
Research Article
Decision-Making Taxonomy of DevOps Success Factors Using
Preference Ranking Organization Method of
Enrichment Evaluation

Saima Rafi ,1 Muhammad Azeem Akbar ,2 Abeer Abdulaziz AlSanad ,3

Lulwah AlSuwaidan ,3 Halah Abdulaziz AL-ALShaikh ,3 and Hatoon S AlSagri 3

1University of Murcia, Department of Informatics and Systems, Murcia 30100, Spain
2Lappeenranta University of Technology, Department of Information Technology, Lappeenranta 53851, Finland
3Imam Mohammad Ibn Saud Islamic University, Information Systems Department, Riyadh 11432, Saudi Arabia

Correspondence should be addressed to Saima Rafi; saeem112@gmail.com,MuhammadAzeemAkbar; azeem.akbar@ymail.com,
and Abeer Abdulaziz AlSanad; aaasanad@imamu.edu.sa

Received 30 October 2021; Accepted 17 December 2021; Published 10 January 2022

Academic Editor: Naeem Jan

Copyright © 2022 Saima Rafi et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to multitudes factors like rapid change in technology, customer needs, and business trends, the software organizations are
facing pressure to deliver quality software on time. To address this concern, the software industry is continually looking the
solution to improve processing timeline.,us, the Development and Operations (DevOps) has gained a wide popularity in recent
era, and several organizations are adopting it, to leverage its perceived benefits. However, companies are facing several problems
while executing the DevOps practices.,e objective of this work is to identify the DevOps success factors that will help in DevOps
process improvement. To accomplish this research firstly, a systematic literature review is conducted to identify the factors having
positive influence on DevOps. Secondly, success factors were mapped with DevOps principles, i.e., culture, automation,
measurement, and sharing.,irdly, the identified success factors and their mapping were further verified with industry experts via
questionnaire survey. In the last step, the PROMETHEE-II method has been adopted to prioritize and investigate logical re-
lationship of success factors concerning their criticality for DevOps process. ,is study’s outcomes portray the taxonomy of the
success factors, which help the experts design the new strategies that are effective for DevOps process improvement.

1. Introduction

,e multitude nature of software organizations like rapid
change in technology [1], increasing business competence,
and market demands [2] has changed the overall environ-
ment of software industry. Many organizations are facing
common problems: continuous deployment and delivery of
software. ,e customers nowadays expect fast delivery and
frequent response on their product. To fulfil this gap, fre-
quent releases are important for customers to provide
feedback on continuous bases [3]. Agile, in software de-
velopment, is the common solution adopted by several
companies to reduce development time and deployment cost
and increase customer satisfaction and success rate of

software project. However, the focus of agile paradigm is on
collaboration between the development teams, ignoring the
operations teams. ,e tasks performed by operations teams
such as deployment, management, customer performance,
and support systems site [4] will lag behind if gaps between
operation and development teams are not merged.

To improve the communication, coordination, and in-
tegration paths between development and operations teams,
a paradigm known as DevOps has been adopted [5]. ,e
word DevOps originated from two words developers “Dev”
and operations “Ops” [1]. DevOps paradigm is adopted in
various organizations to extend the collaboration between
developers and operations in personal. DevOps is defined as
“a cluster of practices intended for smooth interactions

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 2600160, 15 pages
https://doi.org/10.1155/2022/2600160

mailto:saeem112@gmail.com
mailto:azeem.akbar@ymail.com
mailto:aaasanad@imamu.edu.sa
https://orcid.org/0000-0002-9807-6235
https://orcid.org/0000-0002-6880-4991
https://orcid.org/0000-0003-0870-1285
https://orcid.org/0000-0003-1075-6365
https://orcid.org/0000-0003-3037-9114
https://orcid.org/0000-0003-3753-5116
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2600160

between developers and operations teams to work as a single
unit” [4]. Overall, the activities included in DevOps para-
digm are an environment usually adopted for continuous
development and delivery process in software organizations
to increase service quality [1]. Several companies like
Facebook, Amazon, Flickr, and Netflix are working in
DevOps paradigm to increase performance cycle [4].
However, DevOps is still a challenging process to be
adopted. ,e reason behind this concern is that there are a
heap of information, definitions, frameworks, practices, and
courses related to DevOps process improvement, lacking
guidance to structure and organize such massive informa-
tion, for proper DevOps adoption. To do so, they need
proper structured software development paradigm.

,e literature shows that numerous researches have been
conducted on the topic considering the tools [6], practices
[7], attributes, and the factors influencing DevOps imple-
mentation [8] in software organizations. Several of the
available studies in literature have adopted empirical ap-
proach to collect data regarding DevOps definition, tools,
continuous delivery pipeline, practices, and influencing
factors. However, fewer studies present logical relationship
between factors influencing DevOps paradigm. ,us, the
main research concern is that we are known with factors,
practices, and tools of DevOps, but there is no detailed
holistic view that shows the logical relationship and prior-
itization between factors influencing DevOps implementa-
tion. ,is motivated us to extend our preliminary findings
published in Ease-2020 [9], in which we explored the list of
success factors (SFs) reported by the researchers. We are
extending our study [9] by conducting an empirical study
with real practitioners (in industry) and by logically ex-
amining the relationship between the success factors and the
DevOps principles, i.e., “culture, automation, measurement,
and sharing (CAMS)” [10]. ,e results of this study come up
with a taxonomy that presents logical relationship and
ranking; and it will assist in enhancing the decision-making
capability of DevOps experts while considering particular
success factor (to their mapped criterion) for successful
DevOps implementation. ,is categorization of success
factors will also help DevOps experts focus on the critical
areas of DevOps paradigm, which needs further
improvement.

,e objectives of this study are (1) to explore and identify
the success factors from state of the art, (2) to empirically
verify the identified success factors with industry experts, (3)
to map the success factors with CAMS criteria (principles of
DevOps), and (4) to develop a taxonomy based on ranking of
the success factors, based on logical relationship and CAMS
criteria. To address these objectives, we have designed re-
search questions (RQs).

(RQ1) What are the success factors of DevOps reported
in state of the art and state of the practices?

(RQ2) How to enhance decision-making capabilities of
DevOps experts for considering the particular success
factor?

,e structure of this paper after introduction consists of
background and motivation in section 2. Section 3 is about
methodology. Results, discussion and summary, and

limitations are explained in Sections 4,5 and 6. Study im-
plications and conclusion and future work are briefly
explained in the last two Sections 7 and 8 of this paper.

2. Background and Motivation

,eDevOps is a vague term and is defined in various context
in literature. Peuraniemi [11] defined DevOps as an envi-
ronment in which developers and operations teams work in
a group form. Dyck et al. [12] state DevOps as an approach
that stresses empathy and cross-functional collaboration
between and within the teams in software organizations, in
order to operate resilient systems and accelerate delivery of
changes. Erich et al. [13] have explained DevOps in terms of
“conceptual framework that supports team of developers
and operations in software development organizations”.
According to Virmani [2], DevOps covers all the aspects that
aid in the delivery of fast, optimized, and high quality
software.,ere are four main criteria of DevOps that help in
better adoption of and implementation of DevOps, i.e.,
culture, automation, measurement, and sharing (CAMS).
,e focus of DevOps is to build bridges for smooth inter-
action between developers and operations teams [10]. ,ere
are some other studies that highlighted DevOps significance
in various aspects. For example, Macarthy and Bass [14]
worked on building taxonomy of DevOps in practices,
Gokarna and Singh [15] empirically investigated the his-
torical background of DevOps, Mishra and Otaiwi [16]
discussed in their research DevOps software quality to
maintain continuous environment, and Rafi et al. [17]
discussed the data quality aspects of software application
while adopting DevOps.

