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In recent years, the Chinese capital market has su�ered several violent shocks, and the characteristics of systemic risk contagion
across industries and markets have become increasingly important. It brings great potential danger to the stability of �nancial
markets. �erefore, exploring the risk spillover among the real sectors has gradually attracted the attention of scholars. �is paper
examines the cross-industrial tail risk spillover network in the Chinese �nancial market. �e characteristics and the dynamic
contribution of each industry in the tail risk transmission chains are explored. We use the ∆CoES-ENGDFM-LVDNmodel based
on monthly data from 2006 to 2020 to measure the tail risk of 28 industries in China and form a cross-industrial tail risk spillover
network.�e results show that di�erent industries have di�erent levels of spillover and importance in the network. Tail risk mainly
spills over from the non�nancial sector to the �nancial sector. �e nonbank �nancial industry is the main recipient of tail risk
spillover and is becoming progressively more important in the risk network. In addition, with the promotion of industrial
structure, emerging industries such as communications, computers, and health care have begun to play more important roles in
the tail risk spillover network in China.�is paper not only enriches the research in the areas of tail risk spillover and systemic risk,
but also has implications for regulators to maintain �nancial stability and prevent �nancial risks.

1. Introduction

One of the important tasks of China’s �nancial stability goal is
to control risk spillover between the non�nancial sector and
�nancial sector and prevent cross-industrial or cross-market
risk contagion.When the business performance of companies
is poor, its negative impact may spread rapidly through the
industry connection to the wholemarket.�e deterioration of
market fundamentals will trigger the increasing linkage be-
tween �nancial market return and risk. �e tail risk spillover
among industries will also amplify economic volatility. �e
linkages among industries have signi�cantly exacerbated risk
spillover e�ects and increased the impact of the non�nancial
sector on the �nancial system, giving rise to new challenges
for preventing systemic risks. �e industry-level systemic risk
indicators include systemic risk contribution and systemic
risk exposure.�e former refers to the impact of an individual

industry under extreme circumstances (e.g., the industry
su�ers severe losses) on the economic system, while the latter
refers to the impact of the economy under extreme cir-
cumstances (e.g., the economy falls into a severe recession) on
an individual industry. We consider the former. At the same
time, since economic and �nancial variables are usually
characterized by “sharp peaks and thick tails,” the mea-
surement of systemic risk should focus on the tail risks of
industries and economies in extreme situations.

Tail risk is used not only in characterizing the extreme
risks, but also to re�ect the accumulation of risk spillover
levels in extreme cases. �erefore, what is each industry
contributing to the systemic risk in the tail risk network?
Does the �nancial sector play a crucial role in risk spillover?
How do the intensity, transmission direction, and path of tail
risk spillover among industries vary with business cycles?
�is paper aims to answer these questions.
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In recent years, research on the risk spillover among
industries in the real sector has gradually attracted aca-
demic attention. Networks constructed with the mean and
variance tend to underestimate the risk contagion level by
ignoring tail risks in extreme cases. )e drawbacks of
failing to measure the incremental change in risk spillovers
from normal to extreme states violate the purpose of
Adrian and Brunnermeier [1] on improving the risk
spillover measure. In addition, most of the networks
constructed by existing studies, either based on causality
detection or based on variance decomposition, are infor-
mation or volatility spillover networks instead of risk
spillover networks [2–6]. In addition, most of the existing
studies [7, 8] focus on measuring the intensity scale of risk
spillover, that is, the level of network association. Scare
attention is given to the direction and path of risk trans-
mission and other association structures [9–11]. )ere are
very few studies [12, 13] that consider both the level and
structure of association and assess the contribution of risk
in the tail risk network.

Academic research has agreed on the level of correlation
in China’s economic and financial system with obvious
cyclical characteristics. )e probability of risk spillover in
specific industries increases significantly, and the intensity of
spillover varies with cyclical characteristics, showing obvious
asymmetry in different cycles. Most of the existing studies
often ignore the difference in tail risk spillover between the
risk accumulation and the release stage [14–16]. To over-
come these drawbacks, this paper studies the level and
structure of the tail risk spillover network among industries
in China, as well as the systemic contribution characteristics
of each industry in the risk transmission network. We also
aim to identify the core industries in the risk network and
make forward-looking suggestions for regulation. Moreover,
we identify the differences in the above characteristics in the
risk accumulation or release stages.

We introduce a periodic perspective to measure cross-
industrial upside and downside tail risks and construct a tail
risk spillover network with cyclical properties among
China’s industries using ∆CoES-ENGDFM-LVDN models,
which may be more effective in measuring the cross-in-
dustrial tail risk spillover network effects. Specifically, we
analyse the key industries in the contagion chain during tail
risk spillover and examine the intensity, direction, path, and
center of tail risk spillover according to the risk network.
)en, from a dynamic perspective, we further consider the
trend of tail risk spillover in each industry. We compare the
spillover effects both in the risk accumulation stage and
release stage and analyze the spillover levels from normal to
extreme states. From the time dimension, we longitudinally
examine the evolutionary relationship of tail risk spillover
among industries in the full sample and each subsample,
comparing the differences in spillover effects within different
sample periods for the same risk phase (upside risk accu-
mulation or downside risk mitigation).

First, we begin our test by constructing a risk network
and analyzing cross-industrial risk spillover effects directly
for tail risk. Compared to the networks constructed from the
returns and variance [1, 17, 18], tail risk could reflect the

incremental change in the level of risk spillover from normal
to extreme states. It is possible to avoid the underestimation
of the level of risk contagion caused by return and volatility
[19, 20].

Second, we use ∆CoES instead of ∆CoVaR, which
contains both left-tailed and right-tailed information and is
based on a long-term stress scenario. However, ∆CoES does
not measure network effects, resulting in tail risk spillover
being underestimated [21]. )e General Dynamic Factor
Model (GDFM) proves the consistency of the estimators
when both the sample and time series dimensions are
infinite, but it is calculated only for the fluctuation spillover
relation. Elastic Net (EN) combines the advantages of
LASSO regression and ridge regression. )erefore, this
paper introduces ∆CoES into the GDFM with EN to con-
struct and estimate the tail risk spillover network with pe-
riodicity among China’s industries, which can overcome the
limitations of the abovementioned methods. It could also
demonstrate the tail risk spillover across industries in the
risk accumulation stage and release stage. )e results in-
dicate that there are an overall persistent nonlinear spillover
effect and significant periodicity effect among industry tail
risks in China. Cross-industrial tail risk spillover is more
pronounced in the risk release stage. However, the total
degree of spillover in the risk accumulation stage gradually
grows and has exceeded the total degree in the release stage.
)is suggests that while the scope of cross-industrial tail risk
spillover in China is gradually expanding, the downside risk
has not been released sharply.

