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Option pricing based on data-driven methods is a challenging task that has attracted much attention recently.  ere are mainly
two types of methods that have been widely used, respectively, the neural network method and the ensemble learningmethod. e
option pricing model based on the neural network has high complexity, and a large number of hyper-parameters will be generated
during training, resulting in di�cult model adjustment. Furthermore, a lot of training data are needed.  e option pricing model
based on ensemble learning is not ideal for data feature extraction, because each calculation of the ensemble learning method is
mainly to reduce the �nal residual. erefore, this paper adopts a learning framework that embeds the modular ensemble learning
methods into the network learning structure, and an option pricing model based on deep ensemble learning is proposed.  e
model is mainly composed of two parts: features reorganization based on random forest, used to calculate the importance of
features, combined with the original data as training input; the multilayer ensemble data training structure is based on network
learning structure and embeds two ensemble learning methods as network modules, and it also designs a stop algorithm to
automatically determine the number of layers.  is enables the model to retain the e�ect of data feature extraction and adapt to
small and medium data sets without generating many hyper-parameters. Moreover, in order to make the model fully absorb the
advantages of the two ensemble learning methods, we adopt cross-training for data. From the experimental results, it can be
concluded that compared with the current optimal method, the prediction performance of the proposed model is improved by
36% in the root mean square error (RMSE), which proves the superiority of the proposed model from the quantitative direction.

1. Introduction

Since the option as a stock derivative o�cially appeared in
the market, options have always been a hot topic in �nancial
markets. As a kind of stock derivative, options also have risk
similar to stocks, and in the process of trading may also face
huge losses.  us, how to reasonably avoid the risk has
become the early option market that has been plagued by
people’s problems. To solve this problem, the option pricing
model is proposed.

In 1973, Black and Schole [1] �rst proposed an option
pricing model, the Black–Schole model.  e Black–Schole
model is the �rst parametric model proposed to predict the
price of options based on strict conditional assumptions in
economics.  erefore, the model cannot perfectly �t the

changing �nancial market, and there is also a certain error
between the predicted value and the real value in the market.
So, scholars have made further research by relaxing the strict
economic assumptions in the model [2–4].

 e parameter model attempts to �nd some speci�c laws
from the option data obtained in the market for the pre-
diction of future option prices and tries to convert these laws
into formulas in economics and mathematics. Some in-
formation signals that can be directly obtained from the
market, such as stock price, execution price, maturity time,
and volatility, are taken as the input of the formula and the
price forecast of the options as the output of the formula [5].
However, for the real market that is changing all the time,
the sensitivity of the parameter model to the change in the
market has not reached people’s expectations; that is to say,
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the prediction error of the parameter model is not as small as
expected compared with the actual market data [6]. In order
to make the prediction results of the model more attached to
the data in the real market, people began to introduce the
data-driven model [7], compared with the parameter model,
the data-driven model is generally constructed based on the
machine learningmethod..ese models solve the prediction
problem of option price in a data-driven way. Data-driven
model is to find the connection between data from a large
number of historical data, through which to predict the
option price.

2. Motivation

.e advantage of the data-driven model is that as long as the
training data is enough, the regression model trained by the
machine learning method can well summarize the situation
outside the training data samples [5]. .erefore, the data-
driven model can well predict the price of options and even
surpass the formula derived from economic principles. .e
earliest data-driven model introduced into option pricing is
the neural network. Starting from the basic neural network
method, with the deepening of research, deep neural net-
work (DNN), artificial neural networks (ANN), hybrid
neural network, and other methods with higher complexity
and better effect are also applied to the field of option
pricing. .e advantage of these neural network methods is
that they can well extract the feature of the original training
data, yet neural networks usually require a lot of data to
train. At the same time, the neural network model is gen-
erally a complex model, and there are many hidden layers
and a large number of super parameters, which makes the
model parameter adjustment difficult [8]. .erefore, in
recent years, the research on the option pricing model is not
simply limited to the neural network and various optimi-
zation and improvement of the neural network. .e tra-
ditional ensemble learning method has been introduced into
the field of option pricing. In essence, ensemble learning is a
method that combines the results of multiple basic learners
to make decisions [9]. Compared with the neural network,
ensemble learning can be trained on small data sets. At the
same time, the ensemble learning method does not have a
large number of super parameters, and the debugging of
parameters is more convenient. Unfortunately, the ensemble
learning method is not as good as the neural networks in
feature extraction of original training data. If the advantages
of these two methods can be combined and the short-
comings of each other can be complemented, the prediction
effect of the model will be significantly improved. Some
people [8] believe that the learning advantage of a neural
network lies in their layer-by-layer processing of the original
data characteristics. .erefore, a deep forest method is
proposed. .e deep forest adopts a cascade hierarchical
structure like the neural network. Moreover, random forest
and completely random forest are used as the processing
units of each layer. .is not only retains the layer-by-layer
processing of neural network but also takes advantages of
random forest with fewer super parameters and trained on
small data sets. .e deep forest method has been applied in

many fields such as medical image, image classification, and
multilabel learning and has achieved ideal results [10–12].