Lwakatare et al. [4] have identified DevOps from
monitoring perspective. ,ey claimed that, to monitor
system logs and certain tools performance, DevOps para-
digm will help two teams collaborate in such a way that all
details will be monitored in a continuous manner. Peur-
aniemi [11] discovered “Infrastructure as Code (IaC) as a
main component of DevOps as it helps in automatically
managing and configurations during software development
process.” Farroha and Farroha [1] stated that the DevOps
main agenda is to provide software product with high
quality, agility technology to make pressing smooth, human-
based factors, bridging the loop holes through coordination
between developers and operations team. Semds et al. [18]
performed literature review to state DevOps in terms of
enablers and capabilities. In their study, interviews were
conducted that analyze the organizational impediments
barriers in DevOps implementation. Rafi et al. [8] proposed
a readiness-model for the effective adoption of DevOps in
software development organization. ,e readiness-model
proposed was based on facts collected from state of the art
and state of the practices. Similarly, Leite et al. [19] presented
key concerns of DevOps in form of conceptual map, from
the viewpoint of team managers, researchers, and engineers.
We have adopted the same approach as used by Leite et al.
[19] to identify DevOps success factors (SFs) for effective
implementation of DevOps process. Furthermore, we have
prioritized the success factors and developed a taxonomy

2 Mathematical Problems in Engineering

that will enhance decision-making capability of DevOps
experts while selecting particular success factor.

Despite the demand of DevOps in software organiza-
tions, there are various studies on tools, definition, concepts,
factors, practices, and characterization of DevOps, but none
of them discussed conceptual mapping and relationship
between success factors in detail. ,is research gap moti-
vated us to highlight the logical relationship between success
factors and develop a taxonomy that will help DevOps
experts in designing strategies for better implementation of
DevOps. To conduct the research, we have extended our
previous study on identification of success factors for
DevOps implementation published in EASE′20 conference
[9]. We have mapped the identified SFs into CAMS criteria
(principles of DevOps) [10] to develop a taxonomy.
Moreover, we have also analyzed the logical relationship
between success factors and ranked them by introducing
PROMETHEE-II method [20] in domain of DevOps. ,is
ranking and logical relationship will help DevOps experts
enhance their decision-making capabilities of DevOps for
considering particular success factor.

,ere are various approaches for measuring ranks in
various domains of technology. For example, “TOPSIS,
ELECTRE, WSM, AHP, PROMETHEE, etc.” [21] are also
approaches to measure ranks. However, PROMETHEE is an
approach that measures rank by pairwise comparison of
alternatives, finding the strength of one alternative to an-
other alternative [22]. ,is approach has been used in dif-
ferent fields of science by researchers, where decision
making is required [21]. ,e results generated by this ap-
proach are easy to understand and consistent. For example,
Siahaan and Mersan [22] used PROMETHEE approach to
select best student in college based on criteria, i.e., skills,
performance in class, grading, attendance, etc. To evaluate
the quality of railway services provided to passenger, Liu and
Guan [23] applied PROMETHEE technique. Using fuzzy
triangular scale, the linguistic terms were transformed to
numbers, and based on evaluation, service quality of railway
passengers was ranked. Zhao et al. [24] have upgraded
PROMETHEE approach for the assessment of incident
management plans, i.e., earthquake, floods, etc.

3. Research Methodology

To fulfill the study objectives, the following research map is
adopted (Figure 1). Firstly, systematic literature review
(SLR) was adopted to identify the SFs of DevOps imple-
mentation in software organization. Secondly, we performed
mapping of identified success factors with CAMS criteria
(principles of DevOps) [10].,irdly, to validate the mapping
scheme and factors relationship with CAMS criteria, the
questionnaire survey was conducted. In last step, we have
used PROMETHEE-II method [20] to rank the SFs con-
cerning their significance for DevOps implementation.

3.1. Phase 1. (RQ: state of the art) We have applied sys-
tematic literature review technique in our previous study
[9] using scenario of development of research questions,

search strategy, study selection, and data synthesis to
identify the factors having positive influence on DevOps
implementation. ,is step-by-step approach is useful for
robust outcomes compared to other informal techniques of
data extraction from literature. Kitchenham and Charters
[25] guidelines were followed, which include the following
steps: “(i) planning the review, (ii) conducting the review,
and (iii) reporting the review.” A total of 69 studies were
shortlisted after applying QA process, and 16 SFs were
identified. ,e list of the identified success factors is shown
in Section 4. We have briefly explained all factors in our
previous study [9].

3.2. Phase 2: (RQ2)

3.2.1. Mapping of Success Factors. Humble and Molesky [10]
explained four basic categories, i.e., DevOps principle
(culture, automation, measurement, and sharing (CAMS)).
We classified the identified success factors into these cate-
gories. Rafi et al. [17] adopted the same technique in their
research to categorize the identified factors into 4 basic
principles of DevOps. By following the same concept, the SFs
(identified) were categorized into CAMS criteria. ,e details
about CAMS criteria are explained below:

3.2.2. Culture. According to Humble and Molesky [10],
culture is defined as role of people over tools and processes.
To maintain culture in DevOps, the operations must col-
laborate with development team. ,e organization should
schedule meetings in which both operations and develop-
ment teams are present. ,ey should share their ideas and
point of view with each other to maintain continuous flow.

3.2.3. Automation. To obtain frequent feedbacks and soft-
ware delivery on time, automation of built, testing, and
deployment process are essential. To perform this task, the
teams need deployment pipeline to be automated. If de-
velopment team made any change in the software, this
change will be handed over to operations team for imple-
mentation after performing series of testing in the pipeline.
After the approval of new change, the team will be ready to
deploy the software product towards production units.

3.2.4. Measurement. In measurement, monitoring of high-
and low-grade business metrics is performed. ,e elements
involved in high-level metrics are revenue, time, transac-
tions, cost, etc. In low-level metrics, the people are observed.
To improve performance, people skills, behavior, and ca-
pabilities cannot be measured; therefore, the right decision
must be made while selecting the project team. ,e key
metrics (high and low) must be visible to the team involved
in development process, so that their performance is
measured.

3.2.5. Sharing. ,e sharing principle of DevOps includes
sharing of knowledge, resources, tools, and techniques,
management of infrastructure, and environments for

Mathematical Problems in Engineering 3

development and operations teams. To release a valuable
software product, two teams must collaborate with each
other in all phases of development until the release of
software.

To perform mapping, we have followed the guidelines
and coding scheme of Grounded ,eory (GT) approach
[26].,e SFs are grouped to CAMS category.,e 4 key steps
were performed for mapping process that includes code,
subcategories, categories, and theory/framework. Based on
the understanding of SFs, all the authors of this research
mapped the factors into related category of DevOps prin-
ciples (CAMS). ,e mapping scheme is shown in Figure 2.

To remove personal biases during mapping, we have
performed interrater reliability test [27]. ,e three external
experts having knowledge about DevOps and empirical
software engineering were invited to perform this task. ,e
experts were from Nanjing University, China, and Software
organization in UK. ,e experts followed all the steps of
mapping again and grouped the identified SFs according to
their knowledge.,e responses collected from study authors
and external experts were further evaluated by calculating
the nonparametric Kendall’s coefficient of concordance (W)
[27]. ,e value of W near to 1 shows agreement, and the
value of W near to 0 represents disagreement on the
grouping of SFs (performed by both authors of this research
and external experts). ,e outcomes (W� 0.91) show the
significant agreement between the teams.

3.3. Phase 3: (RQ1: State of Practices &RQ2). ,e objective of
questionnaire survey is to validate the mapping scheme and
to determine the logical relationship of SFs with DevOps
principles (CAMS). ,e steps adopted to perform ques-
tionnaire survey are presented in Figure 1. ,is technique
will help the researchers gather information from real in-
dustry of DevOps environment. Akbar et al. [28] followed

the same approach to collect expert’s opinion from large
population. ,ey developed the questionnaire to determine
the existence of identified factors in real industry. Akbar
et al. used this approach in two other studies while inves-
tigating success factors of requirement change management
[29] and while investigating challenges of requirement
change management [30]. Khan et.al [31] also used ques-
tionnaire survey approach to investigate the barriers of
software process improvement in software organizations.

