a proxy for credit rate. Since  features. To avoid disturbance from insignificant features,
the swap market is more well developed and liquid than  jth 0.01 as the cut-off point of importance score, we select
corporate bonds, swap rates may provide a forward  ten features with the highest mutual information from the
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Small-Minus-Big Return i 0.0036
Excess Return on the Market i 0.0043
Return on Stock Index [ 0.0059
High-Minus-Low Return [ 0.0067 |
Oil Prices [m 0.0081
Commodity Price Index [ 0.0095.
RF_Curve Factor jmm 0.0157
Exchange rate [mmm 0.0208
RF_Level Factor |mmmmmm 0.0349
CS_Slop Factor | 0.0523
Swap Spread |—————_ 0.063§
Volatility of Stock Index |n——— 0.0805
RE_Slop Factor | 0.1132

CS_Curve Factor 0.1617
TedSread . . : 0.1752 :
CS_Level Factor 0.2438
0 0.05 0.1 0.15 0.2 0.25 0.3

Importance score

FiGURE 6: Mutual information for selected features. (There is no
doubt that the term structure of credit spread is the most important
factor to predict credit spread. In order to visualize the importance
of the other factors in the diagram, we only examine the importance
of the remaining factors here.)

raw feature set. Features with higher mutual information are
more helpful to determine future spreads.

5.2. Model Evaluation and Result Comparison

5.2.1. Evaluation Indexes for Prediction Results. In this
paper, we apply three indicators, including MAE (mean
absolute error), MAPE (mean absolute percentage error)
and RSR (The classification of RSR values by Moriasi et al.
(2007): when RSR<0.5, the prediction performance is
excellent; when 0.5<RSR<0.6, the prediction perfor-
mance is good; when 0.6<RSR<0.7, the prediction
performance is at an average level; when RSR > 0.70, the
prediction performance is poor) (root mean square error
(RMSE) divided by standard deviation), to evaluate pre-
diction accuracy. The smaller the value is, the higher
accuracy the prediction will have. SDAPE (standard de-
viation of mean absolute percentage error) is used to
evaluate the prediction stability. The smaller the SDAPE
value is, the better the prediction stability will be. The
calculation formulas of evaluation indicators are shown in
formulas (17)-(21):

1 X R
MAE:*XZ(J’:")’:’) (17)
N i=1
1< Yi— Vi
MAPE = vl ; 7 x 100%, (18)

(19)

(20)

1 Y/ly - z
SDAPE = NXZ< u‘—MAPE) x 100%, (21)
i1 Vi

where y; and y, represent the actual value and the predicted
value of credit spreads, respectively, STD is the standard
derivation of the actual value, and N is the sample size.
Although the indicators are widely used to compare
prediction accuracy, their values alone are insufficient to
determine models’ prediction ability. We also conduct D. M.
statistical tests with these indicators as the basic loss function
to analyze statistical significance [36]. The idea of the D. M.
statistical test is as follows. For a set of actual time
series{y,}._,, the estimated values for the two models are

T ~ T
{94},-, and { k% jt} ,_;» Whose error sequences are {e;|,_, and

{ejt}thl, and whose loss functions are g (y,, y;,) = g(e;;) and
9y ¥ i) = g(ej,), respectively. As a result, their relative
loss functions can be expressed as d, = g(e;,) — g(e;). The
null hypothesis is that the two models’ prediction abilities
are not different, expressed as E(d,) = 0. If the loss-differ-

ential series {dt}thl is covariance stationary and short
memory, then standard results may be used to deduce the
asymptotic distribution of the sample mean loss differential.

We have VT (dyean — #) —7 N (0,271;(0)), where
dean = UT Zthl d, is the sample mean loss differential.
f4(0) =172 Y2 y,(7) is the spectral density of the loss
differential at frequency 0, and y,; (1) = E[(d, — u) (d,_, — 1]
is the autocovariance of the loss differential at displacement
y, and 7 is the population mean loss differential. The formula
of f,;(0) shows that the correction for serial correlation can
be substantial, even if the loss differential is only weakly
serially correlated, due to the accumulation of the auto-
covariance terms.

Because in large samples the sample means loss differ-
ential d, ., is approximately normally distributed with
mean y and variance 27 f;(0)/T, the obvious large-sample
N (0,1) statistic for testing the null hypothesis of equal
forecast accuracy is DM = d, .../ (27 f;(0)/T), where f;(0)
is a consistent estimate of f;(0). If the absolute value of
D. M. statistic is significantly greater than the critical value,
the null hypothesis is rejected, indicating that the two
models’ predictive abilities are significantly different.