2.1.Contribution. Inspired by deep forest, we introduce this
idea to the regression problem of option pricing, and a new
option pricing model based on deep ensemble learning is
proposed. .e model is mainly composed of two parts:
features reorganization is based on random forest, used to
calculate the importance of features, combined with the
original data as training input; the multilayer ensemble
data training structure is based on network learning
structure and embeds two ensemble learning methods as
network modules and designs a stop algorithm to auto-
matically determine the number of layers, which can
produce a small number of hyper-parameters and adapt to
small and medium data sets, and with good data feature
extraction effect. For the input and output of data, the
output of each layer is spliced with the original input data
to form the input of the next layer. In the meantime, in
order to make the model fully absorb the advantages of the
two ensemble learning methods, influenced by the idea of
mutation in genetic algorithm, we adopt cross-training for
data, so that the data are trained in different methods in the
adjacent two layers. To briefly summarize the contribu-
tions, we have the following:

(1) A new option pricing model based on deep ensemble
learning is proposed..is model introduces the idea of
deep ensemble learning into the field of option pricing,
adopts a learning framework that embeds the modular
ensemble learning into the network learning structure,
and encompasses two subprocesses, namely, impor-
tance extraction and multilayer ensemble.

(2) .e multilayer ensemble structure is based on net-
work learning structure and embeds two ensemble
learning methods as network modules and designs a
stop algorithm to automatically determine the
number of layers, which can produce a small number
of hyper-parameters and adapt to small and medium
data sets, and with good data feature extraction ef-
fect. .e structure also adopts cross-training for data
in order to make the model fully absorb the ad-
vantages of the two ensemble learning methods.

(3) A novel features reorganization module which can
calculate the importance of features by using the
processing results of random forests on the original
data is designed. .e feature importance matrix is
taken as the weight matrix multiplied by the original
data as the training data.

2.2. Organization. .e rest of the paper is organized as
follows: Section 2 explains the background of the parameter
model and nonparametric model in the option pricing field.
In Section 3, the principle of proposing a model is intro-
duced. In Section 4, the experimental results of the proposed
model and classical parametric and nonparametric models
are discussed. Finally, Section 5 concludes the paper.
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3. Related Work

3.1. Parametric Model. .e earliest proposed option pricing
model is the B-S model, which was proposed by Black and
Schole [1] in 1973..ere are some unrealistic assumptions in
the B-S model, such as the assumption of stock price returns
and the assumption of market-implied volatility are not in
line with the actual market [13]. .erefore, the B-S model
cannot perfectly fit the actual market, and there is a certain
error between the predicted value and the real value. So,
scholars have done further research by relaxing the as-
sumption of the B-S model.

Heston [14] assumes that volatility follows a random
diffusion process and proposes the Heston model. Merton
[15] believes that the price of options should be the sum of a
continuous process and a traditional discrete jump process.
So the Poisson distribution satisfying the random process is
added to the model, and the jump-diffusion model is pro-
posed. Kou [16] found that the prices of some options are
different from the traditional discrete jump process, and the
probabilities of bipolar jumps are different or show multi-
level jump changes. .erefore, a double-exponential jump-
diffusion model is proposed. Bollerslev [17] regards the
volatility variable of options as a discrete random process of
change, unlike the assumption that the volatility in the B-S
model is a constant, which proposes the GARCH model.
.ere are also some models breaking the assumption of
constant volatility, such as the random volatility model and
the random volatility jump model [18]. Some scholars have
broken the assumption that the risk-free interest rate is
constantly replaced the risk-free interest rate with a variable
short-term interest rate, proposed a stochastic interest rate
model [19, 20], or replaced the initial constant risk-free
interest rate with a weighted average of multiple interest
rates, and proposed an “interest rate affine” model, Duffee
[21].