)ird, this paper considers the level of industry tail risk
association, structure, and network contribution for both the
full sample and the dynamic evolution of each stage. We
explore the pattern of risk spillover from normal to extreme
and test the tail risk spillover in key industries. It forms a
useful complement to previous studies on cross-industrial
risk spillover.

)is paper contributes to the following streams of
literature:

First, identification and measurement of tail risk. Tra-
ditional methods are divided into three categories based on
real operating business data, directly generated based on
complex network theory, and based on financial market data
such as stock prices. Linear or nonlinear Granger causality
detection [22, 23], generalized variance decomposition [2],
LASSO regression [21, 24], and TENET networks [25] were
mainly used. In recent years, the construction of correlation
networks based on financial market data has gained the
attention and recognition of scholars. )e network con-
structed through high-frequency financial market data is not
limited to a particular form, which can overcome the un-
timely assessment of cross-industrial risk spillover caused by
the lag of low-frequency data and measure the global and
integrated channel effects formed by cross-industrial tail risk
spillover [2, 26, 27]. Barigozzi and Hallin [28] use the EN
approach to deal with the high-dimensional time series
estimation problem involved in the GDFM model and
further test the volatility spillover effect among industries in
the SP100 index jointly with the LVDN, providing a ref-
erence for the study.
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)e second is the risk spillover characteristics among
industries. Most of the existing studies focus on risk con-
tagion within the financial sector, few papers analyze the tail
risk diffusion relationship among nonfinancial sectors, and
the empirical findings remain controversial [29, 30]. On the
one hand, some studies focus on volatility spillover rather
than tail risk spillover; on the other hand, the related lit-
erature focuses on tail risk to the downside and ignores the
upside [31–33]. It neither captures the differences presented
by tail risk spillover in the process of upside risk accumu-
lation and downside risk mitigation nor the process of in-
cremental changes in the level of risk spillover.

Finally, the impact of periodic factors on tail risk
spillover is examined. )e degree of risk spillover among
China’s financial institutions was at a relatively high level
during the subprime mortgage crisis and the implementa-
tion of the new round of easing monetary policy in the
United States. Some studies suggest that the level of systemic
correlation of financial institutions in China has a distinctly
periodic character. Some Chinese scholars measure the
downside risks of 11 industries in China. )e results clearly
demonstrate that when the economic downwards pressure
increases, facing greater policy uncertainty or implementing
expansionary credit policies, there will be more significant
risk contagion among industries. At the same time, the
nonfinancial sector has strong explanatory power for sys-
temic risk. However, the current research focusing on the
impact of cyclical factors on tail risk spillover among in-
dustries in the nonfinancial sector still needs to be
supplemented.

)e rest of this paper is organized as follows: Section 2
presents the methodology, introduces the data, and gives the
measurement results of relevant variables. Section 3 reports
empirical results and further analysis. Section 4 provides
recommendations for improving cross-industrial risk
spillover regulation in China.

2. Methodology and Data

2.1. ∆CoES Method to Calculate Upside and Downside Tail
Risk. Using ES as a risk metric and replacing conditional
events with Xi ≤VaRi

p, Adrian and Brunnermeier [1]
present estimates for CoES that measure the tail effect of
individual risk contribution. We improved on these and
learned the method from Brownlees and Engle [34] to es-
timate CoES. As a result, we can capture not only the in-
stitutions’ systemic risk exposure and the institutions’
contribution to systemic risk at the same time, but also the
long-term stress profiles. It can also use the risk-taking
behavior and risk accumulation of institutions during the
upside to predict risk mitigation in the downside, thus
addressing the procyclicality of the contemporaneous risk
metric. Empirical tests show that the upside ∆CoES (as in
equation (1)) is appropriate as a forward-looking measure of
tail risk, while the downside ∆CoES (as in equation (2)) can
lead CoVaR and CoES.

)is paper extends the application of the ∆CoES model,
which is no longer limited to the financial sector. Using the
overall industry-wide market as a benchmark, measure the

upside and downside ∆CoES values of tail risk for each
industry. )e specific calculation steps are as follows: the
BEKK-MGARCH model is used to estimate the variance
equation of log returns for each industry. )e distribution of
future one-month returns is simulated by the residual
bootstrap method, where the forecast period h� 22 denotes
the actual number of trading days in a month, and S denotes
the number of simulations. )e larger the value of S is, the
better the simulation effect is, so we take S� 105. Based on
the information for period T and conditional on the
arithmetic rate of return R for the next month (h� 22), the
ΔCoESi|N values for each industry are obtained separately.

upsideΔCoESi|N
T � ET Ri,T+1: T+h|RN,T+1: T+h ≤VaR

N
95􏼐 􏼑

−ET Ri,T+1: T+h|RN,T+1: T+h ≤VaR
N
50􏼐 􏼑,

(1)

downsideΔCoESi|N
T � ET Ri,T+1: T+h|RN,T+1: T+h ≤VaR

N
50􏼐 􏼑

−ET Ri,T+1: T+h|RN,T+1: T+h ≤VaR
N
5􏼐 􏼑,

(2)

where N denotes the number of industries; RT+1 :
T+ h≥VaR95 denotes the extreme state of the upside risk
accumulation phase, and RT+1 :T+ h≥VaR50 denotes the
normal state of the upside accumulation phase; RT+1 :
T+ h≤VaR5 denotes the extreme state of the downside risk
mitigation, and RT+1 :T+ h≤VaR50 denotes the normal
state of the downside risk mitigation.

2.2. Cross-Industrial Tail Risk Spillover Network. )e avail-
able dataset is usually panel data of industry returns with
high-dimensional properties when studying interdepen-
dencies among industries. We construct the long-term
variance decomposition network ∆CoES-ENGDFM-LVDN
that can solve the problem of high-dimensional data inci-
dentally well. Second, this approach can study the correlation
between financial and real sectors from the perspective of tail
risk spillover, addressing the problem that methods such as
correlation coefficients of returns and principal component
analysis do not measure the contribution or exposure of
individual institutions to systemic risk. )e drawback that
∆CoVaR, MES, and other methods cannot capture the
network effect of tail risk spillover is avoided. In addition, the
method effectively bridges the previous deficiency of dem-
onstrating risk only from the network of financial institu-
tions. It should be noted that the results in this paper are
mainly based on the heterogeneity part of ΔCoESi|N, and we
argue about its rationality in 3.2. )e specific process is as
follows: extending the study of Barigozzi and Hallin [28], a
two-step dynamic factorial procedure was used. First, the
GDFM was applied to extract the common and idiosyncratic
components from the tail risk data. )en, the EN model and
the LVDNmodel are applied to identify the size and structure
of tail risk spillover among industries.