5.2.2. Prediction Performance of Depth-Gated Recurrent
Neural Network (DGRNN). We have the following dis-
coveries about repeated experiments. (a) The deep learning
model is sensitive to the number of traversals (the value of
hyperparameter epochs); the prediction effectiveness of the
same model is in a U-shaped relationship with epochs value;
when epochs =100 + 10, the deep learning models perform
best in the experiments; the machine learning models are not
sensitive to hyperparameter epochs. In this paper, the
number of traversals is 100 (epochs=100). (b) Several
representative values (1, 5, 20, 60, 120, 180, and 250) were
selected to test the sensitivity of the hyperparameter
look_back, which determines the number of trading days
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TaBLE 3: Statistical performance indicators of the prediction models.
DGRNN Machine learning VAR
DJANET DGRU DLSTM DRNN SVR MLP RF

MAE 5.6770 7.7149 8.4230 11.9192 12.0704 10.1098 9.8887 12.7386
DM — 1.8761* 1.9799** 2.5902*** 2.7406*** 24763 2.1659** 3.1721%"
MAPE 0.0479 0.0635 0.0728 0.1046 0.2271 0.0863 0.0763 0.3826
D.M. — 1.6973" 1.9477* 3.7901%** 5.6809"** 2.7217*** 2.0705"* 8.3050""*
RSR 0.4198 0.5549 0.5995 0.8277 1.6920 0.7263 0.7076 1.8340
SDAPE 0.0316 0.0437 0.0442 0.0570 0.1154 0.0526 0.0471 0.2008

Note:*, **, and *** indicate that D.M. statistics are significant at the 10%, 5%, and 1% levels, respectively; DJANET is the benchmark in the D.M. test; boldface

represents the optimal value under different evaluation criteria; the following tables are the same.

TaBLE 4: Results of the prediction models (loss function = “MAE”)

True value DJANET DGRU DLSTM DRNN SVR MLP RF VAR

9/2017 112.89 114.51% 109.59 118.56 115.36 108.56 116.97 117.694 121.44
10/2017 107.45 106.21 107.89% 113.95 112.15 106.05 113.28 112.76 115.04
11/2017 104.42 105.73 105.31 110.77 108.05 101.11 106.83 109.22 112.30
12/2017 100.40 100.97% 102.42 107.45 105.83 97.19 105.64 105.71 111.58
1/2018 94.71 94.03 98.69 101.68 100.32 94.72* 101.68 100.51 106.28
2/2018 96.52 95.70% 103.21 106.88 103.22 99.78 98.77 111.14 103.21
3/2018 109.66 104.35 111.59 116.20 111.28 110.32% 110.56 112.88 114.01
4/2018 112.47 112.63% 118.29 123.56 116.87 117.08 115.34 124.02 116.36
5/2018 115.95 116.33* 110.80 113.83 110.56 113.03 117.52 111.91 122.35
6/2018 123.95 122.61 117.84 121.34 118.13 117.28 124.91% 116.67 131.73
7/2018 122.95 124.95% 117.51 119.97 117.96 117.32 127.17 117.46 131.63
8/2018 117.78 116.48* 113.22 115.88 115.23 112.03 122.08 115.09 127.66
9/2018 115.94 117.47 112.53 113.81 113.92 109.91 121.54 116.97% 125.37
10/2018 117.09 115.53 113.99 113.60 113.21 110.01 116.28% 123.65 122.99
11/2018 132.20 130.91% 125.84 130.23 125.76 124.81 130.04 130.63 135.14
12/2018 151.47 150.50% 149.44 158.19 146.64 150.15 149.32 152.88 152.51
1/2019 150.14 151.70 150.50% 159.20 148.31 148.73 147.88 149.66 154.39

TaBLE 5: Results of the different lengths of time steps (loss function = “SDAPE”)
DGRNN

DJANET DGRU DLSTM DRNN

5 0.0467 0.0593 0.0949 0.1176
20 0.0738 0.1313 0.1321 0.1400
60 0.0783 0.1005 0.1019 0.1105
120 0.0856 0.0836 0.0977 0.1155
180 0.0719 0.0894 0.0925 0.0976

used to predict the credit spreads of the next day. We find
that the prediction effect of the same model and the value of
look_back show W-type characteristics. All models perform
best when look_back = 5, indicating that the historical data
of the previous five trading days already contain enough
information. Too few trading days result in insufficient
information, while too many bring extra noise. Therefore, we
set the look_back parameter to 5 in the subsequent analysis.
The prediction results with the parameter combination
[epochs, look_back] as [100, 5] are shown in Tables 3 and 4.