3.3.1. Questionnaire Development. ,e questionnaire was
designed by using the platform of Google form. ,e sample
questionnaire consists of four sections: (1) biographical
information, (2) the closed-ended questions that consist of
DevOps SFs identified from literature along with mapping
categories, (3) to analyze the relationship of DevOps SFs
with CAMS criteria, and 4) this section consists of open
ended questions to gather additional information to prac-
titioners related to DevOps implementation.,e Likert scale
was used to collect responses from practitioners. ,e Likert
scale consists of responses, i.e., positive�Extremely Agree
(EA) and Agree (A), negative�Extremely Disagree (ED)
and Disagree (D), and Neutral (N). ,e positive response
indicates the number of participants who agreed on map-
ping scheme of DevOps SFs. However, the negative response
shows the percentage of participants who did not consider
the mapping scheme effective for DevOps implementation.
,e neutral category indicates the participants’ feedback
who have a neutral opinion about the DevOps SFs.

3.3.2. Pilot Assessment of Questionnaire. ,e developed
questionnaire was initially assessed concerning to the un-
derstand-ability and scalability of designed questions and
the structure of the questionnaire. To perform pilot as-
sessment, we emailed our questionnaire sample to three

Research Map

Phase 1: Systematic Literature Review Phase 2: Mapping of Success Fcators

Phase 4: PROMETHEE II

Phase 3: Empirical Approach

Choose appropriate categories

Choose appropriate sub categories

Verify the concept/theory before assigning category

Present mapping view

Collect opinion from decision-makers regarding factors

Convert linguistic terms to numbers

Normalized the values

Pairwise comparison of factors

Piroritization

Survey analysis

Data source

Pilot assessment of questionnaire

Develop of Questionnaire

Report the results

Analyze primary studies

Select relevant studies

Search the literature

Choose appropriate search keywords

Formulate research questions

Figure 1: Research design.

4 Mathematical Problems in Engineering

external experts (two from Soft. Tech Spain and one from
King Fahd University, Saudi Arabia). ,e requested experts
suggested some modifications related to questionnaire de-
sign, e.g., to add Likert scale before section 2 and to add
comments point in section 4 (to gather more open view
about successful implementation of DevOps from partici-
pants). We redesigned our questionnaire according to the
recommendation of experts. ,e final version of question-
naire after approval of experts is presented in Appendix B.

3.3.3. Data Source. ,e objective of this study to validate the
mapping scheme of DevOps SFs with CAMS criteria [13] and
analyze the weightage of each factor with respect to CAMS
criteria. ,e data source is essential to gather responses from
targeted population. ,erefore, for validation of the mapping
scheme we have used is Research-Gate, Emails, and LinkedIn
profiles. To spread questionnaire, we have used snowball
approach [32], which is a cost effective method to gather
responses from targeted population [33]. During data col-
lection phase (i.e., January 2021 to February 2021), we have
collected total 100 complete responses. ,e details about
participants responses are presented in Section 4.

3.3.4. Survey Data Analysis. ,e frequency distribution
approach will help in analyzing qualitative and quantitative

data. According to [34], “this is an effective technique that
assists in measuring the ordinal and nominal data within
group (variables) and across the group.” ,is technique is
statistically used to compare the SFs and their importance
for DevOps implementation process. Niazi et al. [35] used
the survey approach to determine the importance of project
management in global software development. Akbar et al.
[36] used the survey approach to investigate the heavy
weight and light weight methodologies on the point star
model. Sloane et al. [37] applied the case study and survey
approach for the assessment of decision support system in
clinical engineering.

3.4. Phase 4: (RQ2). ,e PROMETHEE “Preference Ranking
Organization Method of Enrichment Evaluation” approach
was first presented by Brans et al. [20] in 1985. ,ere are
several versions of PROMETHEE available, for example,
PROMETHEE I, II, III, IV, V, cluster, etc. ,e nature of a
research problem decides the application of the approach.
Considering advantages of PROMETHEE technique, it is
easy to apply with low complexity rate. ,is approach has
treated many successful applications in various fields for
decision analysis. For example, few methods related to
PROMETHEE-II are used in emergency management area,
where we have to deal with multicriteria decision-making

Measurement

Continuous measurement for service
failure recovery without delay (SF4)
High performing project team (SF5)
Training of DevOps activities (SF10)
Requirement traceability to avoid risks
(SF11)
Continuous Test and integration for
assessment (SF12)
Monitoring automation for frequent
delivery (SF14)
Configuration management for code and
infrastructure (SF16)

Top management support (SF16)
Customer feedback to improve
development (SF8)
Vision sharing and goal for change (SF9)

Continuous meeting schedules, to observe
roles and responsibilites of team members
(SF2)

Continuous scalability and performance
measures for better release (SF3)

Deployment automation without having
delay with production (SF13)
Metrics automation for continuous
deployment (SF15)

Collaborative and continous development
environment (SF1)

Effective communication between
development and operational team (SF7)

DevOps Success Factors Mapping

Sharing

Automation

Culture

Figure 2: Mapping of SFs with DevOps principles (CAMS).

Mathematical Problems in Engineering 5

(MCDM) problems, as it is difficult to manage timeliness
requirements in emergency management for so many steps
of traditional algorithm and the large number of calculation
and comparisons [20].,ismethod is also used in the field of
chemistry [38] and health care [39], where a detailed analysis
on logical relationship between elements is required. ,e
logistic management and information technology are also
using PROMETHEE-II approach, because “it is interactive
and is able to classify and order alternatives, which are
complex and difficult to compare” [22]. ,e other advan-
tages of this method are simplicity, stability, and clarity [40].
,e PROMETHEE-II principles are based on pairwise
comparison of alternatives with each criterion. Behzadian
et al. [41] stated that, in PROMETHEE-II, we evaluated the
alternatives based on different criteria (which have to be
maximized or minimized). During the comparative study,
each criterion should be able to distinguish the alternatives,
regardless of how the alternatives behave under other cri-
teria. PROMETHEE is useful in providing complete detail of
ranking alternatives, but like other MCDM approaches,
“decision makers have to assign weights to each criteria and
should have knowhow about outranking relationship be-
tween different alternatives and fuzzy variable term of scale”
[42].

,e seven steps (Figure 3) required performing
PROMETHEE-II approach are discussed as follows:

Step 1. ,e decision matrix is normalized using beneficial
and nonbeneficial criteria:

Dij �
Mij − minMij􏽨 􏽩

max Mij􏼐 􏼑 − min Mij􏼐 􏼑􏽨 􏽩
(Beneficial Criteria), (1)

where i� 1, 2, 3, . . ., n and j� 1, 2, 3, . . ., m

Dij �
maxMij − Mij􏽨 􏽩

max Mij􏼐 􏼑 − min Mij􏼐 􏼑􏽨 􏽩
(NonBeneficial Criteria),

(2)

where Mij is a decision-maker’s evaluation of ith alternative
with respect to jth criterion.

Step 2. “,e difference of ith alternative as compared with
other ones are determined in this step” [42]. ,is means that
pairwise comparison of each alternative with criteria should
be assessed.

Step 3. “In this step, we choose and calculate the preference
function Pj (i, i′)” [42].

According to Brans et al. [43], there are 6 various types of
preference functions (ranging from 0 to 1). Figure 4 illus-
trates these preference functions. ,e PROMETHEE ap-
proach induces a preference function to describe the
decision-maker’s preference difference between pairs of
alternatives on each criterion. It is possible to choose a
different function for each criterion. For this study, we have
chosen type-1 preference function.,is function requires no
parameters and thresholds.,e type-1 preference function is

Pj i, i′(􏼁 � 0 if Dij≤Di′j, (3)

Pj i, i′(􏼁 � 1 Dij≤Di′j. (4)

Step 4. In this step, we will calculate aggregate preference
function by combining weights.

π i, i′(􏼁 �
􏽐

m
j�1 Pij i, i′(􏼁wj

􏽐
m
j�1 wj

, (5)

where wj is the weight of relative importance given to (jth)
criterion.

Step 5. “We determine the outranking flow (negative and
positive) for each alternative compared with (p-1) alterna-
tives” [43] as shown in Figure 4, and the formulas used to
calculated leaving and outranking flow are

the entering flow : φ+
(i) �

1
n − 1

􏽘

N

i′−1

π i′, i(􏼁, i≠ i′(􏼁, (6)

the leaving flow: φ−
(i) �

1
n − 1

􏽘

N

i′−1

π i, i′(􏼁, i≠ i′(􏼁, (7)

whereN represents the number of alternatives. “,e entering
flow measures the weakness of alternatives and leaving flow
measures the strength of alternatives” [20].

