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In the present research, modern fuzzy technique is used to generalize some conventional and latest results. Te objective of this
paper is to construct and prove some fxed-point results in complete fuzzy strong b-metric space. Fuzzy strong b-metric (sb-
metric) spaces have very useful properties such as openness of open balls whereas it is not held in general for b-metric and fuzzy
b-metric spaces. Due to its properties, we have worked in these spaces. In this way, we have generalized some well-known fxed-
point theorems in fuzzy version. In addition, some interesting examples are constructed to illustrate our results.

1. Introduction

In pure mathematics, the theory of fxed points is the most
dynamic and active area of research. Te theory of fxed
points has already been revealed as a great and signifcant
weapon for studying nonlinear analysis. In literature, we
observe that many scholars put their eforts in this feld of
research; for instance, see [1–8] and references therein.

In 1965, Zadeh [9] introduced a very beautiful idea,
which is a tool that makes possible the description of
vagueness, imprecision, and manipulations with their no-
tions. Fuzzy set theory is very interesting andmore benefcial
than classic set theory. Tat is why it gained much attention
of researchers and scholars. So, these techniques are applied
in diverse felds of engineering, fractals, image processing,
navigation, and many other felds of science. For example,
fuzzy fxed-point theory [6–8], fuzzy group theory [10],
fuzzy ring theory [11, 12], fuzzy feld [13], and fuzzy dif-
ferential equations (see reference in these mentioned papers,
for more detail).

In 1975, Kramosil and Michalek [14] introduced fuzzy
metric space which is a generalization of probabilistic metric
space; later on, George and Veeramani [15] introduced the

notion of a fuzzy metric space. Tis work lays a solid
foundation for the expansion of fxed-point theory in fuzzy
metric space. Ten, Grabiec [16] explained the completeness
of the fuzzy metric space, and the Banach contraction
theorem was extended to complete fuzzy metric spaces. Fang
[17] further sets some latest fxed-point theorems for con-
tractive-type mappings in G-complete fuzzy metric space by
following Grabiec’s work. Along with fuzzy metric spaces,
some more extensions of metric and metric space terms are
existed.

In 1989, Bakhtin [18] instigates a space in which a weaker
condition was observed instead of the triangle inequality,
with the goal of generalizing the Banach contraction prin-
ciple [19] and extensively used by Czerwic [20]. Tey called
these spaces b-metric spaces. Te topology persuade by a
b-metric contains few “unpleasant” functions. For example,
open balls may not be open, closed balls may not be closed,
and a b-metric may not be continuous as a mapping in the
induced topology. In 2019, in the middle of the classes of
b-metric spaces and metric spaces, Kirk and Shahzad [21]
instigate the class of strong b-metric spaces by using the
inequality d(a1, a2)≤ d(a1, a3) + sd(a3, a2) for all
a1, a2, a3 ∈ Ω and s≥ 1.
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Strong b-metric space has the advantage over b-metric
spaces that, in the induced topology, open balls are open, so
they stake a number of characteristics that are the same to
those of classic metric space. Recently, in 2019, Oner and
Sostak [22] have introduced the defnition and properties of
strong fuzzy b-metric space. Tus, the class of fuzzy sb-
metric spaces lies between fuzzy metric spaces and fuzzy
b-metric spaces. As expected, fuzzy sb-metric spaces have
useful properties similar to metric and fuzzy metric spaces
such as openness of open balls whereas it is not held in
general for b-metric and fuzzy b-metric spaces. Te aim of
the present paper is to go further in the research of fuzzy sb-
metric spaces. Interesting examples are also presented to
support our results.

2. Preliminaries

In this section, some pertinent concepts are presented from
the existing literature. Tese concepts will be helpful to
understand the results which are established in the present
research.

Defnition 1 (see [9]). Consider Ω be a nonempty set. A
fuzzy set in Ω is a function with domain Ω and values in
[0, 1], i.e., B is a fuzzy set if B: Ω⟶ [0, 1] is a function. If B

is a fuzzy set and a ∈ Ω, then the functional value B(a) is
called the grade of membership of a in B.

