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In this study, the authors extended the concept of spherical fuzzy optimization models by considering different parameters of
spherical fuzzy linear programming problem as symmetric and asymmetric spherical numbers. Eight spherical fuzzy linear
programming models are discussed by converting decision variables, parameters, and coefficients of objective function and
constraints into symmetric and asymmetric spherical fuzzy numbers. To verify the validity and efficiency of this study in contrast
with a linear programming numerical and a physical energy optimization model for the textile industry is considered. .e
application of these symmetric and asymmetric spherical fuzzy optimization models is discussed along with the postoptimal
analysis of the best optimization models that provide the feasible and most optimal solution.

1. Introduction

Growing urbanization is directly related to the increase in
energy demands, usage, and cost. Energy optimization is
globally targeted by every sector. Mostly, an industrial sector
is the one who consumed most of the produced or natural
energy. .e key factor of rising production cost in the in-
dustrial sector is abrupt energy usage. Since industrial
sectors cannot ignore this factor, getting help through
mathematical modeling such as optimizing cost, profits, loss,
and energy for such matters is sane act. A lot of work is
performed for the optimal utilization of energy in different
areas as Wang et al. presented their general guidelines re-
garding energy optimization in iron and steel industry by
using mass-thermal network optimization [1]. Ullah et al.

presented bio-inspired energy optimization techniques with
the purpose of power scheduling in an office [2]. According
to Ozturk et al., energy consumption could be decreased by
using the waste-heat recovery systems for the industrial
sector so they presented eighty-five techniques for the re-
duction of energy consumption in their study where thirteen
of them were prioritized and applied as energy-efficient
techniques [3]. Kimutai [4] proposed the physical energy
optimization model for the textile industry and optimized
the energy cost by using linear programming (LP). In the
manufacturing sector, textile industries are considered
major energy consumption units globally due to their several
production stages. In the textile industry, mostly electricity
and fuel, such as charcoal and petroleum, are used to create
all the required kinds of energy. In Pakistan, this particular
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industrial sector is having a great share up to 8.5% towards
GDP (gross domestic product) and considered Asia’s 8th
largest textile exporter [5]. Pakistan is having a huge textile
industrial sector and now facing many uncertainties due to
the unpredicted policy shift 2020–25 and COVID.
According to National Electric Power Regulatory Author-
ity’s (NEPRA) report, one energy unit fluctuation cost causes
almost 4 to 5 hours closure in the production of textile’s
products [6]. To overcome this loss, it is best to optimize the
usage and wastage of energy as much as possible. .e most
extensively adopted procedure for the optimal solution of
modeled problem was linear programming (LP) due to its
easy applicable nature that was first introduced by Kant-
orovich [7]. Advancement in this traditional LP generated
several extensions such as bi-level LP, multilevel LP, and
multiobjective. .ese LP extensions are highly applicable in
real life such as it gave optimized solutions for trans-
portation, supply chain, energy, profit, loss, and cost opti-
mization problems.

Huge modification happened in linear programming
after the introduction of fuzzy sets by Zadeh [8]. Fuzzy linear
programming was introduced by Zimmerman [9], who
originated the technique to solve the multiobjective linear
programming in a fuzzy environment. .is method was
defined according to the natural environmental uncer-
tainties as all the optimization conditions can be considered
in fuzzy. Improvements are continuously occurring till now;
firstly, membership degree was considered well enough to
understand decision-makers choices, but Atanssove [10]
created an intuitionistic fuzzy set dealing with the degree of
membership and nonmembership clearly, recognizing the
choice of an element from the decision set. .is definition of
the intuitionistic fuzzy set became another reason for im-
provement in optimization techniques, and firstly, intui-
tionistic fuzzy (IF) optimization got revealed by Angelov
[11]. A lot of work has been carried out in intuitionistic fuzzy
linear programming (IFLP). Afterwards, Yager presented
the concept of another generalization of fuzzy sets and
named it Pythagorean fuzzy set by refining the condition
that membership and nonmembership can be independent
of each other and their sum of squares must be less than 1
[12]. In 1999, Smarandache [13] introduced a neutrosophic
set, which covers the third predictable choice of decision-

makers that might be neutral or indeterminacy. In the
neutrosophic environment, many optimization models were
considered and solved by Ahmad et al. [14, 15].

Recently, a spherical fuzzy set has been introduced by
Gundogdu and Kahraman [16]. A spherical fuzzy set is
defined with the compliance of positive, neutral, and neg-
ative membership functions under the condition that the
sum of their squares must be less than 1 providing more
general way to cope with uncertainty. It is considered that a
spherical fuzzy set is a superset of fuzzy, Pythagorean fuzzy,
and intuitionistic fuzzy sets. Ahmad and Adhami [17]
presented their work on spherical fuzzy linear programming
problem (SFLPP). .ey presented different types of opti-
mization models under the spherical fuzzy (SF) environ-
ment. In this study, we are presenting symmetric and
asymmetric energy optimization models inspired by the
work of Ahmad and Adhami [17]. For this purpose, the LP
model for the textile industry is considered in the spherical
fuzzy environment as a numeric example to validate the
working of generated energy optimization models in the SF
environment. For the conversion of LP into SFLP, param-
eters were considered spherical fuzzy numbers (SFNs). By
targeting each parameter one by one, different SF optimi-
zation models are constructed. Every model further contains
two submodels in it on the basis of symmetric spherical fuzzy
number (SSFN) and asymmetric spherical fuzzy numbers
(ASFN) parameters. .e deterministic version corre-
sponding to SFNs is based on the spherical fuzzy set theory.
Conclusions are based on the application of these spherical
fuzzy models on the energy optimization model. .e
postoptimal analysis of the best feasible optimized SF model
is also discussed.