Step 6. In this step, we calculate the net outranking flow of
all alternatives.

The net flow outranking : φ(i) � φ+
(i) − φ−

(i). (8)

Step 7. “To calculate the ranking of alternatives consider
values of net outranking flow φ(i). ,e highest the φ(i)

value, the best the alternative” [43]. ,e PROMETHEE-II
also avoids incomparability between alternatives.

4. Results

4.1. Identification of Success Factors (RQ1). A total of 69
studies were selected after applying all steps of tollgate
approach during systematic literature review, and sixteen
success factors were identified. ,e list of the SFs along with
percentage wise impact of SFs in DevOps paradigm is
presented in Table 1 and Appendix A shows quality eval-
uation of selected studies in detail.

According to Table 1, the factors “Effective communi-
cation between development and operational team” SF7,
“Top management support” SF6, and “Customer feedback to
improve development” SF8 are the most important factors,
which show positive impact on DevOps paradigm. Con-
sidering the significance of these factors would help in ef-
fective DevOps implementation in software industry. All
identified factors were briefly discussed in our previous
study [9].

6 Mathematical Problems in Engineering

4.2. Mapping of DevOps Success Factors (RQ2). Further, we
performed mapping of identified SFs into 4 categories of
DevOps principles, i.e., culture, automation, measurement,
and sharing [10]. Research team and three external re-
searchers, as explained in Section 3, perform the mapping.
,e aim of this criteria wise subdivision is to perform
PROMETHEE-II analysis for logical relationship and
ranking of SFs based on their importance with DevOps
process improvement. To verify the findings of mapping, we
have applied interrater reliability analysis and questionnaire
survey. ,e demographic details of survey participants are
listed in Appendix C. Figure 2 shows the final version of
DevOps success factors mapping. ,e majority of survey
participants agreed on the SFs mapping with DevOps
principles (CAMS) Table 2. ,e frequency analysis results in
Table 2 show that most of the success factors and their
mapped category are >55%. Furthermore, results show that
“culture” and “automation” with 91% are the highest ranked
category according to survey respondents and SF8 “cus-
tomer feedback to improve development” with 90% being
the high ranked SF for DevOps implementation in software
organization.

4.3. Results of PROMETHEE-II Approach (RQ2). To analyze
the logical relationship and ranks of the identified SFs of
DevOps, we have adopted PROMETHEE-II approach [20].
,is approach enhances decision-making capabilities of
DevOps experts for making decision to consider particular
success factor (based on CAMS criteria) for DevOps
implementation. To perform this task, the questionnaire
survey was conducted as mentioned in above section. ,e
linguistic values assigned by participants of survey (as

weightage) were converted into numbers. Table 3 presents
the weighted categories with pairwise percentage of SFs for
DevOps. ,e percentage of each SF is determined by using a
Likert scale explained in Section 3.

,e steps performed for PROMETHEE-II analysis are as
follows.

Step 1:To determine normalized decision, matrices (1)
and (2) were used. Table 4 shows the constructed
normalized decision matric. ,e criterion “automa-
tion” is selected as a nonbeneficial criterion and au-
tomation, measurement, and sharing as a beneficial
criterion. ,is selection of cost and beneficial criteria
was done depending upon nature of criteria selected for
analysis. In this study, “automation” having attributes,
i.e., cost, time, effort, etc., must be reduced while
implementing DevOps in software organization.
Step 2: To determine the difference in categories and
success factors, pairwise difference is calculated. For
example, the pairwise difference of SF1 with respect to
DevOps principles is calculated in Table 5. ,e same
method has been adopted to calculate the difference of
other SFs (Appendix D).
Step 3: To calculate the preference function, “type-1
function” is selected, as no parameters are required.
,is selection of preference function was made
depending upon the nature of problem. We replaced
the calculated pairwise difference values considering
(3) and (4). For example, the preference function values
of SF1 are presented in Table 6.
Step 4: Using (5) aggregate preference function is
calculated. ,e results of SF1 are shown in Table 7. ,e
results of all the other SFs are presented in Appendix D.
Step 5:We determined the positive outranking flow and
negative outranking flow for each success factor
compared with (p −1) factors (SFs) using (6) and (7).
Table 8 presents all values of positive and negative
outranking flow.
Step 6: (8) is used to calculate net outranking flow as
shown in Table 9.
Step 7: We ranked the SFs considering values of net
outranking flow φ(i). ,e highest the φ(i) value, the
best the success factor (Table 9). ,e graphical pre-
sentation of ranking is shown in Figure 5.

According to the ranking of SFs in Table 9 and Figure 5,
“customer feedback to improve development” SF8 is the
most critical SF. ,erefore, while dealing with continuous
development, practitioners should collect customer feedback
continuously to deliver software product on time. ,e
versions of software were updated according to customer’s
feedback without effecting the other tasks [4]. “Configura-
tion management for code and infrastructure” SF16 ranked
second most important SF in terms of DevOps imple-
mentation. ,e percentage results of SF16 calculated from
SLR 17% show that this factor is not discussed in detail in
literature and needs further research. However, the real
industry practitioners and research authors of this study

PRAOMETHEE II

Normalize the decision matrix

Pairwise comparison of alternatives

Calculate preference function

Calculate aggregate preference function

Calculate outranking flows

Calculate Net outranking flows

Prioritization7

6

5

4

3

2

1

Figure 3: PROMETHEE-II steps.

Mathematical Problems in Engineering 7

consider this factor as an important factor to make positive
impact on DevOps implementation. “Effective communi-
cation between development and operational team” SF7 is
the third most important SF for DevOps implementation. As
communication is the backbone of DevOps paradigm [11],
without effective communication between teams, the
DevOps implementation is not possible. “Continuous Test
and integration for assessment” SF12 is the fourth most
significant SFs for DevOps implementation. ,e DevOps

paradigm requires continuous testing [44] and integration
[45] to assess the performance of software product during
development phase. ,is integration for assessment will
resolve several issues related to testing and security [46]. ,e
other high ranked SFs are “Continuous meeting schedules,
to observe roles and responsibilities of team members” SF2,
“Continuous scalability and performance measures for
better release” SF3, and “Collaborative and continuous
development environment” SF1 playing important role in

P(d)

1

d

P(d)

1

1 2

3 4

5 6

(usual rule)
(Half rule)

P(d)= 1

P(d)= 0

d>0

d<=0
P(d)= 1

P(d)= 0

d>p

d<=p

p d

P(d)

1

dp

P(d)

1

0.5

(linear priority rule) (Mulitclass rule)

P(d)= 1

P(d)= d/p

d>p

d<=p

P(d)= 1
P(d)= 0.5

P(d)= 0

d>p
q<d<=p

d<=p

q dp

P(d)

1

dp

P(d)

1

q

(Gaussian Rule)

P(d)= 0

P(d)= 1 d>p

P(d)= (d-q)(p-q) q<d<=p

d<= p

(indifference interval linear rule)

P(d)= 1-e(-dsq/2osq)

P(d)= 0

d>0

d<=0

ø d

Figure 4: Preference functions.

8 Mathematical Problems in Engineering

terms of DevOps implementation and better performance
measure in software organization.

4.4. Ranking Based Taxonomy of DevOps Success Factors.
Furthermore, we have determined the ranking of SFs
according to CAMS criteria to develop a holistic taxonomy.
,e DevOps principles, i.e., CAMS, are briefly explained in
Section 3. We have used the formal approach for mapping of
SFs with CAMS criteria (section 3), applied in other research
as well. ,e developed taxonomy of SFs and DevOps
principles will enhance decision-making capabilities of
DevOps experts to consider particular success factor for
DevOps implementation. Figure 6 shows the overall ranking
“OR” and criterion wise ranking “CR” of success factors,
respectively. According to the ranking, “Effective commu-
nication between development and operational team” SF7 is
ranked as third in OR of pairwise comparison but ranks first

in CR in “culture” criterion of DevOps principles, similarly,
“Vision sharing and goal for change” SF 9, OR� 8 and
CR� 2, which indicates that SF9 has significant value within
the mapped criterion, i.e., “sharing.” ,is ranking of SFs will
assist the practitioners in improving their decision-making
approach for the consideration of particular success factor
within the criterion and as a whole.