Defnition 2 (see [3]). A mapping G from [0, 1] × [0, 1] to
[0, 1] is called continuous triangular norm (t-norm) or a
conjunction if it satisfes

(1) Symmetry: G(a, b) � G(b, a), for a, b ∈ [0, 1]

(2) Monotonicity: G(a1, b1)≤G(a2, b2) whenever
a1 ≤ a2 and b1 ≤ b2

(3) Associativity: G(G(a, b), c) � G(a, G(b, c)), where
a, b, c, ∈ [0, 1]

(4) Boundary condition: G(1, a) � a, for all a ∈ [0, 1]

Te following are three basic t-norms.

Example 1. Tree basic t-norms are defned as below:

(1) Te minimum triangular norm: G(a1, a2) �

min(a1, a2)

(2) Te product triangular norm: G(a1, a2) � a1a2

(3) Te Lukasiewicz triangular norm: G(a1, a2) �

max(a1 + a2 − 1, 0).

Defnition 3 (see [14]). If Ω is an arbitrary set, ∗ is t-norm
andM is a fuzzy set inΩ ×Ω × [0,∞) such that ∀a, b, c ∈ Ω;
then, triple (Ω, M, ∗ ) is known to be fuzzy metric space if it
hold following axioms:

(M1)M(a, b, 0) � 0
(M2)M(a, b, u) � 1, ∀u> 0 iffa � b

(M3)M(a, b, u) � M(b, a, u), ∀u> 0

(M4)M(a, c, u + v)≥M(a, b, u)∗M(b, c, v), ∀a, b, c

∈ Ω, ∀u, v≥ 0
(M5)M(a, b, .): R+ ∪ 0{ }⟶ [0, 1] is left continuous

Example 2. Let M: Ω ×Ω × R+ ∪ 0{ }⟶ [0, 1], and defne
M by

M(η, λ, u) �
min η, c􏼈 􏼉 + u

max η, c􏼈 􏼉 + u

∀ η, λ ∈ Ω and u≥ 0 is a fuzzymetric.

(1)

Defnition 4 (see [22]). Let Ω be an arbitrary nonempty set,
s≥ 1 be arbitrary real number, and ∗ be a t-norm. M is a
fuzzy set inΩ ×Ω × [0,∞); it is known as fuzzy sb-metric if
∀a, b, c ∈ Ω; the following axioms satisfed

(sbM1)M(a, b, 0) � 0
(sbM2) M(a, b, u) � 1 iff a � b

(sbM3) M(a, b, u) � M(b, a, u), u≥ 0
(sbM4)

M(a, c, u + s.k)≥M(a, b, u)∗M(b, c, k), u, k≥ 0
(sbM5) M(a, b, .): R+ ∪ 0{ }⟶ [0, 1] is left
continuous

Te quadruple (Ω, M, ∗ , s) is known as fuzzy sb-metric
space.

Remark 1. Consider (Ω, M, ∗ , s) be a fuzzy sb-metric
space.

(1) Let (bn) be a sequence in Ω. (bn) is said to be con-
vergent and converges to b ∈ Ω if lim

n⟶∞
M(bn, b, k) �

1 for each k> 0.
(2) Te sequence (an) is said to be a Cauchy sequence if,

for any 0< ∈< 1 and for each u > 0, there exists a
natural number n0 such thatM(an, am, u) >1- ∈ for all
natural numbers n, m≥ n0

(3) A fuzzy sb-metric space in which every Cauchy
sequence is convergent is called complete.