2. Preliminaries

A spherical fuzzy set (SFS) is defined by Rafiq et al. [18] as the
following set:

〈u, p 􏽥SF
(u), n 􏽥SF

(u), f 􏽥SF
(u)〉: u ∈ U􏼚 􏼛. (1)

Considering U the universal discourse and 􏽦SF repre-
senting spherical fuzzy set such that

p 􏽥SF
: U⟶ [0, 1],

n 􏽥SF
: U⟶ [0, 1],

f 􏽥SF
: U⟶ [0, 1]with 0≤p

2
􏽥SF

(u) + n
2
􏽥SF

(u) + f
2
􏽥SF

(u)≤ 1∀u ∈ U,

(2)

where p 􏽥
SF

(u) is positive membership degree, and n 􏽥SF
(u)

and f 􏽥
SF

(u) is representing neutral and negative mem-
bership degree of each u ∈ U, respectively, to 􏽦SF. A

spherical fuzzy number is a fuzzy number 􏽥r � 〈p􏽥r, n􏽥r, f􏽥r〉

with positive, neutral, and negative membership functions
defined as
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p 􏽥
SF

(u), n 􏽥
SF

(u), f 􏽥
SF

(u)􏼒 􏼓 �

x − p􏽥r( 􏼁α
n􏽥r − p􏽥r

,
x − p􏽥r( 􏼁β
n􏽥r − p􏽥r

,
x − p􏽥r( 􏼁c

n􏽥r − p􏽥r
􏼠 􏼡, if ; p􏽥r ≤ u< n􏽥r,

f􏽥r − x( 􏼁α
f􏽥r − n􏽥r

,
f􏽥r − x( 􏼁β
f􏽥r − n􏽥r

,
f􏽥r − x( 􏼁c

f􏽥r − n􏽥r
􏼠 􏼡, if ; n􏽥r ≤ u≤f􏽥r,

(0, 0, 0), otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Here, α, β, c ∈ [0, 1] such that 0≤ α2 + β2 + c2 ≤ 1. Let
􏽥r � 〈p􏽥r, n􏽥r, f􏽥r〉 and 􏽥m � 〈p􏽥r, n􏽥r, f􏽥r〉 are two spherical fuzzy
numbers, and then, the algebraic operations [18] between
them are defined as follows:

(1) 􏽥r⊕ 􏽥m � 〈
��������������
p2

􏽥r
+ p2

􏽥m
− p2

􏽥r
.p2

􏽥m

􏽱
, n􏽥r.n􏽥m, f􏽥r.f􏽥m〉

(2) 􏽥r⊛ 􏽥m � 〈p􏽥r.p􏽥m, n􏽥r.n􏽥m,
��������������
f2

􏽥r
+ f2

􏽥m
− f2

􏽥r
.f2

􏽥m

􏽱
〉

(3) κ􏽥r � 〈
�����������
1 − (1 − p2

􏽥r
)κ

􏽱
, (n􏽥r)

κ, (f􏽥r)
κ〉; for κ≥ 0

A SFN will be considered symmetric spherical fuzzy
number (SSFN) if there exists a relation between positive and
neutral, positive, and negative membership. For example,

􏽥r �〈p􏽥r, n􏽥r, f􏽥r〉

�〈p􏽥r, p􏽥r + λ, p􏽥r + kλ〉,
(4)

where λ> 0, k> 1, and λ, k ∈ R; otherwise, it is considered
asymmetric spherical fuzzy number (ASFN).

3. Spherical Fuzzy Linear
Programming Problem

Ideally for optimal solution of mathematically modeled
problem, linear programming (LP) is considered the most
convenient way [7]. Since this LP does not accommodate the
fuzziness of nature, the best real-life modeled problem solution
requires a method of fuzzy optimization. A lot of work is
already carried out for fuzzy optimizationmodeling by utilizing
different techniques such as intuitionistic fuzzy linear pro-
gramming [11, 12] and neutrosophic LP [14–19]. Ahmad and
Adhami presented differentmodels for the solution of spherical
fuzzy LP [17]. By continuing their idea for SF modeling, dif-
ferent spherical fuzzy models are constructed in this study. In
the first model, only constraint coefficients were considered
spherical fuzzy numbers, whereas all the other decision vari-
ables and parameters are real quantities. In the second model,
two factors demand and constraint coefficients are taken as
SFNs, while cost is taken as a real number. In the third model,
other than decision variables, all the other factors are con-
sidered in the spherical fuzzy number, whereas in the fourth
model, the cost and demand are in SF numbers. Table 1 is
designed to illustrate all these cases.

In Table 1, 􏽦Sssf, 􏽧Dssf, and 􏽧Cssf are symmetric spherical
fuzzy, 􏽧Sasf, 􏽧Dasf, and 􏽧Casf asymmetric spherical fuzzy pa-
rameters, and s, d, c real-valued parameters.

4. Numerical Example

Consider the following linear programming problem:

Max z � 5x + 3y

subjected to,
(5)

3x + 5y≤ 15, (6)

5x + 2y≤ 10. (7)

.e SSF and ASF for the above LP are presented in
Table 2.