5. Discussion and Summary

,e objective of this research is to identify SFs that can affect
DevOps implementation in positive manner. To address this
research objective, firstly, we have conducted a SLR study to
explore DevOps SFs in available literature. Secondly, the
mapping of success factors into CAMS criteria [10] was
performed with study authors and three external researchers
(DevOps experts). ,irdly, to verify the mapping scheme of
DevOps SFs, we have conducted a questionnaire survey.

Table 1: List of identified SFs [9].

Identified DevOps success factors Percentage (%)
“Collaborative and continuous development environment (SF1)” 51
“Continuous meeting schedules, to observe roles and responsibilities of team members (SF2)” 70
“Continuous scalability and performance measures for better release (SF3)” 68
“Continuous measurement for service failure recovery without delay (SF4)” 33
“High performing project team (SF5)” 58
“Top management support (SF6)” 75
“Effective communication between development and operational team (SF7)” 90
“Customer feedback to improve development (SF8)” 87
“Vision sharing and goal for change (SF9)” 26
“Training of DevOps activities (SF10)” 85
“Requirement traceability to avoid risks (SF11)” 43
“Continuous test and integration for assessment (SF12)” 55
“Deployment automation without having delay with production (SF13)” 36
“Monitoring automation for frequent delivery (SF14)” 42
“Metrics automation for continuous deployment (SF15)” 49
“Configuration management for code and infrastructure (SF16)” 17

Table 2: Questionnaire response of survey participants.

S.# List of challenges
Number of responses (N� 100)

Positive Negative Neutral
E.A A % D E.D % N %

C Culture 41 50 91 0 0 0 10 10
1 “Collaborative and continuous development environment (SF1)” 30 40 70 5 5 10 20 20
2 “Effective communication between development and operational team (SF7)” 40 40 80 0 5 5 15 15
A Automation 50 41 91 0 1 0 9 9
3 “Continuous meeting schedules, to observe roles and responsibilities of team members (SF2)” 30 38 68 0 3 3 29 29
4 “Continuous scalability and performance measures for better release (SF3)” 20 40 60 3 5 8 32 32
5 “Deployment automation without having delay with production (SF13)” 40 40 80 0 5 5 15 15
6 “Metrics automation for continuous deployment (SF15)” 31 34 65 5 5 10 25 25
M Measurement 40 32 72 2 2 4 24 24
7 “Continuous measurement for service failure recovery without delay (SF4)” 20 40 60 10 1 11 29 29
8 “High performing project team (SF5)” 28 32 60 5 10 15 25 25
9 “Training of DevOps activities (SF10)” 30 40 70 10 0 10 20 20
10 “Requirement traceability to avoid risks (SF11)” 30 41 71 5 6 11 28 28
11 “Continuous test and integration for assessment (SF12)” 30 40 70 10 0 10 20 20
12 “Monitoring automation for frequent delivery (SF14)” 35 35 70 0 10 10 20 20
13 “Configuration management for code and infrastructure (SF16)” 31 34 65 5 5 10 25 25
S Sharing 30 40 70 6 5 11 19 19
14 “Top management support (SF6)” 30 26 56 4 10 14 30 30
15 “Customer feedback to improve development (SF8)” 40 50 90 1 0 1 9 9
16 “Proper vision and goal for change (SF9)” 39 36 75 5 0 5 20 20

Mathematical Problems in Engineering 9

Finally, the PROMETHEE-II method [20] was applied to
analyze the logical relationship and rank each SF with re-
spect to their significance for DevOps implementation.

(RQ1) What are the success factors of DevOps reported
in state of the art and state of the practices?

To answer this research question, we have conducted a
SLR study to explore DevOps SFs available in literature. ,e
16 success factors were identified presenting the key areas
where the DevOps experts must focus on for better
implementation of DevOps. ,e SFs were further mapped
into principles of DevOps (CAMS). ,e identified DevOps
SFs and their mapping scheme with CAMS are presented in
Section 4. ,e SFs and their mapping were empirically
investigated by questionnaire approach. A total 100 re-
sponses were collected, and the results show that the

identified SFs have positive influence on DevOps imple-
mentation.,e demographic details of participants are given
in Appendix C.

(RQ2) How to enhance decision-making capabilities of
DevOps experts for considering the particular success factor.

We have applied PROMETHEE-II approach systemat-
ically to answer this research question. ,e questionnaire
survey was performed (as explained in Section 3 and Ap-
pendix B) to collect data from practitioners (DevOps ex-
perts) about relationship of SFs. ,e pairwise comparison of
each SF with DevOps principles was performed. ,e SFs
were prioritized based on their net outranking flow value.
,e greater the net outranking flow is, the highest the rank of
SF is compared with other alternatives (SFs). ,is approach
is effective in understanding logical relationship of SF with
DevOps principles (CAMS). ,is approach provides overall
pairwise comparison ranking that will assist DevOps experts
in focusing on the areas that need further practices. ,e
results are discussed in Table 9. ,e results show that
“Customer feedback to improve development” SF 8 is the
most important SF while dealing with DevOps

Table 3: Percentage of SFs for DevOps with weighted categories.

Principles Culture Automation Measurement Sharing
Weights 0.35 0.35 0.25 0.15
Percentage of success factors
SF1 70 63 73 73
SF2 80 73 70 81
SF3 81 75 69 83
SF4 67 79 62 60
SF5 76 70 60 60
SF6 69 50 61 52
SF7 89 91 90 70
SF8 100 83 71 81
SF9 79 56 67 70
SF10 91 80 63 78
SF11 54 76 69 59
SF12 97 71 64 64
SF13 59 83 60 70
SF14 54 80 71 65
SF15 76 71 53 60
SF16 87 71 91 54
Max value 100 91 91 83
Min value 54 50 53 52

Table 4: Normalized decision-matrix.

Principles Culture Automation Measurement Sharing
Weighted values 0.35 0.35 0.25 0.15
Normalized decision-matrix
SF1 0.35 0.68 0.53 0.68
SF2 0.57 0.44 0.45 0.94
SF3 0.59 0.39 0.42 1.00
SF4 0.28 0.29 0.24 0.26
SF5 0.48 0.51 0.18 0.26
SF6 0.33 1.00 0.21 0.00
SF7 0.76 0.00 0.97 0.58
SF8 1.00 0.20 0.47 0.94
SF9 0.54 0.85 0.37 0.58
SF10 0.80 0.27 0.26 0.84
SF11 0.00 0.37 0.42 0.23
SF12 0.93 0.49 0.29 0.39
SF13 0.11 0.20 0.18 0.58
SF14 0.00 0.27 0.47 0.42
SF15 0.48 0.49 0.00 0.26
SF16 0.72 0.49 1.00 0.06

Table 5: Pairwise difference of identified SF1.

Principles Culture Automation Measurement Sharing
Pairwise difference of SF1
D(SF1-SF2) −0.22 0.24 0.08 −0.26
D(SF1-SF3) −0.24 0.29 0.11 −0.32
D(SF1-SF4) 0.07 0.39 0.29 0.42
D(SF1-SF5) −0.13 0.17 0.35 0.42
D(SF1-SF6) 0.02 −0.32 0.32 0.68
D(SF1-SF7) −0.41 0.68 −0.44 0.10
D(SF1-SF8) −0.65 0.48 0.06 −0.26
D(SF1-SF9) −0.19 −0.17 0.16 0.10
D(SF1-SF10) −0.45 0.41 0.27 −0.16
D(SF1-SF11) 0.35 0.31 0.11 0.45
D(SF1-SF12) −0.58 0.19 0.24 0.29
D(SF1-SF13) −0.24 0.48 0.35 0.10
D(SF1-SF14) 0.35 0.41 0.06 0.26
D(SF1-SF15) −0.13 0.19 0.53 0.42
D(SF1-SF16) 0.37 0.19 −0.47 0.62

Table 6: Preference function values of SF1.