.ese parameter models improve the prediction results
of option prices to some extent, but they are still looking for
some specific laws from the market and trying to convert
them into formulas in economics and mathematics, so they
are still subject to some economic and statistical assump-
tions. Different from the traditional parametric model, our
proposed model is based on data-driven option pricing to
avoid some assumptions that affect the effectiveness of the
model.

3.2. Data-DrivenModel. Computer scientists have also used
neural networks to solve the problem of option pricing for a
long time [7, 22, 23]. Option pricing can be seen as a
standard regression problem, and many methods in ma-
chine learning can be applied to the field of option pricing.

Many people have been studying how to better apply
neural network (NN) to option pricing over the years
[24–28]. Bennell [29] used an artificial neural network
(ANN) to predict the option price; PC Andreou [30] tried to
build a newmodel by combining ANN and parameter model
in addition to using ANN alone; Lajbcygier and Connor [31]
proposed a hybrid neural network for trading by applying a

guided method; Culkin [32] used deep neural networks to
construct an option pricing model. .ese network models
make people pay more attention to the development of big
data, and big data have many other aspects that are closely
related to people, such as big data analysis of health care can
better protect the health [33]. .e standard neural network
consists of many simple connection processors called
neurons, each of which produces a series of real-valued
activations. .e input neurons are activated by the sensor of
the sensing environment, and other neurons are activated by
the weighted connection from the previous active neurons.
.ese neural networks are designed to mathematically
simulate how the human brain works by receiving a wide
range of stimuli and then parsing them by learning the
neuron layer that associates input and output [34]. .e
application field of deep learning is very extensive, and the
field of auxiliary diagnosis is also a recent research hotspot.
Some scholars have constructed a detection model for
sentiment analysis of mental disorder based on attention-
based deep learning and fuzzy classification [35]. .ese
neural network methods can well extract data features be-
cause they can process the original data layer by layer.
Meanwhile, because the neural network methods are black
boxes, the processing of each layer is invisible, resulting in a
large number of super parameters, and the parameter ad-
justment of the model is very difficult. At the same time,
because the neural network method requires a large number
of data for training, the effect on small data sets may not be
ideal. .erefore, the traditional ensemble learning method is
introduced into the field of option pricing. Similarly, en-
semble learning methods have a wide range of applications,
such as diabetic retinopathy classification model based on
ensemble learning [36] and software cost analysis model
based on multiobjective optimization [37]. Some ensemble
learning methods also have good applications in financial-
related fields [38]. Codru [39] constructed multiple options
pricingmodels by using the ensemble learningmethods such
as random forests, XGBoost, and LightGBM and conducted
prediction experiments on the actual market data. Ensemble
learning is a general term for the methods that combine
multiple basic learners to make decisions, which is usually
used to supervise machine learning tasks. A basic learner is
an algorithm that takes a set of labelled examples as input
and generates models that generalize these examples (such as
classifiers or regressions). .e main premise of ensemble
learning is that by combining multiple models, the error of a
single basic learner is likely to be compensated by other basic
learners, so the overall prediction performance of the en-
semble will be better than that of a single basic learner [40].
For each basic learner, it can complete training on small data
sets as well, and there is no need for a large number of
hyperparameters in training. .erefore, the ensemble
learning method has the advantages of fewer hyper-
parameters and adapting to small data sets. Although en-
semble learning has many advantages, it is inferior to the
neural networks in data feature extraction.

Our proposed model processes data layer by layer to
ensure the effect of data feature extraction, and each layer is a
set of ensemble learning algorithms, that is, an ensemble of
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the ensemble. In order to maintain the diversity of inte-
gration, we choose two ensemble learning methods at each
level. As is well known, diversity is the key to overall
construction [8]. In terms of the selection of specific
methods, according to the actual test results of various
ensemble learning algorithms in the field of option pricing
[39], we choose two methods with the best performance,
namely, XGBoost [41] and LightGBM [42], which retains the
advantages of fewer hyperparameters of integrated learning
and adapting to small data sets and obtains better results
than single neural network or single ensemble learning
methods.

3.3. ProposedMethod. As presented in Section 2.2, there are
recent studies showing promising results in option pricing
using neural network methods and ensemble learning
methods. .us, this paper aims to retain the advantages of
the neural network method in feature extraction, and at the
same time, it has the advantages of ensemble learning fewer
hyperparameters and adapting to small data sets. Our
methodology is presented in Figure 1. In this section, we first
introduce the overall architecture of our proposed frame-
work and then discuss details of the two main modules: (1)
the features reorganization for obtaining feature weight and
(2) the multilayer ensemble structure are used to training
data.