From Table 3, it is clear that SSF model-I results in the
highest optimal solution value. Since the solution of LP is
12.3684 and we are looking for more better feasible solution,
all those models whose values are greater; that is, higher than
LP output is considered better. Here, in Table 3, we obtain that

LP<ASFModel − II< SSFModel − II< FLP< IFLP

<ASFModel − I< SSFModel − I,
(8)

where the remaining models result in a value less than LP
solution so these are not considered better than LP. All the
models are providing feasible solution, and the best one is
provided by SSF model-I as it results in the highest objective
output.

5. Application

To elaborate the working efficiency of the above-defined SSF
and ASF optimization models of our study, we construct an
energy optimization model for the textile industry with five
stages shown in Figure 1.

Suppose Xi is the number of units of product that
processed at stage i. In the objective function, the cost
coefficients are according to the type of energy used for the
preparation of per unit product of stage i. Di is the
monthly demand of each product Xi and availability of
working hours that helped to form the following demand
constraint equations according to the stages presented in
Figure 1:

x1 − x2 ≥ 400,

0.03x2 − x3 + 0.07x4 � 0,

0.97x2 − x4 � 0,

0.93x4 − x5 ≥ 600,

0..96x5 ≥ 20000,

0.007x1 − 0.07x2 + 0.013x4 + 0.0062x5 ≤ 720.

(9)

Each stage in Figure 1 is also presenting the production
cost per unit of each stage’s product along with information
about how much quantity is going to be processed further in
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the next stage by considering electricity cost 20.62 PKR/
kWh, fuel (furnace oil) price PKR85.68/litre, and LPG cost
at the rate of PKR19.4103/litre [20, 21]. .e last constraint
is regarding availability of total working time and pro-
duction rate, that is, how much hours are needed for the
production of 1 kg product of spinning, weaving, and final
stages. Objective function constructed through Figure 1 is

min z � 51.55x1 + 24.25653x2 + 41.24x3 + 15.465x4

+ 177.8921x5.
(10)

To conduct optimization in the spherical fuzzy envi-
ronment, the uncertainty in demand, supply parameters,
and energy cost per unit fluctuation is kept in mind and
considered symmetric and asymmetric SFNs. .e

considered positive, neutral, and negative membership de-
gree of acceptance is throughout (0.5, 0.3, 0.2).

6. Model-I(a)

Optimize α � 􏽐
5
i�1 cixi subjected to Σ5i�1

􏽧
S

ssf

ij xi ≤ � ≥ dj,
∀j � 1, 2, . . . , 5, where spherical fuzzy coefficients 􏽦

S
ssf

ij are
considered symmetric with xi real decision variables where
dj is real-valued demands. After the conversion of an in-
consideration energy optimization model for the textile
industry into the symmetric spherical fuzzy model-I(a), it is
represented as follows:

Cost set is C � ci, i � 1, 2, 3, 4, 5􏼈 􏼉 C �

51.55, 24.5653, 41.24, 15.46, 177.8921{ }, where symmetric
spherical fuzzy constraint coefficients are

Table 1: Spherical fuzzy linear programming models.

Model Symmetric spherical fuzzy model (a) Asymmetric spherical fuzzy model (b)

I
Optimize α � 􏽐

K
i�1 cixi subjected to

ΣKi�1
􏽧

S
ssf

ij xi ≤ � ≥dj, ∀j � 1, 2, 3 . . . l

Optimize α � 􏽐
K
i�1 cixi subjected to

ΣKi�1
􏽧
S

asf

ij xi ≤ � ≥dj,∀j � 1, 2, 3 . . . l

II Optimize α � 􏽐
K
i�1 cixi subjected to ΣKi�1

􏽧
S

ssf
ij xi ≤ � ≥􏽧

D
ssf
j ,

∀j � 1, 2, 3 . . . l

Optimize α � 􏽐
K
i�1 cixi subjected to

ΣKi�1
􏽧

S
asf

ij xi ≤ � ≥􏽧
D

asf

j , ∀j � 1, 2, 3 . . . l

III Optimize α � ΣKi�1
􏽧

C
ssf
i xi subjected to

ΣKi�1
􏽧

S
ssf
ij xi ≤ � ≥􏽧

D
ssf
j , ∀j � 1, 2, 3 . . . l

Optimize α � ΣKi�1
􏽧

C
asf
i xi subjected to

ΣKi�1
􏽧

S
asf
ij xi ≤ � ≥􏽧

D
asf
j , ∀j � 1, 2, 3 . . . l

IV Optimize α � ΣKi�1
􏽧

C
ssf

i xi subjected to 􏽐
K
i�1 sijxi ≤ � ≥􏽧

D
ssf

j ,
∀j � 1, 2, 3 . . . l

Optimize α � ΣKi�1
􏽧

C
asf

i xi subjected to 􏽐
K
i�1 sijxi ≤ � ≥􏽧

D
asf

j ,
∀j � 1, 2, 3 . . . l

Table 2: Spherical fuzzy linear programming models.