Defnition 5 (see [19]). Let Ω � (Ω, d) be a metric space. A
mapping G: Ω⟶Ω is known as Banach contraction on G

if there is a positive real number 0< α< 1 such that
∀a, b ∈ Ω:

d(Ga, Gb)≤ αd(a, b). (2)

Defnition 6 (see [23]). Let (Ω, d) be a metric space and
G: Ω⟶Ω be a mapping if ∃ α ∈ (0, 1/2) such that, for all
a1, a2 ∈ Ω, we have

d Ga1, Ga2( 􏼁≤ α d a1, Ga1( 􏼁 + d a2, Ga2( 􏼁􏼈 􏼉. (3)

Ten, G is known as Kannan contraction.
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Defnition 7 (see [24]). Let (Ω, d) be a metric space and
G: Ω⟶Ω be a mapping if there exist α ∈ (0, 1/2) such
that, for all a1, a2 ∈ Ω, we have

d Ga1, Ga2( 􏼁≤ α d a1, Ga2( 􏼁 + d a2, Ga1( 􏼁􏼈 􏼉. (4)

Ten, G is known as Chatterjee contraction.

3. Fixed Points in Fuzzy Sb-Metric Spaces

In this section, we have established and proved some im-
portant results which ensure the existence and uniqueness of
fxed points in fuzzy sb-metric spaces for single-valued
continuous and discontinuous mappings. Examples are also
created to give the strength of these results.

Example 3. Let (Ω, d, s) be sb-metric space. Let
M: Ω ×Ω × [0,∞)⟶ [0, 1]:

M ω1,ω2, η( 􏼁 �
e

− d ω1 ,ω2( )/η( ) if η> 0,

0 if η � 0.

⎧⎨

⎩ (5)

Ten, (Ω, M,∧, s) is fuzzy strong b-metric space, where ˄
is minimum t-norm.

Solution 1. We will just check (sbM4) because the rest are
trivial.

For this, let ω1,ω2,ω3 ∈ Ω and η, k≥ 0; without
restraining the generality, we assume that
M(ω1,ω2, η)≤M(ω2,ω3, k). Tus e− (d(ω1 ,ω2)/η) ≤ e− (d(ω2 ,

ω3)/k).
Tis implies − (d(ω1,ω2)/η)≤ − ((dω2,ω3)/k),
⇒d(ω2,ω3)/k≤ d(ω1,ω2)/η, Or η d(ω2,ω3)≤ k d(ω1,ω2).

On the contrary,

M ω1,ω3, η + s.k( 􏼁 � e
− d ω1 ,ω3( )/η+s.k( )

≤ e
− d ω1 ,ω2( )+sd ω2 ,ω3( ) /η+s.k( ).

(6)

Now, we will show that e (d(ω1 ,ω2)+sd(ω2 ,ω3) /η+s.k) ≥
e− (d(ω1 ,ω2)/η).

Hence, we will obtain that M(ω1,ω3, η + s.k)≥
M(ω1,ω2, η) � M(ω1,ω2, η)∧M(ω2,ω3, k).

We remark that

e
− d ω1 ,ω2( )+sd ω2 ,ω3( ) /η+s.k( ) ≥ e

− d ω1 ,ω2( )/η( ),

⇒
d ω1,ω2( 􏼁

η
≥

d ω1,ω2( 􏼁 + sd ω2,ω3( 􏼁

η + s.k
,

⇔(η + s.k)d ω1,ω2( 􏼁≥ η d ω1,ω2( 􏼁 + sd ω2,ω3( 􏼁( 􏼁,

⇔kd ω1,ω2( 􏼁≥ ηd ω2,ω3( 􏼁,

(7)

which is true.

Example 4. Consider (Ω, d, t) be sb-metric space.
Let Md: Ω∗Ω∗ [0,∞)⟶ [0, 1], Md(a1, a2, t) �

t/t + d(a1, a2) if t> 0
0 if t � 0.

􏼨

Ten, (Ω, Md,∧, s) is a fuzzy sb-metric space, where ∧ is
minimum t-norm.