3.4. Overall Architecture. Input data are first prepared,
which consists of stock prices, execution prices, maturity
times, and implied volatility. First, the original input data are
processed by random forests, and the output vector and the
trained forest model can be obtained. Based on this, the
importance of features can be calculated, and the weight
matrix of features can be obtained. In the multilayer inte-
gration structure, each layer receives the feature information
processed by the previous layer, and the processing results of
this layer are spliced with the input vector to the next layer.
.e last layer is the output layer, and the input data of the
output layer will no longer splice the original data, but the
average value of the prediction results obtained by each
processing module of the front layer is output to obtain the
final prediction results. .e calculation process is as follows:

y �
y1 + y2 + · · · + yn

n
, (1)

where y represents the prediction result of the final output,
y1, y2, . . . , yn represents the output value obtained by the
processing module in each layer, and n represents the
number of processing modules in each layer.

3.5. Features Reorganization. We obtain the weight matrix
of features through the process of features reorganization
and combined it with original data as training input in the
model. First, the original input data are processed by ran-
dom forest, and the output vector and the trained forest are
obtained. .en, based on this, the importance of the feature
is calculated, and the weight matrix of the feature is

obtained. .e weight matrix is multiplied by the original
input feature as the input of multilayer integrated training.
.e process of calculating the importance of features is as
follows:

nk � wk ∗Gk − wleft ∗Gleft − wright ∗Gright,

fi �
j∈nodess spilt on feature inj

k∈all nodesnk

,

fni �
fi

j∈all featuresfj

,

(2)

where nk is the importance of a node, wk, wleft, and wright are
the ratio of the number of training samples to the total
number of training samples in the node and its left and right
subnodes, respectively, and Gk, Gleft, and Gright are the Gini
impurity of the node and its left and right nodes,
respectively.

3.6. Multilayer Ensemble Structure. In this section, we in-
troduce the multilayer ensemble structure in three parts,
namely, the layer-by-layer training strategy, two ensemble
learning algorithms, and the cross-training and stop algorithm.

3.6.1. /e Layer-by-Layer Training Strategy. .e multilay-
ered structure is based on the hierarchical structure of deep
neural networks. .e inner the network layer of the deep
neural network can be divided into the input layer, hidden
layer, and output layer according to different positions.
Generally, the first layer is the input layer, the middle layers
are hidden layers, and the last layer is the output layer. .e
layers are fully connected; that is, any neuron in layer i must
be connected to any neuron in layer i + 1.

Although DNN looks complex, it is very similar to
sensors in small local models, i.e., a linear relationship z �


m
i�1 wixi + b plus an activation function σ(z).
Since there are many parameters and layers of DNN, the

definitions of bias b and linear coefficient w need certain
rules. Definition of bias b: the bias corresponding to the third
neuron in the second layer is defined as b23. Definition of
linear coefficient w: the linear coefficient from the fourth
neuron in the second layer to the second neuron in the third
layer is defined as w3

24. Among them, the upper marker 2
represents the number of layers, and the lower marker 3
represents the index of neurons where bias exists. Note that
the input layer has no w parameter, bias parameter b.

Assuming that the activation function we choose is σ(z),
the output value of the hidden layer and the output layer is a.
For the output a2

1, a2
2, a2

3 of the second layer, we have

a
2
1 � σ z

2
1  � σ w

2
11x1 + w

2
12x2 + w

2
13x3 + b

2
1 ,

a
2
2 � σ z

2
2  � σ w

2
21x1 + w

2
22x2 + w

2
23x3 + b

2
2 ,

a
2
3 � σ z

2
3  � σ w

2
31x1 + w

2
32x2 + w

2
33x3 + b

2
3 .

(3)

For output a3
1 of the third layer, we have
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a
3
1 � σ z

3
1  � σ w

3
11a

2
1 + w

3
12a

2
2 + w

3
13a

2
3 + b

3
1 . (4)

Generalizing the above example, assuming that there is
m neuron in the l − 1 layer, for the output al

j of the j neuron
in the l layer, we have

a
l
j � σ z

l
j  � σ 

k−1

k−1
w

l
jka

l−1
k + b

l
j

⎛⎝ ⎞⎠. (5)

If l � 2, then for a1
k is the input layer xk.