As can be seen from Table 3, all D. M. test results reject
the null hypothesis, indicating that the predictive power of
these models is significantly different. Depth-gated recurrent
neural networks (DJANET/DGRU/DLSTM) are superior to
nongated deep recurrent neural networks (DENN), such as
the traditional machine learning models (SVR/MLP/RF) and

linear prediction model (VAR), in credit spread prediction
of U.S. bond market in terms of accuracy and stability.
Furthermore, the RSR value of the DGRNN model is less
than 0.6, suggesting that the DGRNN model also performs
better in absolute dimensions according to the classifi-
cation standard of RSR metric value by Moriasi et al. [37].
Besides, D.M. test results also show that the null hy-
pothesis is rejected at least at the significance level of 10%,
indicating that the predictive power of the DJANET model
is significantly different from that of the other models. In
the deep learning model with the gated unit mechanism,
the DJANET model with one gated unit performs better
than the DGRU and DLSTM models, which have more
gated units. Furthermore, the DGRU model with two gated
units is better than the DLSTM model with three gated
units.
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TaBLE 6: Impact of SAM on prediction results

SAM-DJANET DJANET SAM-DGRU DGRU SAM-DLSTM DLSTM
MAE 2.8122 5.6770 3.2107 7.7149 5.8179 8.4230
DM 2.7254*** 3.2561%** 2.2883**
MAPE 0.0215 0.479 0.0275 0.0635 0.0502 0.0728
DM 3.1083*** 4.1697*** 2.1168**
RSR 0.3009 0.4198 0.3733 0.5549 0.4311 0.5995
SDAPE 0.0219 0.0316 0.0260 0.0437 0.0322 0.0442
Time (s) 389.65 306.24 494.68 391.04 574.88 471.60
bp
180
170
160
150
140
130
120 :
110
100
90
80
70 1 1 1 1 1
2017/09/05 2017/12/05 2018/03/05 2018/06/05 2018/09/05 2018/12/05
—— True Value —— SAM-DJANET
—— SAM-DGRU DJANET
SAM-DLSTM —— DGRU
—— DLSTM

Figure 7: Comparison of DGRNN prediction curves on the prediction set.

As shown in Table 4, in 366 trading days (17 months),
there are nine best-predicted values (the value with “#” in the
table, the deviation of them from their actual values is the
smallest) in the DJANET model and 12 best-predicted values
in DGRNN model, accounting for 70.59% of the total values,
showing that DGRNN model has a better prediction effect.

We compared the performance of models DJANET,
DGRU, DLSTM, and DRNN at different lengths of time
steps in Table 5, where SDAPE (standard deviation of mean
absolute percentage error) is used to evaluate the prediction
stability. The smaller the SDAPE value is, the better the
prediction stability will be. As we can see, the values of
DJANET are larger when the lengths of time steps are from 5
to 120 in Table 5. However, the value of DJANET is lower
when the length of time steps is 180. DJANET has only a
forget gate and chronologically initializes bias terms. The
short-term prediction is effective and relatively loses the
long-term information content. Credit spreads are cyclical,
so the results will be similar to those in the short term when
the ultralong term is 180 days. At the same time, there are
different performances on DGRU and DLSTM. For example,
the values of DGRU are lower when the lengths of time steps

are from 20 to 120, and the values of DLSTM are lower when
the lengths of time steps are from 20 to 180. DGRU is a
variant of DLSTM, and their performance is equal in many
tasks. DLSTM can learn the characteristics of long-term
trend series, so its prediction efficiency is improved with the
increase in time length. We discover that no matter how
much the length of time steps is, the Depth-JANET model
with one gated unit performs better than Depth-GRU and
Depth-LSTM models, which have more gated units. How-
ever, as the length of time steps increases, the prediction
accuracy will decrease.

5.3. Effectiveness of SAM. Table 6 reports the predicted
performance of the depth-gated recurrent neural network
with SAM. It can be seen from Table 6 that the four eval-
uation indicators of the SAM-DGRNN model are all smaller
than the DGRNN model, and the D. M. test results also show
that the null hypothesis is rejected at least at the significance
level of 5%, indicating that depth-gated recurrent neural
network with SAM performs better than the models without
the mechanism. It also suggests that SAM can improve the
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TaBLE 7: Prediction performance of DGRNN models (train_ratio =0.75).
SAM-DJANET DJANET SAM-DGRU DGRU SAM-DLSTM DLSTM
MAE 3.031 6.202 3.924 7.747 7.056 10.560
DM 2.977*%* 2.635%** 2.472%*
MAPE 0.026 0.058 0.032 0.067 0.063 0.086
DM 3.063*"* 2.894*** 2.117**

RSR 0.311 0.452 0.380 0.602 0.477 0.790
SDAPE 0.022 0.032 0.025 0.046 0.034 0.053
TaBLE 8: Prediction performance of DGRNN models (sample =[2015, 2018]).