Theorem 1. Suppose (Ω, M, ∗, s) be a complete fuzzy sb-
metric space, ∗ be a continuous t-norm, M(a, b, u) be strictly
increasing in variable u, and

lim
u⟶∞

M(a, b, u) � 1, ∀a, b ∈ Ω. (8)

Let G: Ω⟶Ω be a mapping satisfying M(Ga,

Gb, ku)≥M(a, b, u), for all a, b ∈ Ω, where 0< k< 1. Ten,
there exist a unique fxed point of G

Proof. Consider a0 ∈ X be any arbitrary element and let an

be a sequence in Ω so that

an � Gan− 1

� G
n
a0(n ∈ N).

(9)

Now,

M an, an+1, ku( 􏼁 � M G
n
a0, G

n+1
a0, ku􏼐 􏼑≥M G

n− 1
a0, G

n
a0, u􏼐 􏼑

� M an− 1, an, u( 􏼁

� M G
n− 1

a0, G
n
a0, u􏼐 􏼑

� M G
n− 1

a0, G
n
a0, u􏼐 􏼑≥M G

n− 2
a0, G

n− 1
a0,

u

k
􏼒 􏼓

� M an− 2, an− 1, u/k( 􏼁 · · · ≥M a0, a1,
u

k
n− 1􏼠 􏼡

So, M an, an+1, ku( 􏼁≥M a0, a1,
u

k
n− 1􏼠 􏼡.

(10)

For every n ∈ N and u≥ 0 and thus for any integer p> 0,
by using (sbM4), we obtain
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M an, an+p, u􏼐 􏼑≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+p,

u

2s
􏼒 􏼓

≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+2,

u

4s
􏼒 􏼓∗M an+2, an+p,

u

4s
2􏼠 􏼡

≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+2,

u

4s
􏼒 􏼓∗M an+2, an+3,

u

8s
2􏼠 􏼡∗M an+3, an+p,

u

8s
3􏼠 􏼡

≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+2,

u

4s
􏼒 􏼓∗M an+2, an+3,

u

8s
2􏼠 􏼡∗M an+3, an+4,

u

8s
3􏼠 􏼡

∗ · · · ∗M an+p− 1, an+p,
u

2p− 1
s

p− 1􏼠 􏼡.

(11)

Using (10), we have

M an, an+p, u􏼐 􏼑≥M a0, a1,
u

2k
n􏼒 􏼓∗M a0, a1,

u

22kn+1􏼠 􏼡∗ . . . ∗M a0, a1,
u

2p− 1
s

p− 1
k

n+p− 1􏼠 􏼡. (12)

As n⟶∞ kn⟶ 0, this implies that u/2kn⟶ ∞, so
by using (8), we have M(an, an+p, , u)≥ 1∗ 1∗ 1 . . . ∗ 1 (p
times). Tis implies that M(an, an+p, , u)≥ 1; this gives that

an is a Cauchy sequence. GivenΩ is complete so, there exist a
point b in Ω such that lim

n⟶∞
an � b.

Now, using (sbM4),

M(b, Gb, u)≥M b, an+1,
u

2
􏼒 􏼓∗M an+1, Gb,

u

2s
􏼒 􏼓≥M b, an+1,

u

2
􏼒 􏼓∗M Gan, Gb,

u

2s
􏼒 􏼓,

M(b, Gb, u)≥M b, an+1,
u

2
􏼒 􏼓∗M an, b,

u

2sk
􏼒 􏼓.

(13)

In limiting case, when n⟶∞, we have

M(b, Gb, u)≥M b, b,
u

2
􏼒 􏼓∗M b, b,

u

2sk
􏼒 􏼓 � 1∗ 1, (14)

which implies M(b, Gb, u)≥ 1. So, Gb � b.
Uniqueness: let b, b∗ be two fxed points of mapping G;

then, Gb � b and Gb∗ � b∗.
M(Gb, b, u) � 1 and M(Gb∗, b∗, u) � 1.
Now, M(b, b∗, u) � M(Gb, Gb∗, u)≥M(b, b∗, u/k),

which is a contradiction to the fact that M(a, b, u) is strictly
increasing in variable u. So, b � b∗ □

Example 5. Let Ω � [0, 1] ⊂ R and M: Ω ×Ω × [0,∞)

⟶ [0, 1] be defned as

M(x, y, η) �

η
η +|x − y|

if η> 0,

0 if η � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

Let G: Ω⟶Ω be defned by Gx � x/6 and k � 1/3, and
∗ is minimum t-norm.