Denote the two-factorprocess formedbyNindustrieswith
tail risk data ΔCoESi|N (including upside and downside) as

Mathematical Problems in Engineering 3



ΔCoES � ΔCoESi|N
t : i ∈ N, t ∈ T􏽮 􏽯 � χit + ξit, i ∈ N, t ∈ T,

(3)

where ∆CoES satisfies second-order stationary, zero mean,
and finite variance. ∆CoES is absolutely continuous with
respect to the Lebesgue measure on [−π, π]. )e qth ei-
genvector in the spectral density matrix diverges, and the
qth+1st eigenvector is bounded. Hallin and Liška [35] prove
that the horizontal market shock when the actual data are
applied to the GDFM is unique, i.e., q� 1. )us, there are
autoregressive processes Ai(L)χit � ηit � (η1t, ..., ηNt)

’, t ∈ T

and Fi(L)ξit � vit � (v1t, ..., vNt)′, t ∈ T, where ηit and vitare
n-dimensional white noise processes, and Fi(L) is a one-sided
stable VAR filter. Barigozzi and Hallin [28] extracted the
idiosyncratic components ξit of ∆CoES in Fi(L) and used EN
for sparse processing ξit, always admitting a Wold decom-
position, which, after adequate transformation, yields the
vector moving average (VMA) representation ξit � Di(L)eit.
Comparing the above equations, we can obtain

Di(L) � Fi(L)( 􏼁
− 1

Ri, (4)

where the full-rank matrix Ri makes shocks R−1
n vn � en or-

thonormal. Ri follows from a Cholesky decomposition of the
covariance C−1

n of the shocks [36], namely, C−1
n � RnRn

′. )e
residual centrality of the partial correlation network (PCN)
based on Cn is ranked, so that the most correlated nodes are hit
first. Decomposing Ri based on (4) yields the LVDN on
the industry tail risk spillover. wh

ij � 100(􏽐
h−1
k�0d

2
k,ij/􏽐

n
l�1

􏽐
h−1
k�0d

2
k,il), i, j � 1, . . . , n means the dependence from con-

temporaneous to lagged h periods in the LVDNnetwork. Taking
the tail risk of each industry as node V, the industry tail risk
spillover network G(V, W) can be mapped.

2.3. Network-Associated Metrics. Network correlation in-
dicators from Billio et al. [22] and Wanget al. [37] are
borrowed to analyze the level and structure of the correlation
of tail risk spillover across industries.

2.3.1. Degree of Association. )e degree of association in-
cludes the degree of exit (δToi ) and the degree of entry
(δFromi ), which measures the external spillover effect of an
industry in the network as well as its own spillover shock and
is calculated as follows:

δToi � 􏽘
N

i�1,j≠ i

w
h
ij,

δFromi � 􏽘
N

j�1,j≠ i

w
h
ij,

j � 1, 2, . . . , n.

(5)

)e out-degree portrays the sum of tail risk spillover
caused by the tail risk spillover of an industry as a source. A
higher degree of exit indicates that the industry is an active
sender of tail risk spillover and the greater the tail risk
spillover effect of the industry. )e in-degree portrays the
sum of tail risk spillover shocks to an industry as a recipient

of tail risk spillover from other industries. A higher degree of
entry means that the industry is more vulnerable to tail risk
spillover from other industries. )e total degree of associ-
ation can be obtained by summing the out-degree and the
in-degree, i.e., δTot � 1/N 􏽐

N
i�1 δ

From
i � 1/N 􏽐

N
i�1 δ

To
i .

2.3.2. Network Density and Closeness. )e network density
(ND) of N industries reflects the degree of connection be-
tween nodes in the network; the greater the density is, the
closer the relationship between the nodes is. )e ND in-
dicator is expressed as

ND �
1

N(N − 1)
􏽘

N

i�1
􏽐
j≠i

Ei⟶j. (6)

Closeness (C) measures the average of the shortest
distance between an industry node and all other reachable
industry nodes in the network; the smaller the C value is, the
shorter the distance between the industry and the reachable
nodes is. It also means that the connection to the whole
network is closer.

C(j) �
1

N − 1
􏽘
i≠ j

dj⟶i. (7)

2.3.3. Relative Influence. Relative influence (RI) measures
the relative size of the net external spillover of tail risk in an
industry. )e value of RI ranges from [−1, 1], and the
machine formula is

RI(i) �
δToi (i) − δFromi (i)

δToi (i) + δFromi (i)
. (8)

If the RI of an industry is positive (or negative), it means
that its impact on other industries is greater (or less) than the
impact of other industries on it; that is, the intensity of tail
risk spillover from that industry to other industries is greater
(or less) than the intensity of spillover from other industries
to it. )e greater the RI is, the greater the external spillover
effect of tail risk in that industry is.

2.4. Sample Selection and Data Description. In the selection
of industry indicators, we select 28 primary industry1 in-
dices as the sample. )e CSI 300 Index is a comprehensive
stock price index that reflects the performance of China’s
stock market as a whole. )erefore, this paper calculates the
ΔCoESi|N of each industry index to the CSI 300 index to
characterize the industry tail risk. )e total sample range is
December 2006–December 2020, the data frequency is
monthly, and all data are from the Wind database. Con-
sidering the information available at each point in time and
the calculation volume of the bootstrap method, this paper
selects the last trading day data of each month and uses the
sliding window algorithm to calculate the upside and
downside ΔCoESi|N. )e rolling window is set to 12months.
In addition, real-time monitoring of the intensity scale and
path direction of tail risk spillover can measure the dynamics
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of the industry tail risk spillover relationship. We, therefore,
combine the characteristics of China’s financial market and
use the structural breakpoint identification technique to
exclude the impact of abnormal stock market fluctuations in
2015. Using a rolling analysis method, we select two sub-
intervals of the total sample range, October 2008–March
2015 and July 2016–December 2020, to construct a phased
risk network.

3. Results and Discussion

3.1. ∆CoES Measurement Results for Tail Risk. In this paper,
we use ∆CoES to measure the level of tail risk spillover in
each industry in China. Figure 1 gives the trend in the level of
tail risk. )ere are two points that can be derived from the
figure as follows. One is that the level of spillover during the
accumulation of risk determines the level of spillover when
the risk is mitigated. )e upside ∆CoES is greater than the
downside ∆CoES in most periods for each industry in the
full sample interval. )e reason is that the tail risk accu-
mulates in the economic upward period and releases con-
tinuously in the economic downward period. Taking figure
(a) as an example, the level of risk spillover from the mining
industries increased more significantly during the adjust-
ment period after the international financial crisis in 2008,
the stock market volatility in 2015, and the intensification of
international trade frictions and geopolitical conflicts in
2018 and 2019. Comparing Figures (a)-(f ), we find that the
level of tail spillover in each industry shows cyclical varia-
tion. )e synergy of tail risks among industries suggests that
the real sector, represented by mining and transportation,
will also be hit as hard as the financial sector when a crisis
occurs. However, it should be noted that the level of tail risk
spillover also varies among industries. For example, the
overall level of tail risk in the transportation sector began to
increase significantly in October 2013, and the utilities
upside tail risk had several significant increases in August
2009 and 2015 to 2016. Compared with other industries, the
overall tail risk level of the financial sector is relatively stable,
mainly concentrated in the range of 0.05–0.15.