From the above, it can be seen that using the algebraic
method to express the output one by one is more complex,
and if the matrix rule is relatively simple. Assuming that
there are m neurons in the l − 1 layer and n neurons in the l

layer, the linear coefficient w of the l layer constitutes a
matrix Wl of n × m, the bias b of the l layer constitutes a
vector bl of n × 1, the output a of the l − 1 layer constitutes a
vector al− 1 of m × 1, the linear output z of the l layer before
activation constitutes a vector zl of n × 1, and the output a of
the l layer constitutes a vector al of n × 1. .en, expressed by
the matrix method, the output of the l layer is

a
l

� σ z
l

  � σ W
l
a

l− 1
+ b

l
 . (6)

3.6.2. Two Ensemble Learning Algorithms. Each level is an
ensemble of ensemble learning methods, i.e., an ensemble of

ensembles. Here, we include two different types of ensemble
learning methods to encourage diversity.

.e core idea of f(x) can be expressed in three steps..e
first step is to continuously add a tree, that is, to continuously
split the features to generate a new tree, and each time to add a
tree is actually to learn a new function, so as to fit the residual
of the previous prediction. .e second step is to get k trees
when we complete the training, and then, we need to get a
predicted sample score. Specifically, according to the char-
acteristics of this sample, each tree will fall to a corresponding
leaf node, so that each leaf node will correspond to a score.
.e third step is to add the scores corresponding to each tree
we get, which is our predicted value for the sample. Assuming
that we use y to represent the predicted value:

y � ∅ xi(  � 
K

k�1
fk xi( ,

whereF � f(x) � ωq(x)  q: R
m⟶ T, ω ∈ R

T
 ,

(7)

where ωq(x) is the fraction of leaf node q, F corresponds to
the set of all k regression trees, and f(x) represents one of all
regression trees.

Obviously, our goal is to make the current prediction
value yi as close as possible to the real value yi, and improve
the adaptability of the algorithm to the data outside the
training sample as much as possible. .erefore, from a
mathematical point of view, this is a problem of finding the
optimal value. We regard the objective function as the sum
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Figure 1: Illustration of the deep ensemble model framework..e model consists of two parts, namely, features reorganization module and
multilayer ensemble module. In the multilayer ensemble module, the output of each layer is spliced with the original input data as the input
of the next layer; the specific number of layers N is determined by the stopping algorithm z(n), when z(n)≥ 0, layers stop growing
automatically, N determined, and f(x) and g(x) represent two different ensemble learning methods, and x represents historical data from
day 1 to day i, i.e., x � [x1, x2, . . . xi].
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of the loss function and the regularization term; then, the
objective function can be expressed as

L(∅) � 
i

l yi − yi(  + 
k

Ω fk( . (8)

It can be seen from the formula that the objective
function is divided into two parts, the left side il(yi − yi) is
the loss function, and the role is to reveal the training error,
that is, the gap between the predicted score and the real
score. .e right side kΩ(fk) is a regularization term to
define the complexity of the objective function. For formula
(8), yi is the output of the entire cumulative model, and the
regularization term kΩ(fk) is a function that represents
the complexity of the tree in the model..e smaller the value
of the regularization term is, the lower the complexity of the
tree is, and the stronger the generalization ability of the
model is. .e specific formula is expressed as

Ω(f) � cT +
1
2
λ‖ω‖

2
, (9)

where T represents the number of leaf nodes, c represents
the parameters used to control leaf nodes, so that the leaf
node T is as few as possible, ω represents the fraction of leaf
nodes, and λ is used to control the fraction of leaf nodes. .e
role of c and λ is to minimize the prediction error and
prevent overfitting.

Specifically, i in the first part of the objective function
represents the prediction error of the i sample, and l(yi − yi)

represents the prediction error of the i sample. Our goal is, of
course, that the smaller the error is, the better. Previously, it
was said that the first method needed to accumulate the
scores of multiple trees to get the final prediction score. In
the process of iterative implementation, each iteration was
based on the existing tree, adding a tree to fit the residual
between the prediction results of the previous tree and the
true value. We need to select a f in each iteration to
minimize our objective function. .e objective function for
the entire first method process can now be expressed as

Obj(t)
� 

n

i�1
l yi, y

(t−1)
i + ft xi(   +Ω ft(  + canstant. (10)

Similarly, l in formula (10) represents the loss function,
and Ω(ft) represents the regularization term.