We have M(Gx, Gy, kη) � η/3/η/3+ |Gx − Gy| � η/3/η/
3 + |x − y/6| � η/η + |x − y|/2≥ η/η + |x − y|≥ η/η + |x − y|

� M(x, y, η).
Tis implies M(Gx, Gy, kη)≥M(x, y, η). So, G contains

a unique fxed point.

Corollary 1. Consider a complete fuzzy metric space
(Ω, M, ∗ ), ∗ be a continuous t-norm, and M(a, b, u) is
strictly increasing in variable u and lim

u⟶∞
M(a, b, u)

� 1, ∀a, b ∈ Ω.
Let G: Ω⟶Ω be a mapping satisfying

M(Ga, Gb, ku)≥M(a, b, u), for all a, b ∈ Ω, where 0< k< 1.
Ten, there exists a unique fxed point of G.

Theorem  . Let (Ω, M, ∗, s) be a complete fuzzy sb-metric
space, where ∗ is a continuous t-norm, defned as
∗ � min x1, x2􏼈 􏼉, and M(a, b, u) is strictly increasing in
variable u and

lim
u⟶∞

M(a, b, u) � 1, ∀a, b ∈ Ω. (16)
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Let G: Ω⟶Ω be a self-mapping which satisfes the
given axioms ∀a, b ∈ Ω:

M(Ga, Gb, ku)≥M(a, Ga, u)∗M(b, Gb, u), (17)

where u≥ 0 and 0< k< 1. Ten, there will be a unique fxed
point of G.

Proof. Consider ao ∈ Ω; then, Gao ∈ Ω. Let a1 ∈ Ω such that
a1 � Ga0.

By induction, we fnd a sequence an � Gan− 1, in Ω.
Now, M(an, an+1, ku) � M(Gan− 1, Gan, ku)≥M(an− 1,

Gan− 1, u)∗M(an, Gan, u)≥M(an− 1, an, u)∗M(an, an+1, u)

Since M(a, b, u) is strictly increasing in variable u and
ku< u, so, we cannot write

M an, an+1, ku( 􏼁≥M an, an+1, u( 􏼁. (18)

Terefore, M(an, an+1, ku)≥M(an− 1, an, u)

� M(Gan− 2, Gan− 1, u):

≥M an− 2, Gan− 2, u/k( 􏼁∗M an− 1, Gan− 1, u/k( 􏼁

≥M an− 2, an− 1, u/k( 􏼁∗M an− 1, an, u/k( 􏼁≥M an− 2, an− 1, u/k( 􏼁

· · ·≥M a0, a1,
u

k
n− 1􏼠 􏼡,

M an, an+1, ku( 􏼁≥M ao, a1,
u

k
n− 1􏼠 􏼡.

(19)

Now, let p be a positive integer, and using (sbM4), we
have

M an, an+p, u􏼐 􏼑≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+p,

u

2s
􏼒 􏼓

≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+2,

u

4s
􏼒 􏼓∗M an+2,an+p,

u

4s
2􏼠 􏼡

≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+2,

u

4s
􏼒 􏼓∗M an+2,an+3,

u

8s
2􏼠 􏼡

∗M an+3, an+4,
u

8s
3􏼠 􏼡∗ ...∗M an+p− 1, an+p,

u

2p− 1
s

p− 1
k

n+p− 1􏼠 􏼡.