3.2. Sparsity Testing. In the spectral domain, partial spectral
coherence (PSC) is strictly related to the coefficients of a
VAR representation [38]. In line with the long-run spirit of
the LVDN definition, and since volatilities have strong
persistence, we first consider the PSCs at frequency θ � 0,
thus looking at long-run conditional dependencies. Selected
percentiles of the distributions of the absolute value of the
PSC entries for upside ΔCoESi|N

T and idiosyncratic com-
ponents ξit and the distribution of the absolute value of their
differences are shown in Table 1. Both PSCs have many small
(in absolute value) entries, which is consistent with our
sparsity assumptions. Figures 2(a)-2(c) show the distribu-
tions of the absolute value of the PSC entries for upside
ΔCoESi|N

T and ξit and the distribution of the absolute value of
their differences in turn. Similarly, Table 2 shows the dis-
tributions of the absolute value of the PSC entries for
downside ΔCoESi|N

T and idiosyncratic components ξit and

the distribution of the absolute value of their differences.)e
two PSCs are shown in Figures 2(d) and 2(e). )e above
results suggest that the stochastic component also contains
important dependencies after removing market-wide
shocks. After ENGDFM processing, the form of factor plus
sparse VAR can reveal the network internal dependencies.
)erefore, we justify the application of ∆CoES-ENGDFM-
LVDN to study the tail risk spillover among industries in
terms of model treatment.

Left and middle panels: weights in absolute values below
the 90th percentile in gray, weights above the 90th percentile
in red, and weights below the 10th percentile in blue. Right
panel: weights below the 90th percentile in gray, between the
90th and 95th percentiles in blue, and above the 95th
percentile in red.

3.3. Association Level and Structure of Cross-Industrial Tail
Risk Spillover in the Full Sample. Using China’s 28 primary
industries as network nodes, the cross-industrial tail risk
spillover network is formed based on the estimated results of
∆CoES-ENGDFM-LVDN (as shown in Figure 3). Figures a
and b represent the tail risk spillover relationships for each
industry between the upside risk accumulation and down-
side risk release, respectively. We predict the outbreak of
financial crisis and the realization of systemic risk release in
the downside cycle through the risk-taking behavior and
systemic risk accumulation process in various industries in
the upside cycle. In theory, the upside risk spillover and right
tail dependence are forward warning indicators of the
downside and left tail dependence, where the size of the node
indicates the size of the tail risk spillover shock to the in-
dustry, and the direction of the arrow between the nodes
indicates the risk spillover path. )e network indicators
defined in the previous section are used to analyze the tail
risk spillover among industries.

In the process of upside risk accumulation and downside
risk mitigation, the network density index (ND) is 0.2248677
and 0.1891534, respectively. )e total correlations are 36.17
and 49.41, respectively. )is indicates that there is an overall
persistent nonlinear spillover effect among industry tail risks
in China with periodic variation characteristics. )e total
correlation of the upside risk accumulation process is
smaller than that of the downside risk mitigation process,
indicating that when the financial cycle is in the downside,
the tail risks of the industry are more likely to hit other
sectors along the risk network, showing more significant risk
spillover effects. )e reason for this is that when economic
growth slows and investment and consumption are weak,
the relative vulnerability of the industries tends to amplify
the shock. A continued deterioration in economic condi-
tions will also affect market stability and investor expecta-
tions, so risk contagion effects may differ significantly
between economic ups and downs.

Based on the out-degree and in-degree indicators, we
can calculate the spillover effect of industry tail risk in
period h and analyze its role in the contagion chain. Table 3
collates the out-degree, in-degree, and RI indicators of tail
risk spillover relationships for 28 primary industries, with
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columns (2)-(4) indicating the upside risk accumulation
phase and columns (5)-(7) indicating the downside risk
mitigation phase. In the upside risk accumulation process,
the top 10 industry tail risks in descending order of out-

degree are Textile and Apparel, Mining, Media, Agricul-
ture, Food and Beverage, Utilities, Chemicals, Conglom-
erate, Transportation, and Leisure Services. )ey are active
senders of risk spillover, and the spillover effect is

2008m1 2010m1 2012m1
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COESU_Mining

2014m1 2016m1 2018m1 2020m1

0
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Figure 1: Temporal variation characteristics of the ∆CoES.
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relatively strong. )e top 10 industry tail risks of in-degree
are Electronics, Machinery Equipment, Communications,
Banks, Commerce, Automobiles, Construction Materials,
Nonferrous Metal, nonbank finance, and Electrical
Equipment. )ey are the primary recipients of the in-
fection and are relatively vulnerable to spillover. In the
downside risk mitigation process, the top 10 industry tail
risks of out degree in order are Food & Beverage, Com-
munications, Transportation, Electronics, Mining, Health
Care, Chemicals, Utilities, Textile & Apparel, and Media.
)e top 10 industry tail risks of in-degree are construction
materials, conglomerate, machinery equipment, chem-
icals, household appliances, nonbank finance, steel, light-
industry manufacturing, commerce, and health care. From
the above analysis, it can be seen that the nonbank

financial industry is reflected in the in-degree ranking,
indicating that whether in the upside risk accumulation or
downside risk mitigation process, it has played the role of
the recipient of tail risk spillover. )us, it also indicates
that the tail risk spillover from China’s industry is reflected
in the associated directions from the nonfinancial sector to
the financial sector. Especially in the process of downside
risk mitigation, more attention should be given to the
ability of the nonbank financial sector to withstand tail risk
spillover. We also found that the real estate industry
ranked relatively low in both out-degree and in-degree
values throughout the sample period, indicating that the
process of analyzing tail risk spillover among industries
cannot be prevented and resolved simply by the inherent
impression of the industry.

Table 2: )e distributions of the absolute value of the PSC for risk mitigation.

Quartiles
)e absolute value of the PSC 50% 90% 95% 97.50% 99% Maximum
|PSCΔCoES(θ � 0)| 0.125615 0.313493 0.365495 0.435755 0.500213 0.592619
|PSCξn

(θ � 0)| 0.118030 0.293803 0.376495 0.436253 0.503897 0.626567
|PSCΔCoES(θ � 0) − PSCξn

(θ � 0)| 0.042004 0.109430 0.143421 0.177084 0.230884 0.324330

Table 1: )e distributions of the absolute value of PSC for risk accumulation.