Model Symmetric spherical fuzzy model (a) Asymmetric spherical fuzzy model (b)

I MaxZ � 5x + 3y subjected to 􏽦3ssfx + 􏽦5ssfy≤ 15, MaxZ � 5x + 3y subjected to 􏽧3asfx + 􏽧5asfy≤ 15

II MaxZ � 5x + 3y subjected to 􏽦3ssfx + 􏽦5ssfy≤􏽧15ssf, MaxZ � 5x + 3y subjected to 􏽧3asfx + 􏽧5asfy≤􏽧15asf

III MaxZ � 􏽦5ssfx + 􏽦3ssfy subjected to 􏽦3ssfx + 􏽦5ssfy≤􏽧15ssf, MaxZ � 􏽧5asfx + 􏽧3asfy subjected to 􏽧3asfx + 􏽧5asfy≤􏽧15asf

IV MaxZ � 􏽦5ssfx + 􏽦3ssfy subjected to 3x + 5y≤􏽧15ssf, MaxZ � 􏽧5asfx + 􏽧3asfy subjected to 3x + 5y≤􏽧15asf

In Table 2, 􏽦2ssf � (2, 1, 0), 􏽦3ssf � (3, 2, 1), 􏽦5ssf � (5, 3, 1), 􏽧10ssf � (10, 6, 2), 􏽧15ssf � (15, 10, 5), and 􏽧2asf � (2, 1, 0.5), 􏽧3asf � (3, 1.5, 0), 􏽧5asf � (5, 4, 1),
􏽧10asf � (10, 8, 1), 􏽧15asf � (15, 12, 3). Since objective function is needed to be maximize, preference will be given to the model with a higher optimal value. By
solving 0.3 in different fuzzy and crisp environment as in fuzzy, intuitionistic fuzzy, and spherical fuzzy, we obtain the results shown in Table 3).

Table 3: Comparison of LP and different fuzzy optimization models for the numerical example.

Optimization model Objective function x y

LP 12.3684 1.05263 2.36842
FLP 15.13159 1.44737 2.63158
IFLP 16.31579 1.052632 2.368421
SSF Model-I 22.1171 3.119093 2.173913
ASF Model-I 16.58654 1.442308 3.125
SSF Model-II 12.97593 1.100301 2.491472
ASF Model-II 12.71875 1.0625 2.46875
SSF Model-III 9.691474 1.100301 2.491472
ASF Model-III 8.957813 1.0625 2.46875
SSF Model-IV 6.808947 0.684211 1.8894744
ASF Model-IV 6.660789 0.768421 1.878947
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􏽦
S

ssf
21 � (0.03)

ssf
� (0.03, 0.08, 0.13),

􏽦
S

ssf
23 � (0.007)

ssf
� (0.007, 0.012, 0.017),

􏽦
S

ssf
31 � (0.97)

ssf
� (0.97, 1.02, 1.07),

􏽦
S

ssf
41 � (0.93)

ssf
� (0.93, 0.98, 1.03),

􏽦
S

ssf
51 � (0.96)

ssf
� (0.96, 1.01, 1.06),

􏽦
S

ssf
63 � (0.013)

ssf
� (0.013, 0.018, 0.023),

􏽦
S

ssf
64 � (0.0062)

ssf
� (0.0062, 0.0067, 0.0072),

􏽦
S

ssf
ij � (1)

ssf

� (1, 0, 0) · for all the values of $ij$ other than above.
(11)

with the monthly production demand in kg for three
products and total availability of working hours in a month
as D � d1 � 400, d2 � 600, d3 � 20000, d4 � 720􏼈 􏼉. Mathe-
matically, symmetric spherical fuzzy energy optimization is
framed as follows:

min 􏽥α⋎ � 􏽘
m

j�1
cjxj

� 51.55x1 + 24.25653x2 + 41.24x3 + 15.465x4

+ 177.8921x5.

(12)

Subjected to

x1 − x2 ≥ 400,

(0.03)
ssf

x2 − x3 +(0.07)
ssf

x4 � 0,

(0.97)
ssf

x2 − x4 � 0,

(0.93)
ssf

x4 − x5 ≥ 600,

(0.96)
ssf

x5 ≥ 20000,

(0.007)
ssf

x1 − (0.007)
ssf

x2 +(0.013)
ssf

x4 +(0.0062)
ssf

x5 ≤ 720,

xi ≥ 0, i � 1, 2, 3, 4, 5.

(13)

Cost
RS/Unit:
51.55

Cost
RS/Unit:
24.56

Cost
RS/Unit:
41.24

Cost
RS/Unit:
15.46

Cost
RS/Unit:
177.89

x1
Raw
material

Energy:
Electricity

Energy:
Electricity

Energy:
Electricity

Energy:
Electricity
LPG
Furnace oil

Energy:
Electricity

Stage 1

Stage 2 Stage 5

Stage 4

Stage 3

Weaning

Dyeing

Spinning

Sizing

Rewinding
Waste

Treatment

x2

x3

x4
x5

0.97x2

0.03x2

0.
93

 (x
4-

x3
)

0.
96

x5

0.07x4

0.04x5

Figure 1: Production stages.
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.e above symmetric spherical fuzzy liner programming
model is then converted into LP, and the following defuz-
zified constraints are obtained:

x1 − x2 ≥ 400,

0.065x2 − x3 + 0.0105x4 � 0,

1.005x2 − x4 � 0,

0.965x4 ≥ 600,

0.995x5 ≥ 20000,

0.0105x1 − 0.0105x2 + 0.0165x4 + 0.00655x5 ≤ 720,

xi ≥ 0, i � 1, 2, 3, 4, 5.