(20)

By using inequality (19), we have

M an, an+p, u􏼐 􏼑≥M ao,a1,
u

2k
n􏼒 􏼓∗M ao,a1,

u

22skn+1􏼠 􏼡∗ ...∗M ao,a1,
u

2p
s

p− 1
k

n+p− 1􏼠 􏼡. (21)

Since 0< k< 1, so when n⟶∞, kn⟶ 0. So,
lim

n⟶∞
M( ao, an+p, u)≥ 1∗ 1∗ 1∗ ... � 1, which implies an is

a Cauchy sequence inΩ. GivenΩ is complete, so, there exist

b in Ω such that lim
n⟶∞

an � b. Now, using contractive
condition,

M Gan, Gb, ku( 􏼁≥M an, Gan, u( 􏼁∗M(b, Gb, u)≥M an, an+1, u( 􏼁∗M(b, Gb, u) (22)

In a limiting case, n⟶∞:
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M(b, Gb, ku)≥M(b, b, u)∗M(b, Gb, u) � 1∗M(b, Gb, u),

M(b, Gb, ku)≥M(b, Gb, u),

(23)

which is a contraction to the supposition that M(a, b, u) is
strictly increasing in variable u.

Hence, Gb � b. So, b is a fxed point of G.
Uniqueness: consider two fxed point b and b∗ of G. So,

Gb� b and Gb∗� b∗.
Now, M(b, b∗, u) � M(Gb, Gb∗, u)≥M(b, Gb, u/k)

∗M(b∗, Gb∗, u/k)≥ 1∗ 1:

M b, b
∗
, u( 􏼁≥ 1⇒b � b

∗
. (24)

□

Example 6. Let Ω � [0, 1] ⊂ R and G: Ω ×Ω× [0,∞)⟶
[0, 1] be defned as

M(x, y, η) �

η
η +|x − y|

if η> 0,

0 if η � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

Let G: Ω⟶Ω be defned by Gx � x/30 and k � 2/3,
and ∗ is minimum t-norm.Without losing generality, we let
x>y and M(x, Gx, η)∗M(y, Gy, η) � M(x, Gx, η). Ten,
we have to prove that M(Gx, Gx, kη)≥M(x, Gx, η).

Now, as x, y ∈ [0, 1], we have |x − y/30|≤ |x + y/30| �

1/3|3x/30 + 3y/30| ≤ 1/3|29x/30 + 29y/30| ≤ 1/3(|29x/30|

+ |29y/30|).
Tis implies

3
x − y

30

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤
29x

30

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
29y

30

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⇔(2)

3
2

x − y

30

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤
29x

30

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
29y

30

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (26)

Using result of analysis, if a, b, c> 0 and 2a≤ b + c, then
a≤max b, c{ }.

So, 1/3|x − y/30|≤ |29x/30|. As t> 0, we can write as η +

3/2|x − y/30|≤ η + |29x/ 30|⇒η/η + 3/ 2|x − y/30|≤ η/η+

|x − y/30|⇔M(Gx, Gy, 2/3η)≥M(x, Gx, η) � M(x, Gx, η)

∗M(y, Gy, η).
So, by the above theorem, G has a unique fxed point in
Ω.

Corollary  . Consider a complete fuzzy metric space
(Ω, M, ∗ ), where ∗ is a continuous t-norm, given by
x1 ∗x2 � min x1, x2􏼈 􏼉 and M(a, b, u) is strictly increasing in
variable u and

lim
u⟶∞

M(a, b, u) � 1, ∀a, b ∈ Ω. (27)

Let G: Ω⟶Ω be a self-mapping which satisfes the
given condition ∀a, b ∈ Ω:

M(Ga, Gb, ku)≥M(a, Ga, u)∗M(b, Gb, u), (28)

where u≥ 0 and 0< k< 1. Ten, there will be a unique fxed
point of G.

Theorem 3. Consider a complete fuzzy metric space
(Ω, M, ∗, s), where ∗ is a t-norm, given by ∗ � min x1, x2􏼈 􏼉

and M(a, b, u) is strictly increasing in variable u and
lim

u⟶∞
M(a, b, u) � 1, ∀a, b ∈ Ω. Let G: Ω⟶Ω be a self-

mapping, satisfying the given condition ∀a, b ∈ Ω:

M(Ga, Gb, ku)≥M(a, Gb, u)∗M(b, Ga, u) (29)

where u≥ 0 and 0< k< 1/2s. Ten, there exists a unique fxed
point of G.