g(x) is a method proposed to improve some defects of
the traditional boosting method. .e traditional boosting
algorithm needs to scan all the samples for each feature to
select the best segmentation point, so the traditional
boosting method will be time-consuming. .erefore, with
the development of the traditional boosting method, it has
been unable to meet the current needs in efficiency and
scalability. In order to solve the high-latitude mass sample
data that need to be processed now, g(x) uses two methods,
one is GOSS (gradient-based one-side sampling) method,
and the GOSS method does not use all the sample points to
calculate the gradient, but sample to calculate the gradient;

the other is the EFB (exclusive feature bundling) method.
.e EFB method does not scan and calculate all the features
when searching for the best segmentation point but binds
some features together to reduce the dimension of the
features and then finds the best segmentation point, which
will greatly reduce the consumption in the process of
searching for the best segmentation point. .ese two
methods can reduce the time complexity of processing
samples but do not lose accuracy.

GOSS method: in the calculation of information gain,
generally, the sample points with a large gradient play a
major role in the calculation; that is to say, these sample
points with a large gradient can contribute more informa-
tion gain, so the main idea of GOSS method is to retain these
sample points with large gradient when the sample is down-
sampled, ignored a part of the remaining sample points with
small gradient, and randomly sampled these sample points
in proportion, which can not only save the processing time
but also maximize the accuracy of information gain
assessment.

EFB method: the traditional boosting method will not
only conduct data sampling but also conduct feature sam-
pling, mainly to further reduce the training speed of the
model. .e second method also has feature sampling, but
this feature sampling is not the same as the traditional
feature sampling method. It binds mutually exclusive fea-
tures to reduce the dimension of features so that there will be
less consumption for feature sampling. Usually, the high-
latitude data in our application are basically sparse data,
which makes it possible to reduce the number of valid
features by designing an almost lossless method, especially in
a sparse feature space where there are many mutually ex-
clusive features, which allows us to bind mutually exclusive
features stably together to form a new feature, so as to reduce
the feature dimension.

.e combination of mutually exclusive features in g(x)

uses the histogram algorithm. .e basic idea of the histo-
gram algorithm is to discrete the continuous eigenvalues
into k integers and construct a histogram with width k.
According to the discrete value as the index in the histogram
of the cumulative statistics, when traversing the data once,
the histogram accumulated the required statistics, and then
according to the discrete value in the histogram, traverse to
find the optimal segmentation point.

3.6.3. /e Cross-Training and Stop Algorithm. Both f(x)

and g(x) are very mature ensemble learning algorithms,
which are widely used in various scenarios. In comparison,
f(x) adopts the greedy process to calculate each feature to
find the optimal segmentation point with better accuracy,
and g(x) adopts the decision tree growth strategy of
selecting a leaf node with the largest splitting gain in each
leaf node layer to split with higher accuracy. To fully absorb
the different advantages of the two methods in training,
inspired by the idea of mutation in genetic algorithms, we
exchange the output data of each layer and input the results
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of the two methods into the next layer after splicing with the
original data, so that the adjacent two layers are trained by
different methods.

At the same time, the layers of our model are adaptive,
and after adding a new layer, the performance of the whole
model will be estimated on the verification set. If there is no
obvious improvement, the number of layers will no longer
increase, and the training process will terminate. For the
performance evaluation criteria, we choose the root mean
square error of prediction which is more suitable for the
options field, not the accuracy commonly used in the
classification field. .e multilayered structure of the whole
model can adaptively determine the number of layers by
z(n), which also makes the module applicable to different
scales of training data. .e calculation process of z(n) is as
follows:

z(n) � r(n) − r(n − 1), (11)

where r(n) represents the root mean square error of pre-
diction with n layer, and r(n − 1) represents the root mean
square error of prediction with n − 1 layer. Stop increasing
layers when z(n)≥ 0.

4. Experiments

4.1. Data. .e data used in our experiment are daily data on
the KOSPI200 option market for the period from 2 June
2009 to 7 November 2019. KOSPI200 option is based on
KOSPI200 index. .e KOSPI200 index is a weighted total
market price index of 200 blue-chip stocks listed in the
Korean stock market. In order to avoid the synchronization
caused by the trading effect, we use the closing price of the
KOSPI call option as price data. We use 2064 (80%) samples
as the training data set, and the remaining 516 (20%) samples
as the test data set. Input vector X consists of stock price S,
strike price K, maturity time T − t, and volatility σ. Here, we
use σ available in the market, which is given according to the
general implied volatility formula. We exclude the interest
rate c from the input vector because it changes very little in
the period of KOSPI200 data.