Quartiles
)e absolute value of the PSC 50% 90% 95% 97.50% 99% Maximum
|PSCΔCoES(θ � 0)| 0.124362 0.291909 0.323202 0.376626 0.428884 0.566802
|PSCξn

(θ � 0)| 0.117153 0.289620 0.328238 0.380161 0.468751 0.643701
|PSCΔCoES(θ � 0) − PSCξn

(θ � 0)| 0.043272 0.144979 0.170733 0.199930 0.228674 0.287758
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Figure 2: PSC in the process of risk accumulation and risk mitigation. (a) PSC of upside ΔCoESi|N
T . (b) PSC of upside ξit. (c) Absolute value

of upside difference. (d) PSC of downside ΔCoESi|N
T . (e) PSC of upside ξit. (f ) Absolute value of downside difference.
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Columns (4) and (7) of Table 3 present the relative
impact indicators for each industry, which measure the
magnitude of the net spillover of tail risk in a given industry.
During the upside risk accumulation process, the RI indi-
cators of the top ten industries in terms of out-degree are all

greater than zero, implying that they all have a positive net
tail risk spillover. )is can indicate that risks accumulate in
several sectors during the upside and start to be mitigated
during the downside. Taking into account the ranking by
out-degree and the net spillover from the tail risk of the

(a) (b)

Figure 3: Full sample of China’s cross-industrial tail risk spillover networks. (a) Upside risk accumulation process. (b) Downside risk
mitigation process.

Table 3: Out-degree, in-degree, and RI indicator of cross-industrial.

Industry (1)
Upside risk accumulation phase Downside risk mitigation phase

Out-degree (2) In-degree (3) RI (4) Out-degree (5) In-degree (6) RI (7)
Mining 114.0545 17.4530 0.734570272 61.6501 32.8652 0.304552808
Transportation 38.4021 7.3969 0.676984214 66.7230 18.1311 0.572652353
Leisure services 26.1311 9.8383 0.452962796 12.8147 31.8501 −0.426183482
Media 86.6538 10.5619 0.782712052 17.7331 39.2600 −0.377710635
Utilities 54.2077 26.2984 0.346673109 29.1218 47.6602 −0.241442005
Agriculture 82.3181 36.6710 0.383624214 8.2766 52.5921 −0.728050706
Chemicals 53.5963 37.6067 0.175318794 37.6897 63.0075 −0.251425064
Health care 25.1435 23.4528 0.034790715 44.5775 55.4160 −0.108392045
Commerce 4.8575 52.3779 −0.83026239 10.1877 57.2267 −0.697758936
National defense 22.4761 33.6635 −0.199278228 9.3160 53.7339 −0.704488032
Household appliances 11.7469 28.1271 −0.410799017 0.0000 62.5923 −1
Construction materials 17.8422 48.3596 −0.460975381 16.5888 68.1793 −0.608607483
Construction furnishings 15.1180 23.3335 −0.213658765 15.7876 32.0357 −0.339752798
Real estate 5.4934 35.4223 −0.731477159 5.6138 52.0842 −0.805407466
Nonferrous metal 4.1867 47.8813 −0.839183376 2.2286 53.2019 −0.919589396
Machinery equipment 0.0000 60.7620 −1 0.0000 63.0327 −1
Automobiles 2.8404 48.3764 −0.88908327 0.0000 51.7961 −1
Electronics 16.9323 62.2757 −0.572459853 66.6504 44.8751 0.195249517
Electrical equipment 0.0000 43.5438 −1 0.0000 54.4843 −1
Textile and apparel 232.4349 0.0000 1 22.4120 46.8030 −0.352394712
Conglomerate 47.9072 33.7010 0.174078095 3.4964 64.7932 −0.897600806
Computer 11.7495 43.3565 −0.573567307 3.1802 51.7017 −0.884107511
Light-industry manufacturing 19.2448 37.9764 −0.327354197 7.2998 60.7444 −0.785439464
Communications 24.0707 60.1110 −0.428125115 239.5348 49.7838 0.655854826
Steel 7.0208 42.3321 −0.715485817 8.9733 62.0339 −0.747256616
Banks 3.8193 54.7705 −0.869625771 8.8933 51.3620 −0.704812689
Nonbank finance 4.5618 43.9214 −0.811819352 2.3020 62.3088 −0.928742563
Food and beverage 80.0580 43.2967 0.298012966 682.5041 0.0000 1
Total degree 36.1738 49.4127

8 Mathematical Problems in Engineering



industry represented by RI, there are ten industries, Textile
and Apparel, Media, Mining, Transportation, Leisure Ser-
vices, Agriculture, Utilities, Food and Beverage, Chemicals,
and Conglomerate, which become important sources of risk
spillover in the process of risk accumulation during the
sample period. In the downside risk mitigation process,
combining out-degree values and the RI indicator reveals that
Food and Beverage, Communications, Transportation,
Mining, and Electronics are the main sources of net tail risk
spillover. In addition, the number of net spillover industries
has decreased during downside risk mitigation. )e reason is
that the abovementioned industries are important net spill-
over nodes and sources of risk, and their spillover is gradually
mitigated in the process of downside risk mitigation.

A smaller tightness (C) indicates that the node is more
closely connected to the whole network. During the accu-
mulation of upside risk, the top 10 industries in order of C
from smallest to largest are Machinery Equipment, Com-
munications, Electrical Equipment, nonbank finance, Food
and Beverage, Banks, Computer, Automobiles, Electronics,
and Nonferrous Metal. During the downside risk mitigation
process, the top 10 industries in ascending order of size C are
Automobiles, Light-industry Manufacturing, Computer,
Household Appliances, Banks, Electrical Equipment, Non-
ferrous Metal, Mining, nonbank finance, and Machinery
Equipment. As shown in the columns of Table 4(2)-(3),
certain industries, which are important sources of spillover,
do not have high network tightness. In contrast, some risk
sources that are not at the center of the risk network may
have a stronger tail risk network propagation. It is worth
noting that the industries with the same top rankings for
closeness, out degree, in degree, and RI in the full sample
interval are Machinery Equipment, Communications,
Electrical Equipment, nonbank finance, Food and Beverage,
Banks, Automobiles, and Nonferrous Metal. )e eight in-
dustries mentioned above are at the center of the spillover
association in the overall tail risk spillover network.