(14)

7. Model-I(b)

Now in this model, the spherical fuzzy coefficients 􏽧
S

asf
ij are

considered asymmetric with xi real-valued decision vari-
ables with dj, ci, which are real demands and costs.

For this purpose, by changing the values of spherical
fuzzy coefficients by asymmetric spherical fuzzy in the above
model-I(a) in (9) for the textile industry, the following
changes occurred:

􏽧
S

asf
21 � (0.03)

asf
� (0.03, 0.08, 1.08),

􏽧
S

asf
23 � (0.007)

asf
� (0.007, 0.012, 1.012),

􏽧
S

asf
31 � (0.97)

asf
� (0.97, 1.02, 2.02),

􏽧
S

asf
41 � (0.93)

asf
� (0.93, 0.98, 1.98),

􏽧
S

asf
41 � (0.96)

asf
� (0.96, 1.01, 2.06),

􏽧
S

asf
53 � (0.013)

asf
� (0.013, 0.018, 1.023),

􏽧
S

asf
54 � (0.0062)

asf
� (0.0062, 0.0067, 1.0072),

􏽧
S

asf
ij � (1)

asf
�(1, 0, 0) · for all the values of $ij$ other than above.

(15)

.e monthly production demand in kg for three products
and total availability of working hours in a month are
D � d1 � 400, d2 � 600, d3 � 20000, d4 � 720􏼈 􏼉. .e asym-
metric spherical fuzzy energy optimization model is

min 􏽥α⋎ � 􏽘
m

j�1
cjxj

� 51.55x1 + 24.25653x2 + 41.24x3

+ 15.465x4 + 177.8921x5,

(16)

subjected to constraints

x1 − x2 ≥ 400,

(0.03)
asf

x2 − x3 +(0.07)
asf

x4 � 0,

(0.97)
asf

x2 − x4 � 0,

(0.93)
asf

x4 − x5 ≥ 600,

(0.96)
asf

x5 ≥ 20000,

(0.007)
asf

x1 − (0.007)
asf

x2 +(0.013)
asf

x4 +(0.0062)
asf

x5 ≤ 720,

xi ≥ 0, i � 1, 2, 3, 4, 5.

(17)
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.e defuzzyfied form of the above ASF linear programming
model is given as

x1 − x2 ≥ 400,

0.255x2 − x3 + 0.2095x4 � 0,

1.195x2 − x4 � 0,

1.155x4 ≥ 600,

1.185x5 ≥ 20000,

0.2095x1 − 0.2095x2 + 0.2155x4 + 0.20645x5 ≤ 720,

xi ≥ 0, i � 1, 2, 3, 4, 5.

(18)

8. Model-II(a)

In this model, constraint coefficients and demand is con-
sidered in the symmetric spherical fuzzy number and cost
remains unchanged as follows:

􏽧
D

ssf
1 � (400)

ssf
� (400, 450, 500),

􏽧
D

ssf
2 � (0)

ssf
� (0, 0, 0) �

􏽧
D

ssf
3 ,

􏽧
D

ssf
4 � (600)

ssf
� (600, 650, 700),

􏽧
D

ssf
5 � (20000)

ssf
� (20000, 20050, 20100),

􏽧
D

ssf
6 � (720)

ssf
� (720, 770, 820),

􏽦
S

ssf
21 � (0.03)

ssf
� (400, 450, 500),

􏽦
S

ssf
23 � (0.007)

ssf
� (400, 450, 500),

􏽦
S

ssf
31 � (0.97)

ssf
� (400, 450, 500),

􏽦
S

ssf
41 � (0.96)

ssf
� (400, 450, 500),

􏽦
S

ssf
53 � (0.013)

ssf
� (400, 450, 500),

􏽦
S

ssf
54 � (0.0062)

ssf
� (400, 450, 500),

􏽦
S

ssf
ij � (1)

ssf
� (1, 0, 0) · for all the values of $ij$ other than above.

(19)

.e symmetric SF energy optimization model-II(a) for
the textile industry becomes

min 􏽥α⋎ � 51.55x1 + 24.25653x2 + 41.24x3

+ 15.465x4 + 177.8921x5.
(20)

Under the constraints

x1 − x2 ≥ (400)
ssf

,

(0.03)
ssf

x2 − x3 +(0.07)
ssf

x4 � (0)
ssf

,

(0.97)
ssf

x2 − x4 � (0)
ssf

,

(0.93)
ssf

x4 − x5 ≥ (600)
ssf

,

(0.96)
ssf

x5 ≥ (20000)
ssf

,

(0.007)
ssf

x1 − (0.007)
ssf

x,2 +(0.013)
ssf

x4 +(0.0062)
ssf

x5 ≤ (720)
ssf

xi ≥ 0, i � 1, 2, 3, 4, 5,

(21)
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converting the above constraint into LP:

x1 − x2 ≥ 435,

0.065x2 − x3 + 0.0105x4 � 0,

1.005x2 − x4 � 0,

0.965x4 ≥ 635,

0.995x5 ≥ 20035,

0.0105x1 − 0.0105x2 + 0.0165x4 + 0.00655x5 ≤ 755,

xi ≥ 0, i � 1, 2, 3, 4, 5.

(22)

Solve the objective function 0.13 subjected to set of con-
straints 0.15 to obtain the solution.