Proof. Consider ao ∈ Ω; then, Gao ∈ Ω. Let a1 ∈ Ω such that
a1 � Ga0.

By induction, we fnd a sequence an � Gan− 1.
M(x, Gx, η)∗M(y, Gy, η) in Ω.

Now, M(an, an+1, ku) � M(Gan− 1, Gan, ku)≥M(an− 1,

Gan, u)∗ M(an, Gan− 1, u)≥M(an− 1, an+1, u)∗M(an, an, u).
Since M(an, an, u) � 1, so, M(an, an+1, ku)≥M(an− 1,

an+1, u).
By using triangular inequality of fuzzy sb-metric space,

we have

M an, an+1, ku( 􏼁≥M an− 1, an,
u

2
􏼒 􏼓∗M an, an+1,

u

2s
􏼒 􏼓. (30)

Since M(a, b, .) is strictly increasing in variable u and
ku< u/2s, so, we cannot write

M an, an+1, ku( 􏼁≥M an, an+1,
u

2s
􏼒 􏼓. (31)

Terefore,

M an, an+1, ku( 􏼁≥M an− 1, an,
u

2
􏼒 􏼓 � M Gan− 2, Gan− 1,

u

2
􏼒 􏼓

≥M an− 2, Gan− 1,
u

2k
􏼒 􏼓∗M an− 1, Gan− 2,

u

2k
􏼒 􏼓

� M an− 2, an,
u

2k
􏼒 􏼓∗M an− 1, an− 1,

u

2k
􏼒 􏼓.

(32)

Since M(an− 1, an− 1, u/2k) � 1, so, M(an, an+1, ku)≥
M(an− 2, an, u/2k).

Using (sbM4), we obtain

M an, an+1, ku( 􏼁≥M an− 2, an− 1,
u

4k
􏼒 􏼓∗M an− 1, an,

u

4sk
􏼒 􏼓.

(33)

As M(a, b, .) is an increasing function in variable u, so,
we can only write

M an, an+1, ku( 􏼁≥M an− 2, an− 1,
u

4k
􏼒 􏼓

� M Gan− 3, Gan− 2,
u

4k
􏼒 􏼓.

(34)
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Using (29), we can write

M an, an+1, ku( 􏼁≥M an− 2, Gan− 3,
u

4k
2􏼠 􏼡∗M an− 3, Gan− 2,

u

4k
2􏼠 􏼡

≥M an− 2, an− 2,
u

4k
2􏼠 􏼡∗M an− 3, an− 1,

u

4k
2􏼠 􏼡 � 1∗M an− 3, an− 1,

u

4k
2􏼠 􏼡.

(35)

So, M(an, an+1, ku)≥M(an− 3, an− 1, u/4k2).
Using (sbM4), we can write

M an, an+1, ku( 􏼁≥M≥ an− 3, an− 2,
u

8k
2􏼠 􏼡∗M an− 2, an− 1,

u

8sk
2􏼠 􏼡. (36)

Only possibility is M(an, an+1, ku)≥M(an− 3, an− 2,

u/8k2).
Continuing this process, we have

M an, an+1, ku( 􏼁≥M ao, a1,
u

2n
k

n− 1􏼠 􏼡. (37)

Now, let p be a positive integer and by using (sbM4); we
have

M an, an+p, u􏼐 􏼑≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+p,

u

2s
􏼒 􏼓

≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+2,

u

4s
􏼒 􏼓∗M an+2, an+p,

u

4s
2􏼠 􏼡

≥M an, an+1,
u

2
􏼒 􏼓∗M an+1, an+2,

u

4s
􏼒 􏼓∗,

M an+2, an+3,
u

8s
2􏼠 􏼡∗M an+3, an+4,

u

8s
3􏼠 􏼡∗ · · · ∗M an+p− 1, an+p,

u

2p
s

p− 1􏼠 􏼡.