.e evaluation criteria of pricing results are measured by
root mean square error (RMSE). .e errors were calculated
according to moneyness and the duration of the contract.
According to the duration of the contract, it can be divided
into short term (<1month), medium term (1− 3 months),
and long term (>3months), as well as according to the
moneyness, it can be divided into Deep In .e
Money(S⁄ (K< 0.8)), In.eMoney(S⁄ (K∈(0.8,0.96))), At.e
Money(S⁄ (K∈(0.96,1.04))), Out of .e Money(-
S⁄ (K∈(1.04,1.2))), Deep Out of .e Money(S⁄ (K> 1.2)).

5. Results

.is section discusses the experimental results of the model
proposed in Section 3. We selected several comparative
experimental models for analysis, including two parameter
models, respectively, the Black–Scholes model (1973) [1] and
the Heston model (1993) [14]. At the same time, there are
three machine learning models, namely DNN [43], XGBoost

[41], and LightGBM [42]. To emphasize the prediction
power of our model, the comparison will be made with the
error of these parametric models and machine learning
models.

In order to find the most suitable feature space, three
models are compared, and each model has different input
and output. .e experimental results are shown in Table 1.
Here, S represents the KOSPI200 stock price, K is the strike
price, t is the expiration time of the option contract, and σ is
the implied volatility available in the market. .e roughened
number represents the minimum pricing error of each
model.

.e input and output of Model 1 are the same as those
proposed by Hutchinson (1994) [7]. In order to reduce
dimensionality, he assumes that the evaluation function is
homogeneous of degree one in S and K, respectively,
f(St, K, . . .)/K � f(St/K, 1, · · ·). .is approach has been
intensively used in the literature [44, 45] with good reported
results. In this case, nonparametric models do outperform
parametric models.

Model 2 uses the same input and output as model 1, but
the difference is that model 2 is not a homogeneous as-
sumption. For the next models, implied volatility has been
considered. Like Model 1, the performance of parametric
models in Model 2 and Model 3 is not as good as that of
nonparametric models. In the nonparametric model, the
proposed model is better than the separate DNN, XGBoost,
or LightGBM models. It can also be seen that the prediction
error is the smallest when using the input and output of
model 3.

After determining the input and output, we performed
ablation experiments on the proposed model. Ma is a model
without cross-training, Mb is a model with only f(x) en-
semble learning method, Mc is a model with only g(x)

ensemble learning method, and Md is our model. Table 2
shows the results of ablation experiments, and we used root
mean square error andmean absolute error as the evaluation
indexes of the ablation experiment. It can be seen from
Table 2 that the prediction accuracy of the model trained by
only f(x) method or only g(x) method is lower than that of
the proposedmodel. Similarly, the prediction accuracy of the
model without cross-training method is also lower than that
of the proposed model. .is proves from the experimental
point of view that the cross-training and two methods of
training data used in the proposed model are effective.

Based on the input and output of model 3, we do more
detailed experiments in terms of moneyness and time until

Table 1: Pricing error (RMSE) for 3 different models.

M1 M2 M3
Input S/K, t S, K, t S, K, t, σ
Output C/K C C

BS 2.808 2.808 2.808
Heston 2.831 2.831 2.831
DNN 0.027 0.028 0.030
XGBoost 0.033 0.024 0.027
LightGBM 0.026 0.025 0.025
Ours 0.022 0.023 0.016
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maturity. .e pricing error is shown in Table 3, and we can
see in detail the prediction results of various methods under
different moneyness or time until maturity. From the results,
even in the case of different moneyness and time until
maturity, the prediction effect of all nonparametric models is
better than that of parametric models. In the nonparametric
model, the prediction accuracy of the two ensemble learning
methods is higher than that of DNN. At the same time, it can

be seen that the prediction accuracy of our method is better
than the existing methods in most cases.

Figure 2 presents the boxplot of pricing errors. .e
main body of the box represents the error distribution
between the first and third quantiles. .e center of the box
represents the maximum and minimum record errors. As
you can see, the error distribution centers of all non-
parametric models are basically near 0. .e error

Table 3: Out-of-sample RMSE for Model 3 in terms of moneyness and time to maturity.