Principles Culture Automation Measurement Sharing
Preference function values of SF1
D(SF1-SF2) 0.00 0.24 0.08 0.00
D(SF1-SF3) 0.00 0.29 0.11 0.00
D(SF1-SF4) 0.07 0.39 0.29 0.42
D(SF1-SF5) 0.00 0.17 0.35 0.42
D(SF1-SF6) 0.02 0.00 0.32 0.68
D(SF1-SF7) 0.00 0.68 0.00 0.10
D(SF1-SF8) 0.00 0.48 0.06 0.00
D(SF1-SF9) 0.00 0.00 0.16 0.10
D(SF1-SF10) 0.00 0.41 0.27 0.00
D(SF1-SF11) 0.35 0.31 0.11 0.45
D(SF1-SF12) 0.00 0.19 0.24 0.29
D(SF1-SF13) 0.24 0.48 0.35 0.10
D(SF1-SF14) 0.35 0.41 0.06 0.26
D(SF1-SF15) 0.00 0.19 0.53 0.42
D(SF1-SF16) 0.00 0.19 0.00 0.62

10 Mathematical Problems in Engineering

Table 7: Aggregate preference function values.

Principles Culture Automation Measurement Sharing Total
Aggregate preference function values of SF1
D(SF1-SF2) 0.00 0.08 0.02 0.00 0.10
D(SF1-SF3) 0.00 0.10 0.03 0.00 0.13
D(SF1-SF4) 0.02 0.14 0.07 0.06 0.30
D(SF1-SF5) 0.00 0.06 0.09 0.06 0.21
D(SF1-SF6) 0.01 0.00 0.08 0.10 0.19
D(SF1-SF7) 0.00 0.24 0.00 0.01 0.25
D(SF1-SF8) 0.00 0.17 0.01 0.00 0.18
D(SF1-SF9) 0.00 0.00 0.04 0.01 0.06
D(SF1-SF10) 0.00 0.14 0.07 0.00 0.21
D(SF1-SF11) 0.12 0.11 0.03 0.07 0.33
D(SF1-SF12) 0.00 0.07 0.06 0.04 0.17
D(SF1-SF13) 0.08 0.17 0.09 0.01 0.36
D(SF1-SF14) 0.12 0.14 0.01 0.04 0.32
D(SF1-SF15) 0.00 0.07 0.13 0.06 0.26
D(SF1-SF16) 0.00 0.07 0.00 0.09 0.16

Table 8: Outranking flow of SFs for DevOps (positive and negative).

Factors SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16 φ+

SF1 0 0.1 0.13 0.3 0.21 0.19 0.25 0.18 0.06 0.21 0.33 0.17 0.36 0.32 0.26 0.16 0.22
SF2 0.12 0 0.02 0.31 0.2 0.29 0.21 0.09 0.08 0.12 0.34 0.12 0.37 0.34 0.25 0.13 0.20
SF3 0.13 0.02 0 0.3 0.21 0.29 0.2 0.08 0.09 0.11 0.33 0.12 0.36 0.34 0.26 0.14 0.20
SF4 0 0 0 0 0.04 0.07 0.1 0.03 0 0.01 0.13 0 0.11 0.11 0.08 0.05 0.05
SF5 0.05 0.02 0.04 0.15 0 0.09 0.18 0.11 0 0.08 0.22 0.01 0.24 0.25 0.05 0.04 0.10
SF6 0.11 0.2 0.21 0.26 0.17 0 0.35 0.28 0.05 0.26 0.39 0.18 0.38 0.42 0.18 0.18 0.24
SF7 0.26 0.2 0.2 0.4 0.34 0.43 0 0.12 0.23 0.18 0.46 0.2 0.42 0.41 0.39 0.09 0.29
SF8 0.27 0.16 0.16 0.41 0.36 0.44 0.21 0 0.24 0.14 0.47 0.15 0.44 0.43 0.4 0.23 0.30
SF9 0.13 0.14 0.16 0.37 0.23 0.2 0.3 0.23 0 0.23 0.41 0.18 0.43 0.42 0.29 0.2 0.26
SF10 0.18 0.08 0.07 0.27 0.22 0.3 0.15 0.03 0.13 0 0.37 0.07 0.33 0.34 0.26 0.15 0.20
SF11 0 0 0 0.07 0.06 0.09 0.13 0.06 0.01 0.07 0 0.03 0.12 0.04 0.11 0.02 0.05
SF12 0.2 0.15 0.15 0.33 0.2 0.29 0.23 0.1 0.14 0.13 0.39 0 0.42 0.4 0.25 0.12 0.23
SF13 0 0 0 0.05 0.05 0.09 0.07 0 0 0 0.09 0.03 0 0.06 0.09 0.08 0.04
SF14 0 0.01 0.01 0.08 0.1 0.13 0.09 0.03 0.03 0.05 0.04 0.05 0.1 0 0.14 0.05 0.06
SF15 0.05 0.02 0.03 0.14 0 0.09 0.17 0.1 0 0.08 0.22 0 0.23 0.25 0 0.03 0.09
SF16 0.25 0.21 0.23 0.41 0.29 0.34 0.18 0.23 0.22 0.26 0.44 0.18 0.52 0.46 0.33 0 0.30
φ− 0.12 0.09 0.09 0.26 0.18 0.22 0.19 0.11 0.09 0.13 0.31 0.10 0.32 0.31 0.22 0.11

Table 9: Net outranking flow and ranks of SFs.

DevOps success factors Leaving
flow

Entering
flow

Out ranking
flow Ranking

“Collaborative and continuous development environment (SF1)” 0.22 0.12 0.10 7
“Continuous meeting schedules, to observe roles and responsibilities
of team members (SF2)” 0.20 0.09 0.11 6

“Continuous scalability and performance measures for better release (SF3)” 0.20 0.08 0.12 5
“Continuous measurement for service failure recovery without delay (SF4)” 0.05 0.26 −0.21 13
“High performing project team (SF5)” 0.10 0.18 −0.08 11
“Top management support (SF6)” 0.24 0.22 0.02 10
“Effective communication between development and operational team (SF7)” 0.29 0.2 0.17 3
“Customer feedback to improve development (SF8)” 0.30 0.11 0.19 1
“Vision sharing and goal for change (SF9)” 0.26 0.09 0.09 8
“Training of DevOps activities (SF10)” 0.20 0.13 0.07 9
“Requirement traceability to avoid risks (SF11)” 0.05 0.31 −0.26 15
“Continuous test and integration for assessment (SF12)” 0.23 0.1 0.13 4
“Deployment automation without having delay with production (SF13)” 0.04 0.32 −0.28 16
“Monitoring automation for frequent delivery (SF14)” 0.06 0.31 −0.25 14
“Metrics automation for continuous deployment (SF15)” 0.09 0.22 −0.13 12
“Configuration management for code and infrastructure (SF16)” 0.30 0.12 0.18 2

Mathematical Problems in Engineering 11

SF13
SF11
SF14

SF4
SF15

SF5
SF6

SF10
SF7
SF1
SF2
SF3

SF12
SF9

SF16
SF8

Ranking of DevOps Success Factors
16

15
14

13
12

11
10

The values from 1 to 16 shows
ranking based on net
outranking flow. Greater the
net outranking flow the highest
will be the rank.
SF= “Success Factor”

9
8

7
6

5
4

3
2

1

Figure 5: Graphical representation of SFs overall ranking.

DevOps Success
Factors

SF
6

SF2

SF3

SF13

SF15

SF4

SF5

SF
10

SF
11

SF
12

SF14

SF16

SF7

SF1

SF
8

SF9
OR=8, CR=2

OR=1,
CR=1

O
R=

10
, C

R=
3

O
R=6, CR=2

OR=5, CR=1

OR=13, CR=4

OR=12, CR=3

OR=13, CR=5

OR=11, CR=4

OR=9, C
R=3

OR=
15

, C
R=

7

O
R=

4,
 C

R=
2 O

R=14, CR=6

OR=2, CR=1

OR=3, CR=1

OR=7, CR=2

Au
tom

ati
on

w=0.35 Sharing w=0.15

Cul
tu

re
w=

0.
35

M
easurement w=0.25

Figure 6: Taxonomy of SFs for DevOps based on overall ranking (OR) and criterion ranking (CR).