3.4. Dynamics of Cross-Industrial Tail Risk Spillover
Correlation. )emagnitude and direction of the association
of cross-industrial tail risk spillover can change over time.
)e above examines the spillover of tail risk across industries
in the network based on the full sample results but may miss
important information changes, and regulators need to
grasp the dynamic characteristics of the magnitude and path
direction of correlation intensity across industries. )is
paper divides the sample interval into 2 different periods
based on the characteristics of China’s economic and fi-
nancial market operations, combined with structural
breakpoint2 identification. )e two periods are October
2008–March 2015 (interval I) and July 2016–December 2020
(interval II), excluding the effect of the abnormal stock
market volatility phase in 2015. Figure 4 gives the dynamic
characteristics of the network correlation structure for the
above two intervals.

In the process of risk accumulation in the interval of
period I, the top 10 industry tail risks in order of out-degree
are mining, food and beverage, health care, construction

materials, construction furnishings, textile and apparel,
transportation, agriculture, real estate, and nonferrous
metals. )e top 10 in-degree are communications, steel,
automobiles, electrical equipment, chemicals, commerce,
leisure services, national defense, electronics, and light-in-
dustry manufacturing. Columns 2–4 of Table 5 show the RI
values, and the top ten industries, from largest to smallest, are
mining, health care, food and beverage, construction ma-
terials, transportation, construction furnishings, textile and
apparel agriculture, real estate, and nonbank finance.
Closeness (C) ranking in order: communications, media,
household appliances, light-industry manufacturing, na-
tional defense, electrical equipment, commerce, steel, elec-
tronics, and computer (as in column 4 of Table 4). In the
process of risk mitigation, the top 10 industries ranked by tail
risk out-degree ranking in order: chemicals, communica-
tions, transportation, household appliances, mining, leisure
services, utilities, nonferrous metals, construction materials,
and construction furnishings. )e top 10 in-degree are steel,
automobiles, computer, conglomerate, nonbank finance,
electrical equipment, light-industry manufacturing, ma-
chinery equipment, food and beverage, and electronics. )e
RI ranking in order is chemicals, transportation, commu-
nications, mining, household appliances, leisure services,
utilities, nonferrous metals, agriculture, and construction
furnishings (as listed in columns 5–7 in Table 5). C is listed in
ascending order as follows: light-industry Manufacturing,
Food and Beverage, conglomerate, textile and apparel,
nonbank finance, electrical equipment, electronics, auto-
mobiles, computer, and banks (as in column 5 of Table 4).

In the process of risk accumulation during the interval II
period, the top 10 out-degree rankings of industry tail risk
are mining, national defense, agriculture, chemicals, con-
struction materials, electrical equipment, health care, con-
struction furnishings, banks, and electronics. )e top 10 in-
degree rankings are machinery equipment, media, trans-
portation, food and beverage, nonbank finance, light-in-
dustry manufacturing, household appliances,
communication, leisure services, and automobiles. Columns
8–10 of Table 5 show the magnitude of RI, with the top ten in
descending order: mining, agriculture, national defense,
construction materials, chemicals, health care, electrical
equipment, construction furnishings, banks, and commerce.
C ranking in order: automobiles, machinery equipment,
nonferrous metals, light-industry manufacturing, leisure
services, household appliances, food and beverages, trans-
portation, steel, and media (as in column 6 of Table 4). In the
process of risk mitigation, the top 10 industry tail risks in
order of out-degree are machinery equipment, trans-
portation, chemicals, mining, conglomerate, media, utilities,
agriculture, health care, and commerce. )e top 10 in order
of in-degree are nonbank finance, food and beverage, light-
industry manufacturing, banks, computers, steel, commu-
nications, construction materials, national defense, and
nonferrous metals. )e RI ranking in order is machinery
equipment, transportation, mining, chemicals, media, con-
glomerate, agriculture, utilities, health care, and commerce
(as listed in Table 5, columns 11–13). )e C ranking in order
is nonbank finance, food and beverage, computer,
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Table 4: Closeness values of China’s industry.

Sample interval Full sample interval Interval 1 Interval 2
Industry Upside (2) Downside (3) Upside (4) Downside (5) Upside (6) Downside (7)
Food and beverage 103 756 624 260 289 189
Communications 97 729 278 702 305 219
Transportation 145 702 625 387 291 258
Mining 124 171 625 378 702 260
Electronics 108 702 409 327 311 240
Health care 110 702 623 363 323 254
Utilities 113 186 464 375 319 257
Chemicals 116 182 464 756 312 261
Construction furnishings 118 197 622 358 334 235
Textile and apparel 756 187 541 298 315 226
Media 112 702 278 371 296 251
Leisure services 729 675 435 393 281 255
Construction materials 113 174 624 379 325 235
Commerce 111 193 383 372 308 255
National defense 115 621 381 361 702 247
Banks 104 166 569 357 308 227
Agriculture 115 648 541 371 703 250
Steel 114 182 390 360 293 239
Light-industry manufacturing 109 154 356 229 273 217
Real estate 110 176 595 358 323 239
Computer 107 156 409 341 336 211
Conglomerate 729 175 486 265 300 258
Nonferrous metal 108 168 516 369 264 237
Nonbank finance 101 173 567 308 299 182
Automobiles 107 143 567 335 216 211
Household appliances 123 158 303 702 284 248
Electrical equipment 100 167 381 326 675 234
Machinery equipment 79 173 541 366 254 243

(a) (b)

Figure 4: Continued.
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(c) (d)

Figure 4: Cross-industrial tail risk spillover networks in China. (a) Upside risk accumulation process in interval I. (b) Downside risk
mitigation process in interval I. (c) Upside risk accumulation process in interval II. (d) Downside risk mitigation process in interval II.

Table 5: Tail risk spillover network indicators among subsamples.

Interval I Interval II
Upside risks accumulate Downside risks mitigated Upside risks accumulate Downside risks mitigated

Industry (1) Out-deg
(2)

In-deg
(3) RI (4) Out-deg

(5)
In-deg
(6) RI (7) Out-deg

(8)
In-deg
(9) RI (10) Out-deg

(11)
In-deg
(12) RI (13)

Mining 350.61 13.23 0.9273 102.72 48.18 0.3614 1503.03 4.43 0.994 91.93 37.60 0.419
Transportation 67.29 20.95 0.5252 134.88 12.85 0.8261 0.0000 90.95 −1 162.33 55.24 0.492
Leisure services 7.81 81.43 −0.8249 65.19 56.08 0.0751 2.41 85.09 −0.945 9.83 59.43 −0.716
Media 0.0000 70.37 −1 14.94 63.59 −0.6195 2.11 92.19 −0.955 56.49 65.41 −0.073
Utilities 24.18 69.45 −0.4835 36.50 66.63 −0.2922 8.68 79.91 −0.804 35.38 68.41 −0.318
Agriculture 48.88 61.31 −0.1128 25.56 49.71 −0.3209 160.91 25.46 0.727 29.37 54.61 −0.301
Chemicals 3.63 81.78 −0.9150 1026.23 0.0000 1 48.41 83.70 −0.267 111.81 56.62 0.328
Health care 329.52 16.76 0.9032 16.53 63.15 −0.5851 21.41 49.21 −0.394 26.15 54.26 −0.35
Commerce 0.0000 81.43 −1 18.44 68.55 −0.5760 12.66 78.91 −0.723 22.90 57.74 −0.432
National defense 0.0000 80.79 −1 3.15 67.64 −0.9111 209.03 43.79 0.654 6.46 78.32 −0.848
Household
appliances 0.0000 72.04 −1 126.73 67.12 0.3075 0.0000 85.76 −1 13.28 61.10 −0.643