9. Model-II(b)

In this model, constraint coefficients and demand is con-
sidered asymmetric spherical fuzzy number:

􏽧
D

asf
1 � (400)

asf
� (400, 450, 511),

􏽧
D

asf
2 � (0)

asf
� (0, 0, 0) �

􏽧
D

asf
3 ,

􏽧
D

asf
4 � (600)

asf
� (600, 650, 711),

􏽧
D

asf
5 � (20000)

asf
� (20000, 20050, 20111),

􏽧
D

asf
6 � (720)

asf
� (720, 770, 831),

􏽧
S

asf
21 � (0.03)

asf
� (400, 450, 500),

􏽦
S

ssf
23 � (0.007)

ssf
� (400, 450, 500),

􏽦
S

ssf
31 � (0.97)

ssf
� (400, 450, 500),

􏽦
S

ssf
41 � (0.96)

ssf
� (400, 450, 500),

􏽦
S

ssf
53 � (0.013)

ssf
� (400, 450, 500),

􏽦
S

ssf
54 � (0.0062)

ssf
� (400, 450, 500),

􏽦
S

ssf
ij � (1)

ssf
� (1, 0, 0) for all the values of ij other than above.

(23)

.e asymmetric SF energy optimization model-II(b)
with objective function 0.13 for the textile industry under the
constraints:

x1 − x2 ≥ (400)
asf

,

(0.03)
asf

x2 − x3 +(0.07)
asf

x4 � (0)
asf

,

(0.97)
asf

x2 − x4 � (0)
asf

,

(0.93)
asf

x4 − x5 ≥ (600)
asf

,

(0.96)
asf

x5 ≥ (20000)
asf

,

(0.007)
asf

x1 − (0.007)
asf

x2 +(0.013)
asf

x4 +(0.0062)
asf

x5 ≤ (720)
asf

,

xi ≥ 0, i � 1, 2, 3, 4, 5,

(24)
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converting the above constraint into real-valued:

x1 − x2 ≥ 437.2,

0.255x2 − x3 + 0.2095x4 � 0,

1.195x2 − x4 � 0,

1.155x4 ≥ 637.2,

1.185x5 ≥ 20037.2,

0.2095x1 − 0.2095x2 + 0.2155x4 + 0.20645x5 ≤ 727.2

xi ≥ 0, i � 1, 2, 3, 4, 5.

(25)

10. Model-III(a)

In this model, all the cost and demand coefficients are in
SSFNs, so here the objective function is expressed as follows:

Optimize α � 􏽘
K

i�1

􏽧
C

ssf
i xi � min 􏽥α⋎ � 􏽘

5

i�1

􏽧
C

asf
i ⊛xj,

� (51.55, 56.55, 61.55)⊛x1( ⊕(24.5653, 29.5653, 34.5653)⊛x2,

⊕(41.24

⊕ (177.892, 182.892, 187.892)⊛x5( ,

(26)

under the constraints

x1 − x2 ≥ (400)
ssf

,

(0.03)
ssf

x2 − x3 +(0.07)
ssf

x4 � 0,

(0.97)
ssf

x2 − x4 � (0)
ssf

,

(0.93)
ssf

x4 − x5 ≥ (600)
ssf

,

(0.96)
ssf

x5 ≥ (20000)
ssf

,

(0.007)
ssf

x1 − (0.007)
ssf

x2 +(0.013)
ssf

x4 +(0.0062)
ssf

x5 ≤ (720)
ssf

,

xi ≥ 0, i � 1, 2, 3, 4, 5.

(27)

after converting the above model into general LP, 0.15 be-
comes required constraints for the objective function:

min 􏽥α⋎ � 55.05x1 + 28.0653x2 + 44.74x3 + 18.965x4

+ 181.3921x5.
(28)

11. Model-III(b)

By solving objective function,

Optimize α � 􏽘
K

i�1

􏽧
C

asf
i xi,

� min 􏽥α⋎ � 􏽘
5

i�1

􏽧
C

asf
i ⊛xj,

� (51.55, 56.55, 67.55)⊛x1( ⊕(24.5653, 29.5653, 40.5653)⊛x2,

⊕(41.24
⊕ (177.892, 182.892, 193.892)⊛x5(

(29)
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Under the subjected constraint 0.16, we obtain an infeasible
solution after converting into LP objective function by using
the weight formula, min 􏽥α⋎ � 56.25x1 + 29.2653x2 +

45.94x3 + 20.165x4 + 182.5921x5.

12. Model-IV(a)

In this model, we considered cost and demand (right-hand
side of constraint equations) a symmetric spherical fuzzy
number. .e spherical fuzzy energy optimization model for
the textile industry according to this model is as follows:

min 􏽥α⋎ � 􏽘
m

j�1

􏽧
C

ssf
j ⊛xj,

�
􏽧

(51.55)
ssf⊛x1,

⊕ 􏽧
(24.5653)

ssf⊛x2,

⊕ 􏽧
(41.24)

ssf⊛x3,

⊕ 􏽧
(15.465)

ssf⊛x4,

⊕ 􏽧
(177.8921)

ssf⊛x5,

(30)

subjected to

x1 − x2 ≥ (400)
ssf

,

0.03x2 − x3 + 0.07x4 � 0ssf
,

0.97x2 − x4 � 0ssf
,

0.93x4 − x5 ≥ (600)
ssf

,

0.96x5 ≥ (20000)
ssf

,

0.007x1 − 0.007x2 + 0.013x4 + 0.0062x5 ≤ (720)
ssf

,

xi ≥ 0, i � 1, 2, 3, 4, 5,

(31)
converting the above model into LP, we obtain

min 􏽥α⋎ � 55.05x1 + 28.0653x2 + 44.74x3 + 18.965x4 + 181.392x5,

(32)

under the real constraints

x1 − x2 ≥ 435,

0.03x2 − x3 + 0.07x4 � 0,

0.97x2 − x4 � 0,

0.93x4 − x5 ≥ 635,

0.96x5 ≥ 20035,

0.007x1 − 0.007x2 + 0.013x4 + 0.0062x5 ≤ 755,

xi ≥ 0, i � 1, 2, 3, 4, 5.