Model All DITM ITM ATM OTM DOTM

ALL

BS 2.808 4.997 1.674 3.440 4.585 2.898
Heston 2.831 4.121 1.887 3.446 4.482 2.238
DNN 0.030 0.398 0.051 0.063 0.322 0.202

XGBoost 0.027 0.288 0.020 0.048 0.133 0.215
LightGBM 0.025 0.281 0.026 0.043 0.161 0.214

Ours 0.016 0.280 0.019 0.027 0.086 0.090

Short term

BS 2.538 4.930 2.560 4.632 4.359 2.385
Heston 2.607 4.101 2.969 4.135 4.257 2.097
DNN 0.062 0.386 0.234 0.346 0.349 0.340

XGBoost 0.042 0.302 0.022 0.260 0.181 0.133
LightGBM 0.041 0.255 0.027 0.211 0.177 0.133

Ours 0.025 0.248 0.023 0.113 0.117 0.133

Medium term

BS 2.500 4.113 2.497 1.945 2.789 2.317
Heston 2.811 4.864 2.793 1.942 2.177 1.980
DNN 0.062 0.144 0.285 0.302 0.386 0.179

XGBoost 0.047 0.076 0.149 0.092 0.289 0.038
LightGBM 0.043 0.072 0.149 0.093 0.238 0.034

Ours 0.034 0.036 0.149 0.092 0.178 0.020

Long term

BS 2.248 — 3.234 3.336 4.160 3.116
Heston 2.158 — 3.602 3.306 4.265 2.719
DNN 0.273 — 0.536 0.514 0.773 0.397

XGBoost 0.140 — 0.385 0.389 0.423 0.463
LightGBM 0.152 — 0.371 0.385 0.456 0.465

Ours 0.151 — 0.311 0.366 0.411 0.282

DNN XG
Boost

Heston Light
GBM

OursBS

models

0

1

2

3

4

5

rm
se

Figure 2: Boxplot of pricing error for the out-of-sample period. .e body of the candle represents the distribution of errors between 25%
and 75% of the data, and the wick represents the maximum and minimum recorded error. .e results are shown for Model 3. Blue dots
represent outliers.

Table 2: Ablation experiment for 4 different models.

Ma Mb Mc Md
RMSE 0.023 0.025 0.020 0.016
MAE 0.0064 0.0067 0.0063 0.0062
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distribution center of the proposed model is closer to 0, and
the error distribution center of the DNN model is farther
away from 0. .e error distribution center of the para-
metric model is between 2 and 3, farther away from 0. .is
also shows that the overall error of all nonparametric
models is relatively small, and the proposed model is more
accurate in prediction accuracy.

For the robustness of the model, another prediction
method is used for the experiment. Use 1-year data as a
training set, and then use the next month’s data as a test set.
Taking one month as a sliding window, seven nonover-
lapping periods were tested. .e results can be seen in
Table 4. Similarly, the nonparametric model has excellent
prediction ability. In most cases, the proposed model has
higher prediction accuracy than the nonparametric model.
However, the differences between nonparametric and
parametric models have been diminished. An explication
could be the smaller train set compared with the analysis in
Table 3, because the more training data of most nonpara-
metric models, the more accurate the prediction results.

Figure 3 shows the visualization results of the seven-
month test data. It can be seen that the prediction error of all
nonparametric models is much smaller than that of para-
metric models. Figure 4 shows the error comparison of each
nonparametric model more accurately. .is also proves that
the proposed model has better prediction accuracy.

6. Conclusion

In this study, a new model based on deep ensemble learning
was developed for option pricing..emodel applies the idea
of the deep ensemble to the regression problem of option
pricing and encompasses two subprocesses, namely, im-
portance extraction and multilayer ensemble. .e perfor-
mance of the model was experimentally verified, and the
results were evaluated from many aspects. A comprehensive
comparative study ensures that the model is superior to
other models in different measures. .erefore, the model
based on deep integration learning is used as a skilled tool for
option pricing.

.e limitation of the current work is that although the
model has achieved good results on option data with certain
exercise time, the pricing of option data with uncertain
exercise time is still a challenging problem. In terms of future
work, we will consider how to improve the pricing power of
the model for different types of option data.
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Figure 4: Comparison of error in out-of-sample prediction of
nonparametric models.

Table 4: Pricing errors for 7 nonoverlapping periods.

Month BS Heston DNN XGBoost LightGBM Ours
1 2.812 2.391 0.200 0.123 0.123 0.110
2 2.570 2.191 0.328 0.149 0.125 0.124
3 2.617 2.862 0.309 0.192 0.185 0.187
4 2.686 2.167 0.318 0.162 0.168 0.160
5 2.384 2.191 0.270 0.157 0.151 0.146
6 2.527 2.680 0.321 0.155 0.155 0.149
7 2.205 1.967 0.290 0.194 0.174 0.157
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