12 Mathematical Problems in Engineering

implementation. Furthermore, “Configuration management
for code and infrastructure” SF16 and “Effective commu-
nication between development and operational team” SF7
are the second and third highest ranked factors that can help
in progressive implementation of DevOps. Figure 5 shows
the graphical representation of SFs according to their
ranking.

In addition, we have developed the taxonomy of DevOps
SFs based on CAMS criteria (principles of DevOps) [10]
(Section 3). ,e questionnaire survey conducted to validate
the ranking and relationship of SFs with mapped category
strongly emphasized that all the categories are important to
make DevOps process successful. ,e participants of survey
ranked “culture” and “automation” w � 0.35 as the highest
ranked categories as DevOps overall commitment is about
collaboration between teams and continuous deployment in
order to deliver software product in manageable time. We
further noted that “measurement” and “sharing” (w � 0.25,
w � 0.15) are ranked as second and third ranked categories of
DevOps principles for successful implementation of
DevOps.

,e overall taxonomy of DevOps SFs with their mapped
criterion and ranking is presented Figure 6. From Figure 6, it
is clear that some factors have overall ranking low but are
considered important in their mapped criterion. For ex-
ample, “Effective communication between development and
operational team” SF7 overall ranking is “OR� 3” but in
“culture” category, it is ranked as “CR� 1” showing that
significance of SF7 is more with respect to mapped category.
,is taxonomy provides holistic view to DevOps experts
about DevOps SFs by focusing on SFs with respect to their
overall and criterion ranking. ,e DevOps experts after
knowing the significance of factors can apply new practices
to consider these SFs in their organization for better
implementation of DevOps.

5.1.Areats to Validity. A potential threat towards the study
findings is the biasness in the mapping of success factors in
DevOps principles (CAMS criteria). In mapping process, the
first two authors of this study perform the mapping pro-
cedure via coding scheme (labelling, categories, subcate-
gories, and theory).,e initial mapping is verified by authors
nos. 3 and 4. Furthermore, we applied the interrater reliable
test with external and according to the value ofW� 0.91; the
mapping process is consistent.

Secondly, the sample size n� 100 for questionnaire
survey studymight not be strong enough to justify the results
of empirical study. However, based on other research studies
of other software engineering domain, the 100 response is a
representative set for generalization of study results.

,e third threat is about scheduling time with partici-
pants for survey analysis. To avoid this threat, we have given
them a long time span of more than two months. We also
provided our e-mail ID and contact details to the partici-
pants in case they need further discussion.

5.2. Study Implications. ,e ultimate objective of this study
is to explore the factors that could positively influence the

DevOps process execution, reported by state-of-the-art and
state-of-practices. Further, this study addresses the multi-
criteria decision-making problem using PROMETHEE-II
method.,e explored success factors and their prioritization
based on PROMETHEE-II approach are useful for academic
researchers to the development of new and effective strat-
egies by considering the most important influencing areas of
DevOps process.

,e findings of this study also have practical implication
as the study explored and prioritized the important success
factors of DevOps paradigm. ,e practitioners need to
consider the highest priority success factors for the suc-
cessful execution of DevOps activities.

6. Conclusion and Future Directions

Presently, the software market demanded high quality
product with continuous delivery in order to satisfy cus-
tomer with their services. DevOps can increase the com-
munication, reliability, and trust between developers and
operations teams and can help software organizations in
yielding better outcomes. ,erefore, to make DevOps
implementation successful for continuous development and
delivery of software product, in this study, 16 SFs of DevOps
were identified using SLR approach. ,e identified SFs will
assist the DevOps experts towards better implementation of
DevOps in their organization.

,e identified factors were further mapped into the
DevOps basic principles (CAMS) and verified from in-
dustrial practitioners by conducting questionnaire survey.
We gathered 100 complete responses, which address that the
identified SFs are significant for DevOps implementation
process. In addition, the PROMETHEE-II technique is used
to analyze the logical relationship and ranks of the factors,
and their corresponding categories with respect to their
significance towards DevOps implementation. ,e ranking
taxonomy was developed, which will help DevOps experts
focus on the crucial areas that needs more practices.
“Customer feedback to improve development” SF 8 and
“Configuration management for code and infrastructure”
SF16 are the most important success factors (based on their
ranking) that must be considered while working on DevOps
implementation. However, “Configuration management for
code and infrastructure” SF16 with percentage of 17% shows
that less researchers have explored this factor. ,erefore,
DevOps needs better practices and strategies to improve its
implementation in software organization. In future, we will
investigate the best practices of DevOps that will help fulfil
the requirements of particular success factor. In addition, we
will also explore management for code area to improve
overall infrastructure of DevOps.

Appendix

Appendix A

Primary studies selected for identification of DevOps success
factors.

Link: https://tinyurl.com/y2pfjqst.

Mathematical Problems in Engineering 13

https://tinyurl.com/y2pfjqst

Appendix B

Questionnaire sample.
Link: https://tinyurl.com/4jp9kmb4.

Appendix C

Demographic Detail of participants.
Link: https://tinyurl.com/3uvzvcyf.

Appendix D

PROMETHEE analysis of DevOps success factors.
Link: https://tinyurl.com/4j3zmzp3.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,e authors extend their appreciation to the Deanship of
Scientific Research at Imam Mohammad Ibn Saud Islamic
University for funding this work through research group no.
RG-21-07-03.

References

[1] B. S. Farroha and D. L. Farroha, “A framework for managing
mission needs, compliance, and trust in the DevOps envi-
ronment,” in Proceedings of the 2014 IEEE Military Com-
munications Conference, IEEE, Baltimore, MD, USA, 6
October 2014.

[2] M. Virmani, “Understanding DevOps & bridging the gap
from continuous integration to continuous delivery,” in
Proceedings of the Fifth International Conference on the In-
novative Computing Technology (INTECH 2015), IEEE, Galcia,
Spain, 20 May 2015.

[3] V. Andrikopoulos, A. Reuter, S. Gómez Sáez, and F. Leymann,
“A GENTL approach for cloud application topologies,” in
Proceedings of the European Conference on Service-Oriented
and Cloud Computing, pp. 148–159, Springer, Manchester,
UK, 2 September 2014.

[4] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Dimensions of
devops,” in Proceedings of the International conference on agile
software development, pp. 212–217, Springer, Helsinki, Fin-
land, 25 May 2015.

[5] J. Waller, N. C. Ehmke, and W. Hasselbring, “Including
performance benchmarks into continuous integration to
enable DevOps,”ACMSIGSOFT - Software Engineering Notes,
vol. 40, no. 2, pp. 1–4, 2015.

[6] F. Erich, C. Amrit, and M. Daneva, “A mapping study on
cooperation between information system development and
operations,” in Proceedings of the International Conference on
Product-Focused Software Process Improvement, pp. 277–280,
Springer, Helsinki, Finland, 10 December 2014.

[7] S. K. Bang, S. Chung, Y. Choh, and M. Dupuis, “A grounded
theory analysis of modern web applications: knowledge, skills,
and abilities for DevOps,” in Proceedings of the 2nd annual

conference on Research in information technology, pp. 61-62,
Orlando Florida USA, 10 October 2013.

[8] S. Rafi, W. Yu, M. A. Akbar, S. Mahmood, A. Alsanad, and
A. Gumaei, Readiness model for DevOps implementation in
software organizations. Journal of Software: Evolution and
Process, vol. 33, no. 4, p. e2323, 2021.

[9] S. Rafi, W. Yu, and M. A. Akbar, “RMDevOps: a road map for
improvement in DevOps activities in context of software
organizations,” in Proceedings of the Evaluation and Assess-
ment in Software Engineering, pp. 413–418, Trondheim
Norway, 15 April 2020.

[10] J. Humble and J. Molesky, “Why enterprises must adopt
devops to enable continuous delivery,” Cutter IT Journal,
vol. 24, no. 8, p. 6, 2011.

[11] T. Peuraniemi, “DevOps, value-driven principles, method-
ologies and tools,” Data-and Value-Driven Software Engi-
neering with Deep Customer Insight, vol. 43, 2017.

[12] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for
release engineering and DevOps,” in Proceedings of the 2015
IEEE/ACM 3rd International Workshop on Release Engi-
neering, IEEE, Florence, Italy, 30 July 2015.