Construction
materials 294.46 51.61 0.7017 34.51 71.76 −0.3505 42.41 72.63 −0.263 22.68 80.22 −0.559

Construction
furnishing 99.81 42.28 0.4049 28.36 56.16 −0.3289 19.00 83.91 −0.631 6.98 77.86 −0.836

Real estate 40.85 63.78 −0.2191 3.85 72.92 −0.8997 4.54 72.21 −0.882 2.61 75.06 −0.933
Nonferrous metal 29.45 78.37 −0.4537 35.41 66.59 −0.3056 0.0000 84.44 −1 10.76 77.92 −0.757
Machinery
equipment 16.54 71.38 −0.6237 10.54 77.06 −0.7593 0.0000 95.88 −1 1225.46 7.21 0.988

Automobiles 24.88 84.78 −0.5463 2.62 86.32 −0.9411 0.0000 84.76 −1 0.0000 71.23 −1
Electronics 7.54 80.62 −0.8290 2.30 73.74 −0.9394 12.98 83.63 −0.731 13.38 71.42 −0.684
Electrical equipment 3.68 83.79 −0.9159 0.0000 79.23 −1 26.77 75.16 −0.475 8.23 65.99 −0.778
Textile and apparel 70.25 46.04 0.2082 6.60 70.73 −0.8292 9.17 77.62 −0.789 0.0000 71.22 −1
Conglomerate 25.88 77.18 −0.4977 0.0000 83.89 −1 0.0000 75.02 −1 60.02 70.03 −0.077
Computer 7.91 72.02 −0.8020 0.0000 85.70 −1 2.21 81.01 −0.947 5.46 86.55 −0.881
Light-industry
manufacturing 0.0000 79.79 −1 0.0000 77.53 −1 10.82 89.12 −0.784 2.84 87.95 −0.937

Communications 0.0000 86.83 −1 141.45 64.11 0.3762 7.35 85.62 −0.842 0.0000 83.65 −1
Steel 0.0000 84.83 −1 2.30 88.86 −0.9495 0.0000 81.39 −1 2.68 84.51 −0.939
Banks 6.084 63.12 −0.8242 6.14 70.94 −0.8407 14.13 83.39 −0.71 2.28 87.56 −0.949
Nonbank financials 26.57 65.29 −0.4215 0.0000 81.18 −1 2.44 89.83 −0.947 0.0000 93.56 −1
Food and beverage 333.82 38.41 0.7936 0.0000 74.75 −1 4.53 89.97 −0.904 0.0000 88.61 −1
Total degree 64.99 65.89 75.89 68.90
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automobiles, light-industry manufacturing, communica-
tions, textile and apparel, banks, electrical equipment, and
construction furnishings (as in column 7 of Table 4).

To facilitate the analysis, we briefly present the above
results in Table 6. )ey show that the level of risk spillover in
different industries differs from the average cross-industrial
risk spillover in the overall market in different intervals. )e
cross-sectional dimension allows us to compare the differ-
ences in spillover effects between the upside risk accumu-
lation and downside risk mitigation phases within the same
sample interval and analyze the accumulation of risk
spillover levels from normal to extreme states. )e time
dimension allows for a longitudinal analysis of the evolution
of the industry tail risk spillover relationship across the
intervals. It is possible to compare the evolution of risk
spillover within the same risk phase (upside risk accumu-
lation or downside risk mitigation) across sample intervals.

First, the differences in tail risk spillover effects among
industries are compared. In interval I, the senders of risk
spillover during the upside risk accumulation process in-
clude the tail risk of the real estate industry, and the receivers
of risk spillover do not have banks or nonbank financial
industries. Nonbank finance appears in the in-degree
ranking as the receivers of tail risk spillover during the
downside risk mitigation process. )ere are no estimates of
tail risk in the real estate industry in either the full sample
interval or the sample interval II out-degree ranking, in-
dicating that the impact of tail risk in the real estate industry
is large in the earlier period. )e impact of tail risk accu-
mulation within the real estate industry in China has
gradually decreased in recent years with the regulation of
this industry. )e risk spillover senders and receivers in
Interval II are more likely to reflect the tail risks of industries
involving emerging sectors of strategic importance, such as
communications, computers, and health care, indicating
that the impact of strategic emerging industries on the
economic and financial system is of increasing concern in
the process of structural transformation and upgrading of
China’s industries. In Interval II, in terms of closeness, tail

risks in the nonbank financial industry are not at the center
of the network during the upside risk accumulation phase
but evolve into an important network center during the
downside risk mitigation phase, playing an important role in
the risk spillover contagion chain.

Second, the evolution of the cross-industrial tail risk
spillover is compared across different intervals. In the
process of upside risk accumulation and downside risk
mitigation, the network density indicators ND in sample
intervals I and II are 0.2592593 and 0.2301587 and 0.1931217
and 0.207672, respectively. )e total correlations are 64.99
and 65.89 and 75.89 and 68.90, respectively; thus, the
nonlinear effects and cyclical changes of tail risk spillover
among industries still exist. Regardless of the upside risk
accumulation or downside risk mitigation process, the total
correlation in interval II is greater than that in interval I.)is
indicates that the impact of tail risk spillover in China has
been gradually expanding in the cross-industrial range in
recent years from the vertical time dimension. In the interval
I time period, the total correlation of the upside risk ac-
cumulation process is smaller than the total correlation of
the downside risk mitigation process, while in the interval II
time period, the result is the exact opposite. )e total
correlation of the upside risk accumulation process shifts to
be larger than the total correlation of the downside risk
mitigation process, indicating that the downside risk is not
fully mitigated in the process of expanding the impact of tail
risk spillover in recent years. In addition, in the downside
and upside risk phases of the two sample subregions, the tail
risks of industries such as mining, transportation, utilities,
and agriculture in the nonfinancial sector are among the
stable risk spillover senders. )ey provide basic services and
production materials supply for other sectors while gener-
ating more obvious risk shocks to other industries. )e tail
risks of the communications, health care, computer, and
other industries are gradually rising in the network. )is
conclusion forms a synthesis of established studies related to
cross-industrial risk spillover and an extended validation of
them. It is worth noting that although the nonbank financial

Table 6: Subsample index ranking.