(38)

Using (37), we can write

M an, an+p, u􏼐 􏼑≥M ao, a1,
u

2n+1
k

n􏼠 􏼡∗M a0, a1,
u

2n+2
sk

n+1􏼠 􏼡∗ · · · ∗M ao, a1,
u

2n+p
s

p− 1
k

n+p− 1􏼠 􏼡. (39)

Since 0< k< 1 and n⟶∞ implies that
u/2n+1kn⟶∞, so, lim

n⟶∞
M(an, an+p, u)≥ 1∗ 1∗ · · · ∗

1 � 1, which implies an is a Cauchy sequence in Ω. Given Ω
is complete, so there exist b ∈ Ω such that lim

n⟶∞
an � b.

Now, by using contractive condition,

M Gan, Gb, ku( 􏼁≥M b, Gan, u( 􏼁∗M an, Gb, u( 􏼁

≥M b, an+1, u( 􏼁∗M an, Gb, u( 􏼁.
(40)

In a limiting case, as n⟶∞,

M(b, Gb, ku)≥M(b, b, u)∗M(b, Gb, u) � 1∗M(b, Gb, u).

(41)

M(b, Gb, ku)≥M(b, Gb, u) which is a contradiction, so,
b � Gb.

Uniqueness: let b and b∗ be two fxed points of G.
M(b, Gb, u) � 1 and M(b∗, Gb∗, u) � 1.
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Now, M(b, b∗, u) � M(Gb, Gb∗, u)≥M(b, Gb∗, u/k)

∗M(b∗, Gb, u/k)≥M(b, b∗, u/k)∗M(b∗, b, u/k), which
implies that M(b, b∗, u)≥M(b, b∗, u/k), which contradicts
the fact that M(a, b, .) is strictly increasing in variable. So,
b � b∗. □

Corollary 3. Consider a complete fuzzy metric (Ω, M, ∗ ),
where ∗ is a continuous t-norm, given by x1 ∗ x2 �

min x1, x2􏼈 􏼉, and M(a, b, u) is strictly increasing in variable u

and

lim
u⟶∞

M(a, b, u) � 1, ∀a, b ∈ Ω. (42)

Let G: Ω⟶Ω be a self-mapping which satisfes the
given condition, for all a, b ∈ Ω,

M(Ga, Gb, ku)≥M(a, Gb, u)∗M(b, Ga, u), (43)

where u≥ 0 and 0< k< 1/2. Ten, ∃ is a unique fxed point of
G.

4. Conclusion

Fixed-point techniques are very useful and attractive tools
for researchers. Tis theory has potential applications in
functional inclusions, optimization theory, fractal graphics,
discrete dynamics for set-valued operators, and other areas
of nonlinear functional analysis. Integral equations arise in
several problems in mathematical physics, control theory,
critical point theory for nonsmooth energy functionals,
diferentials, variational inequalities, fuzzy set arithmetic,
trafc theory, etc. Tese can be solved by fxed-point
methods.

Fuzzy strong b-metrics, called here by fuzzy sb-met-
rics, were introduced recently as a fuzzy version of strong
b-metrics. It was shown that open balls in fuzzy sb-metric
spaces are open in the induced topology (as diferent from
the case of fuzzy b-metric spaces), and thanks to this fact,
fuzzy sb-metrics have many useful properties common
with fuzzy metric spaces which generally may fail to be in
the case of fuzzy b-metric spaces. It is also shown that the
class of fuzzy sb-metric spaces lies strictly between the
classes of fuzzy metric and fuzzy b-metric spaces. Con-
cerning the further development of the research in the
area of fuzzy sb-metrics, we have vision of obtaining some
valuable fxed points of some contractive type mappings
such as Banach, Kannan, and Chatterjea in these spaces
and obtain some corollaries. Tis work will help re-
searchers in fnding the solutions of various type of
equations and inequalities. Moreover, our work will
motivate researchers to go ahead and establish common
fxed points and coincidence points in these spaces for two
or more mappings having contractive-type conditions in
future.
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