[13] F. Erich, C. Amrit, and M. Daneva, “Cooperation between
information system development and operations: a literature
review,” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Mea-
surement, ACM, Torino Italy, 18 September 2014.

[14] R. W. Macarthy and J. M. Bass, “An empirical taxonomy of
DevOps in practice,” in Proceedings of the 2020 46th Euro-
micro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 221–228, IEEE, Portoroz, Slovenia,
26 August 2020.

[15] M. Gokarna and R. Singh, “DevOps: a historical review and
future works,” in Proceedings of the 2021 International
Conference on Computing, Communication, and Intelligent
Systems (ICCCIS), pp. 366–371, IEEE, Greater Noida, India,
19 February 2021.

[16] A. Mishra and Z. Otaiwi, “DevOps and software quality: a
systematic mapping,” Computer Science Review, vol. 38, Ar-
ticle ID 100308, 2020.

[17] S. Rafi, W. Yu, M. A. Akbar, A. Alsanad, and A. Gumaei,
“Multicriteria based decision making of DevOps data quality
assessment challenges using fuzzy TOPSIS,” IEEE Access,
vol. 8, pp. 46958–46980, 2020.

[18] J. Smeds, K. Nybom, and I. Porres, “DevOps: a definition and
perceived adoption impediments,” in Proceedings of the In-
ternational conference on agile software development,
Springer, Helsinki, Finland, 25 May 2015.

[19] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A
survey of DevOps concepts and challenges,” ACM Computing
Surveys, vol. 52, no. 6, pp. 1–35, 2019.

[20] J. P. Brans, P. Vincke, and B. Mareschal, “How to select and
how to rank projects: the PROMETHEE method,” European
Journal of Operational Research, vol. 24, no. 2, pp. 228–238,
1986.

[21] V. Balali, B. Zahraie, and A. Roozbahani, “A comparison of
AHP and PROMETHEE family decision making methods for
selection of building structural system,” American Journal of
Civil Engineering and Architecture, vol. 2, no. 5, pp. 149–159,
2014.

[22] A. P. U. Siahaan and M. Mesran, Best Student Selection Using
Extended PROMETHEE-II Method, osf.io, 2017.

[23] P. Liu and Z. Guan, “Evaluation research on the quality of the
railway passenger service based on the linguistic variables and

14 Mathematical Problems in Engineering

https://tinyurl.com/4jp9kmb4
https://tinyurl.com/3uvzvcyf
https://tinyurl.com/4j3zmzp3

the improved PROMETHEE-II method,” Journal of Com-
puters, vol. 4, no. 3, pp. 265–270, 2009.

[24] H. Zhao, Y. Peng, and W. Li, “Revised PROMETHEE II for
improving efficiency in emergency response,” Procedia
Computer Science, vol. 17, pp. 181–188, 2013.

[25] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Cités,
vol. 1, 2007.

[26] W. A. Babchuk, “Glaser or Strauss? Grounded theory and
adult education,” in Proceedings of the 15th Annual Midwest
Research-to-Practice Conference in Adult, Continuing, and
Community Education, ERIC, Lincoln, Nebraska, 17 October
1996.

[27] K. A. Hallgren, “Computing inter-rater reliability for obser-
vational data: an overview and tutorial,” Tutorials in Quan-
titative Methods for Psychology, vol. 8, no. 1, pp. 23–34, 2012.

[28] M. A. Akbar, M. Shafiq, T. Kamal, M. T. Riaz, andM. K. Shad,
“An empirical study investigation of task allocation process
barriers in the context of offshore software development
outsourcing: an organization size based analysis,” Interna-
tional Journal of Computing and Digital Systems, vol. 8, no. 04,
pp. 343–350, 2019.

[29] A. Yagüe, J. Garbajosa, J. Dı́az, and E. González, An ex-
ploratory study in communication in Agile Global Software
Development. Computer Standards & Interfaces, vol. 48,
pp. 184–197, 2016.

[30] J. D. Herbsleb, D. J. Paulish, and M. Bass, “Global software
development at siemens: experience from nine projects,” in
Proceedings of the 27th international conference on Software
engineering, pp. 524–533, IEEE, St. Louis, MO, USA, 15 May
2005.

[31] A. A. Khan, J. Keung, M. Niazi, S. Hussain, and A. Ahmad,
“Systematic literature review and empirical investigation of
barriers to process improvement in global software devel-
opment: client-vendor perspective,” Information and Software
Technology, vol. 87, pp. 180–205, 2017.

[32] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian,
“Selecting empirical methods for software engineering re-
search,” in Guide to Advanced Empirical Software
Engineeringpp. 285–311, Springer, London, England, 2008.

[33] M. Shameem, R. R. Kumar, C. Kumar, B. Chandra, and
A. A. Khan, “Prioritizing challenges of agile process in dis-
tributed software development environment using analytic
hierarchy process,” Journal of Software: Evolution and Process,
vol. 30, no. 11, p. e1979, 2018.

[34] T. Yaghoobi, “Prioritizing key success factors of software
projects using fuzzy AHP,” Journal of Software: Evolution and
process, vol. 30, no. 1, p. e1891, 2018.

[35] M. Niazi, S. Mahmood, M. Alshayeb, A. M. Qureshi, K. Faisal,
and N. Cerpa, “Toward successful project management in
global software development,” International Journal of Project
Management, vol. 34, no. 8, pp. 1553–1567, 2016.

[36] M. A. Akbar, J. Sang, A. A. Khan et al., “Statistical analysis of
the effects of heavyweight and lightweight methodologies on
the six-pointed star model,” IEEE Access, vol. 6, pp. 8066–
8079, 2018.

[37] E. Sloane, M. J. Liberatore, R. L. Nydick, W. Luo, and
Q. B. Chung, “Clinical engineering technology assessment
decision support: a case study using the analytic hierarchy
process (AHP),” in Proceedings of the Second Joint 24th
Annual Conference and the Annual Fall Meeting of the Bio-
medical Engineering Society][Engineering in Medicine and
Biology, IEEE, Houston, TX, USA, 23 October 2002.

[38] K. Finstad, “Response interpolation and scale sensitivity:
evidence against 5-point scales,” Journal of usability studies,
vol. 5, no. 3, pp. 104–110, 2010.

[39] T. M. Amaral and A. P. C. Costa, “Improving decision-
making andmanagement of hospital resources: an application
of the PROMETHEE II method in an Emergency Depart-
ment,” Operations Research for Health Care, vol. 3, no. 1,
pp. 1–6, 2014.

[40] I. Veza, S. Celar, and I. Peronja, “Competences-based com-
parison and ranking of industrial enterprises using PROM-
ETHEE method,” Procedia Engineering, vol. 100, pp. 445–449,
2015.

[41] M. Behzadian, R. B. Kazemzadeh, A. Albadvi, andM. Aghdasi,
“PROMETHEE: a comprehensive literature review on
methodologies and applications,” European Journal of Op-
erational Research, vol. 200, no. 1, pp. 198–215, 2010.

[42] G. Kabra, A. Ramesh, and K. Arshinder, “Identification and
prioritization of coordination barriers in humanitarian supply
chain management,” International Journal of Disaster Risk
Reduction, vol. 13, pp. 128–138, 2015.

[43] J. P. Brans, B. Mareschal, and V. Promethee, “Promethee V:
mcdm problems with segmentation constraints,” INFOR:
Information Systems and Operational Research, vol. 30, no. 2,
pp. 85–96, 1992.

[44] S. Rafi, W. Yu, and M. A. Akbar, “Towards a hypothetical
framework to secure DevOps adoption: grounded theory
approach,” in Proceedings of the Evaluation and Assessment in
Software Engineering, pp. 457–462, ACM, Trondheim Nor-
way, 15 April 2020.

[45] S. N. Mullaguru, “Changing scenario of testing paradigms
using DevOps–A comparative study with classical models,”
Global Journal of Computer Science and Technology, vol. 15,
2015.

[46] H. Myrbakken and R. Colomo-Palacios, “DevSecOps: a
multivocal literature review,” in Proceedings of the Interna-
tional Conference on Software Process Improvement and Ca-
pability Determination, Springer, Palma de Mallorca, Spain, 4
October 2017.

Mathematical Problems in Engineering 15