(33)

13. Model-IV(b)

min 􏽥α⋎ � 􏽘
m

j�1

􏽧
C

asf
j ⊛xj,

�
􏽧

(51.55)
asf⊛x1,

⊕ 􏽧
(24.5653)

asf⊛x2,

⊕ 􏽧
(41.24)

asf⊛x3,

⊕ 􏽧
(15.465)

asf⊛x4,

⊕ 􏽧
(177.8921)

asf⊛x5,

(34)

Subjected to

x1 − x2 ≥ (400)
asf

,

0.03x2 − x3 + 0.07x4 � 0asf
,

(35)

subjected to

0.97x2 − x4 � 0asf
,

0.93x4 − x5 ≥ (600)
asf

,

0.96x5 ≥ (20000)
asf

,

0.007x1 − 0.007x2 + 0.013x4 + 0.0062x5 ≤ (720)
asf

,

xi ≥ 0, i � 1, 2, 3, 4, 5,

(36)

converting the above model into LP, we obtain

min 􏽥α⋎ � 56.25x1 + 29.2653x2 + 45.94x3

+ 20.165x4 + 182.5921x5,
(37)

under defuzzified constraints

x1 − x2 ≥ 437.2,

0.03x2 − x3 + 0.07x4 � 0,

0.97x2 − x4 � 0,

0.93x4 − x5 ≥ 637.2,

0.96x5 ≥ 20037.2,

0.007x1 − 0.007x2 + 0.013x4 + 0.0062x5 ≤ 757.2,

xi ≥ 0, i � 1, 2, 3, 4, 5.

(38)

Table 4 shows the optimal output we obtained through
different models.

14. Postoptimal Analysis

In present study eight models with different symmetric and
asymmetric spherical fuzzy changes were tried. Out of eight
models only five models provided us a feasible solution for
spherical fuzzy energy optimization model 0.5 and one of
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them provided the best optimal result as compared to all SF
models and LP as shown in Table 4 while all the other
spherical fuzzy models resulted those objective values, which
are much higher than real LP. Overall, if we combine the
objective value in the form of inequality keeping LP greatest
we get:

SSFModel − I(a)< SSFModel − II(a) < IFLP< LP, (39)

the objective values obtained from these methods also satisfy
the relation as

5702683< 5717777.8< 5927615.1< 5933824< 5987499.

(40)

Except one ASF model, all the other ASF (models-I, II,
III) energy optimization models gave “Infeasible solution” in
0.5 and one ASF model-IV, which provided a solution that
have the most highest optimal value (greater than LP) where
objective function was needed to minimize, whereas in 0.3
where the objective function was needed to maximize the
similar models, ASF (models-I, II, III) provided feasible
solution, but other than SSF and AS (models- I, II), all the
other remaining models provided outputs less than LP; that
is, the outputs of these models are much lesser than LP’s
outputs. Here, in the following tables, the sensitivity report
and limits of all those SF models in 0.5 are discussed whose
optimal solutions were not greater than the LP textile energy
model.

In Table 5 the flexibility regarding allowable change in
optimal and feasible conditions is mentioned. Since so-
lution is effected by both and impacts the efficiency of
model, how much cost and demand fluctuation can be
handled by these models in 0.5 is discussed, whereas in
Tables 6, 7 and 8 the feasibility range of the decision
variable is discussed along with the optimal solution be-
tween that range. In Table 9 the validity range of all the
parameters and decision variables of the best optimal
model for 0.5 is mentioned. According to the above
postoptimal analysis, we obtain the following information
about the range of each factor of the energy optimization
model in a spherical environment. SSF model-I(a) is
providing a minimal optimal value of the objective function
for a longer range of coefficients that insure the feasibility
for a huge change in 0.5. In both situations, where objective
function is needed to maximize 0.3 or to minimize 0.5, SSF
model-I(a) provided the best results.

From Figure 2 it is clearly seen that all the decision
variables in SSF model-I for 0.5 is having least value as
compared to other models except x3. .is x3 is providing its
minimal value in the intuitionistic fuzzy environment.

In Figure 3 an objective value of 0.5 in different fuzzy and
LP environments is graphically presented. .ree bars in the
right-hand side denote ASF models and are clearly higher
than even LP’s bar. .erefore, they are not considered the
best models for 0.5. SSF model-I is providing the best results
as compared to others.

Table 4: Optimal solutions.