SAM-DJANET DJANET SAM-DGRU DGRU SAM-DLSTM DLSTM
MAE 2.949 5.942 3.645 7.814 6.879 9.329
DM 2.819%** 3.108*** 2.066**
MAPE 0.024 0.057 0.030 0.070 0.061 0.079
DM 3.326%"* 2.934*** 1.947%*
RSR 0.307 0.451 0.378 0.632 0.468 0.706
SDAPE 0.022 0.031 0.026 0.046 0.033 0.051

performance of depth-gated recurrent neural network in
predicting credit spreads.

Figure 7 further shows the fitting curve of the DGRNN
model on the prediction set in the U.S. credit spread. It can
be seen that the SAM-DJANET curve fits best.

Li believed that simply assigning statistical data to
random without testing its certainty and randomness will
lead to large deviations between the predicted results and the
actual values [38]. In other words, the prediction outcome
and accuracy are largely dependent on a reasonable pre-
diction model and the randomness of the original data of the
predicted variable. If the original data exhibits a certain
logical change and is less random, adopting an appropriate
prediction model will inevitably improve prediction per-
formance and have higher accuracy. Therefore, following the
method in Tang et al. [39], this paper applies the Ljung-Box
statistic to conduct a random independence test on the
original credit spread data. The test results show that its
Ljung-Box statistic value is 3519.1, and the p-value is 0.00,
and the original hypothesis is rejected at a 1% significant
level. The results indicate that the original data are not
randomly independent, laying a statistical foundation for
exploring the best fitting model. The proper models can be
extrapolated extensively, and prediction results in the test set
should be very close to the actual real value. What is more,
these models can extract the original data information.
Furthermore, their residual sequences are white noise se-
quences, which meet random independence.

To further test the prediction extrapolation ability of the
model, we perform a Ljung-Box test on the residual se-
quence of the prediction set in the SAM-DJANET model.
The Ljung-Box statistic value is 3.07, and the p-value is 0.19,
indicating that the null hypothesis cannot be rejected even at
the 10% significance level. The results suggest that the re-
sidual sequence is a white noise sequence, confirming that
depth-gated recurrent neural network with self-attention
mechanism (SAM-DGRNN) has good predictive extrapo-
lation ability and rationality.

5.4. Robustness Test. This paper conducts a robustness test
from the following two aspects: (1) setting the cutting point
of the training set and prediction set to 3:1, and the results
are shown in Table 7; (2) shortening the sample interval to
2015-2018 and the results are shown in Table 8. According to
the evidence in Tables 7 and 8, the empirical results of this
paper are robust.

6. Conclusions

Traditional prediction data and technologies are insufficient
to forecast the credit spread accurately, particularly when
using big data. Considering the nonlinear changes in credit
spreads, this paper introduces a deep learning algorithm to
build depth-gated recurrent neural network with a self-at-
tention mechanism. Additionally, it compares various
prediction methods. We choose multiple evaluation indi-
cators and randomness tests for predicted variables’ original
data to conduct a comparative analysis. The conclusions are
as follows.

First, traditional intelligent algorithms such as machine
learning and deep learning can capture nonlinear rela-
tionships better than linear algorithms. The prediction re-
sults of credit spread prediction indicate that deep learning
models (LSTM, GRU, and JANET) and traditional machine
learning models (SVR, MLP, and RFR) are better than the
VAR model. Second, deep learning models with gated unit
mechanisms are extremely advantageous in mining the long-
term dependence of sequence data. The results show that the
deep learning models with gated unit mechanisms have
better prediction accuracy and higher stability than those
without gated. Third, when predicting credit spreads,
JANET, the latest deep learning model that has only one
gated unit, excels in prediction efficiency, accuracy, and
stability compared with the earlier models, which have more
gated units, such as LSTM and GRU. GRU model with two
gated units is superior to the LSTM model with three gating
units. Fourth, deep learning models with SAM can efficiently



Mathematical Problems in Engineering

filter out critical information to the current task. The pre-
diction of the credit spreads in the U.S. bond market shows
that the deep learning model based on the attention
mechanism has better prediction performance than that
without the mechanism.

In summary, by comparing each model’s prediction
results and robustness tests through statistical performance
indicators, we confirm that depth-gated recurrent neural
network (DGRNN) is an effective prediction method for the
U.S. bond credit spread. SAM-DGRNN model can further
improve prediction performance. Among the three gated
recurrent neural network models, the SAM-DJANET has the
highest prediction accuracy, stability, and efliciency. The
prediction results can provide a reference for the decision-
making of market participants and regulatory authorities in
the U.S. bond market.

However, we consider some factors that may affect the
credit spread, and there may be other influencing factors. So,
we can explore adding more relevant variables to improve
the forecasting effect. We can further find a more accurate
model in a certain type of credit spread according to the
maturity, rating, and industry. In addition, these principles
and forecasting methods can extend to the relevant problems
of financial time series.
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