Interval 1 Upside Interval 2 Upside

In-degree Communications, steel, automobiles, electrical equipment,
chemicals

Machinery equipment, media, transportation, food and
beverage, nonbank financials

Out-
degree

Mining, food and beverage, health care, construction materials,
construction furnishings

Mining, national defense, agriculture, chemicals,
construction materials

RI Mining, health care, food and beverage, construction materials,
transportation

Mining, agriculture, national defense, constructionmaterials,
chemicals

Closeness Communications, media, household appliances, light-industry
manufacturing, national defense

Automobiles, machinery equipment, nonferrousmetal, light-
industry manufacturing, leisure services

Interval 1 downside Interval 2 downside

In-degree Steel, automobiles, computer, conglomerate, nonbank
financials

Nonbank financials, food & beverage, light-industry
manufacturing, banks, computer

Out-
degree

Chemicals, communications, transportation, household
appliances, mining

Machinery equipment, transportation, chemicals, mining,
conglomerate

RI Chemicals, transportation, communications, Mining,
household appliances

Machinery equipment, transportation, mining, chemicals,
media

Closeness Light-industry manufacturing, food and beverage,
conglomerate, textile & apparel, nonbank financials

Nonbank financials, food and beverage, computer,
automobiles, light-industry manufacturing
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industry is not in the ranking of risk spillover senders, the in-
degree ranking of the industry has improved more signifi-
cantly in recent years. During the downside risk mitigation
phase of Interval II, it is not only the top-ranked tail risk
spillover recipient, but also in the center of the network in
terms of closeness, which again confirms the characteristics
of tail risk spillover from the nonfinancial sector to the fi-
nancial sector. Based on the fact that China’s nonbank fi-
nancial industry is not the sender but the receiver of tail risk
spillover, it is more important to pay attention to the in-
crease in risk exposure of the nonbank financial sector and
strengthen its ability to bear tail risk spillover. At the same
time, it is also necessary to pay attention to the risk-sending
effect presented by the Bank sector during the upside risk
accumulation phase and the role it played in promoting risk
accumulation.

Finally, the evolution of risk spillover within the same
risk stage in different sample intervals is compared. Based on
the estimation results, it is found that the total correlation
within interval II during the accumulation of upside risk is
significantly larger than the total correlation in interval
I.)is indicates that the upside risks have accumulated faster
in recent years, but thanks to effective regulation, the
downside risk mitigation is gradually resolved and does not
show an accelerating trend of mitigation. )at being said,
there is still a need to focus on the impact of upside risks.

4. Conclusion

)is paper applies the ∆CoES-ENGDFM-LVDN method to
construct a tail risk spillover network with periodic properties
among China’s industries and investigates the level and
structure of association of the tail risk spillover network, as well
as the role of each industry in the risk contagion chain. We
identify the characteristics and the dynamic contribution of
each industry in the tail risk transmission chains. On the one
hand, this paper analyzes tail risk in-degree, out-degree, RI, and
closeness indicators based on cross-sectional dimensions for
the full sample period and finds that there is variability in the
level of tail risk spillover among industries. For example, the
real estate industry, an important source of risk inherently
perceived, has ranked relatively poorly in recent years in terms
of out and in indicators. )e risk spillover indicators in both
sample subintervals show that the mining, transportation,
utilities, and agriculture sectors in the nonfinancial sector are
stable sources of risk. )e nonbank financial industry is the
recipient of tail risk spillover and gradually evolves into an
important network center in the downside risk mitigation
phase. )is indicates that the tail risk spillover in China’s
industries is reflected in the direction of correlation from the
nonfinancial sector to the financial sector. On the other hand,
the in-degree ranking of the nonbank financial industry has
improved significantly in recent years. It becomes the most
central industry in the tail risk network and is very closely
linked to other industries.)e reason for this is likely due to the
rapid growth of China’s nonbank financial business, whose
regulatory avoidance, high leverage, and maturity mismatch
characteristics have led to increased vulnerability of the non-
bank finance. In addition, the real estate industry had a large

tail risk impact in the early period (interval I), but the output
effect of tail risk in the real estate industry is gradually
weakening as national regulations are gradually taking effect
(interval II). At the same time, emerging industries in China,
such as communications, health care, and computers, have
been more represented among the senders and receivers of tail
risk since 2016. )is also indicates that emerging industries in
China are increasingly worthy of attention.

)e network density and the total degree of correlation
indicators show that there are a continuous nonlinear
spillover effect and an obvious cyclical characteristic among
China’s industry tail risk as a whole. )e spillover effect of
industry tail risk during the downside risk mitigation
process is more pronounced, but the gradual growth of the
total degree of the upside risk accumulation process has
exceeded the total degree of the downside. )is suggests that
although the impact of cross-industrial tail risk spillover in
China has gradually expanded, due to effective regulation, it
has not been released sharply.

Based on the above findings, this paper puts forward the
following policy recommendations. First, the regulator
should expand the scope of concern, not only focusing on
the financial sector, but also paying attention to the tail risk
spillover effect of the nonfinancial sector. Focus more on
stable risk spillover sectors represented by mining, trans-
portation, utilities, and agriculture. At the same time, it is
important to avoid falling into the rigidity of thinking and
not simply focusing on risk prevention in traditional high-
risk spillover industries, such as the real estate industry.
Depending on the role and status of different industries in
the tail risk spillover process, different regulatory policies
should be selected in a targeted manner.When establishing a
risk warning system related to each industry in China, the
different systematic contributions of each industry in the
risk transmission chain should be taken into account
comprehensively. A dynamic adjustment mechanism should
be introduced to lay the foundation for a more reasonable
prevention of tail risk spillover. Second, as the nonbank
finance has long been in the position of the recipient of tail
risk spillover, improving the ability of the nonbank finance
to resist risks, reducing the vulnerability of the industry, and
regulating its operation are the focus of risk prevention.
)ird, with the improvement of capital structure and in-
dustrial restructuring, the importance of emerging indus-
tries in the risk spillover network is gradually increasing, and
more attention should be given to the risk contagion of such
industry fluctuations for the overall industries and pre-
venting tail risk transmission from the nonfinancial sector to
the financial sector. [39].

Data Availability

Data are available upon request to corresponding author.

Additional Points

(1) Tail risk spillover in China’s industries has both peri-
odicity and variability characteristics. (2) Cross-industrial
tail risks spillover from the nonfinancial sector to the
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financial sector in China. (3) )e impact of the tail risk of
emerging industries on the whole economic and financial
system is gradually increasing in China. (4))e impact scope
of cross-industrial tail risk spillover in China has gradually
expanded, but the downside risk has not been released
sharply. Network effects and characteristics of cross-in-
dustrial tail risk spillover in China.
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