Optimization model Objective value x1 x2 x3 x4 x5

LP 5987499 24195.38 23759.38 2326.043 23046.59 20833.33
IFLP 5927615.1 24159.4 23759.4 874.104 23046.6 20833.33
Model-I(a) 5702683 21744.58 21344.58 3639.78 21451.3 20100.50
Model-I(b) Infeasible solution 0 0 0 0 0
Model-II(a) 5717777.8 21851.93 21416.93 3652.12 21524.02 20135.68
Model-II(b) Infeasible solution 0 0 0 0 0
Model-III(a) 6027917.33 21851.93 21416.93 3652.12 21524.02 20135.68
Model-III(b) Infeasible solution 0 0 0 0 0
Model-IV(a) 6333697.02 24273.59 23838.59 2333.8 23123.43 20869.79
Model-IV(b) 6448227.44 24280.77 23843.57 2334.28 23128.26 20872.08

Table 5: Model-I(a) sensitivity analysis report.

Variables Final value Reduced cost Objective coefficient Allowable increase Allowable decrease
x1 21744.57 0 51.55 1E+30 51.55
x2 21344.57 0 24.56 1E+30 98.68
x3 3639.78 0 41.24 1E+30 578.68
x4 21451.3 0 15.46 1E+30 98.19
x5 20100.50 0 177.89 1E+30 279.64
Constraint Final value Shadow price RHS Allowable increase Allowable decrease
1 400 51.55 400 21923.36 21744.57
2 4.55E–13 –41.24 0 3639.78 1E+30
3 0 78.4 0 1E+30 21451.3
4 600 101.75 600 13462.94 20700.50
5 20000 281.05 20000 9685.38 20000
6 489.80 0 720 1E+30 230.19
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Table 8: Model-II(a) limits report.

Variable Values Lower limit Objective result Upper limit Objective result
x1 21851.93 21851.93 5717777.832 46937.41 7010934.09
x2 21416.93 21416.93 5717777.832 21416.93 5717777.832
x3 3652.12 3652.12 5717777.832 3652.12 5717777.832
x4 21524.02 21524.02 5717777.832 21524.02 5717777.832
x5 20135.68 20135.68 5717777.832 20135.69 5717777.832

Table 9: Validity range of SSF-I(a).

Factors SSF model-I(a) Range
x1 21744.56 units 21923.38 unit
x2 21344.56 units 0
x3 3539.73 units 0
x4 21451.3 units 0 unit
x5 20100 units 0 unit
c1 51.55 Rs./unit 51.55 Rs/unit
c2 24.56 Rs./units 98.68 Rs/unit
c3 41.24 Rs./units 578.71 Rs/unit
c4 15.46 Rs./units 98.2 Rs/unit
c5 177.89 Rs./units 279.64 Rs/unit
d1 400 kg/month 43667 kg/month
d2 0 3639.78 kg/month
d3 0 21451.3 kg/month
d4 20000 kg/month 29685.39 kg/month
d5 600 kg/month 43163.44 kg/month
d6 720 working hours/month 489.81 hours/month

Table 6: Model-I(a) limits report.

Variable Values Lower limit Objective result Upper limit Objective result
x1 21744.57 21744.57 5702683.001 43667.94 6832832.271
x2 21344.57 21344.57 5702683.001 21344.57 5702683.001
x3 3639.78 3639.78 5702683.001 3639.78 5702683.001
x4 21451.3 21451.3 5702683.001 21451.30 5702683.001
x5 20100.50 20100.50 5702683.001 20100.50 5702683.001

Table 7: Model-II(a) sensitivity analysis report.

Variables Final value Reduced cost Objective coefficient Allowable increase Allowable decrease
x1 21851.93 0 51.55 1E+30 51.55
x2 21416.93 0 24.56 1E+30 98.68
x3 3652.12 0 41.24 1E+30 578.68
x4 21524.02 0 15.46 1E+30 98.19
x5 20135.68 0 177.89 1E+30 279.64
Constraint Final value Shadow price RHS Allowable increase Allowable decrease
1 435 51.55 435 25085.47 21851.9
2 4.55E− 13 − 41.24 0 3652.12 1E+30
3 0 78.4 0 1E+30 21524.02
4 635 101.75 635 15404.76 20770.68
5 20035 281.045 20035 11082.36 20035
6 491.60 0 755 1E+30 263.4
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15. Conclusion

Spherical fuzzy set (SFS) is a well-known generalization of
widely studied fuzzy sets, and significant research has been
carried out to investigate SFS set theocratic properties and
applications in other fields. Due to the involvement of
positive, neutral, and negative grades, SFS can handle un-
certainties better than fuzzy sets. In this article, linear op-
timization is carried out by utilizing spherical fuzzy
numbers. .e method is superior to previously defined
techniques as shown in.

(1) Due to the spherical region, parameters are highly
flexible and can provide optimal solution between a
long range

(2) Spherical fuzzy set is a super set of the intuitionistic
and Pythagorean fuzzy set, so it will cover more area
graphically (see Figure 4) and can easily target those
points for solution that are far away to those points,
which are obtained through LP or IF technique

(3) No need to construct or change a model for a huge
change due to long-range flexibility of parameters

.e method can be used in any decision-making
problem simply by identifying the objectives, parameters,
and the constraints imposed to maximize or minimize the
objective. In recent years, the fuzzy set and its general-
izations are used widely in decision-making related to real-

life problems [22, 23]. Any advancement in basic fuzzy set
theocratic concepts will ultimately improve the accuracy of
its implementation by incorporating the imprecision and
vagueness in the data. Spherical fuzzy optimization tech-
niques can be used to find the suitable weights for the best
criteria over others in the decision-making process.
[24–26].
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