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�e purpose of this paper is to look at how to estimate the �nite population mean utilizing information from the auxiliary variable
on a systematic sampling technique. By integrating the study variable’s maximum and minimum values, as well as two auxiliary
variables, we o�er estimators of the ratio, product, and regression types.�emathematical equations of the suggested and existing
estimators are derived up to the �rst order of approximation. Based on real-life data sets, e�ciency comparisons are carried out.
�e suggested ratio, product and regression estimators consistently outperform existing estimators in terms of mean square error,
according to theoretical and empirical investigations.

1. Introduction

It is common practise in sampling surveys to employ
auxiliary data during the estimation stage to improve the
precision of population parameter estimates. In this context,
several ratios, products, and regression estimators are ap-
propriate examples. In the literature, a larger number of
consistent estimators using auxiliary information for esti-
mating the �nite population mean or a total of the study
variable, as well as their properties in simple random
sampling, have been addressed, for example, see [1, 2] and
the references cited therein. For estimating the population
characteristics, there are some populations, such as forest

areas for estimating timber volume and areas under various
forms of cover [3], where simple random sampling or other
sampling schemes are di�cult to apply. In such a setting,
systematic sampling produces precise results for selecting a
sample from a population. �e advantages of systematic
sampling include the ability to select the entire sample with
just one random start.

Also sampling theory, appropriate use of the auxiliary
information may increase the precision of the estimators.
But unfortunately, many real data sets contain values that are
suddenly maximum or minimum. As a result, if any un-
expected values are chosen in the sample, the estimator may
generate misleading results. To handle such situations, we
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proposed mean estimation under a systematic sampling
design in the presence of maximum and minimum values.

Assume that the population units N are sequentially
numbered from 1 to N. We choose a unit at random from
the first k units and every kth unit to create a sample of n
units. As an example, if k is 12 and the first unit drawn is
number 10, the following units are numbers 22, 34, 44, and
so on.

(e whole number is determined by the first unit chosen.
A simple random sample appears to be less exact than
systematic sampling. It divides the population into n strata,
each of which includes the first k units, second k units, and
so on.References [4, 5] discovered that systematic sampling
is efficient and convenient in sampling. It gives estimators
that are more efficient than those offered by basic random
sampling under certain actual situations, in addition to its
simplicity, which is very important in large-scale sampling
work. (e ratio and product estimators for estimating the
finite population mean Y of the study variable y were built
by [6, 7]. References [7–15] and Javaid et al. [16], all go into
great length about systematic sampling.

2. Notation and Symbols

Consider the study variable Y and the auxiliary variables
X, Z for a finite population with U � U1, U2 . . . , UN  units.
We choose a systemic sample of size n, starting with a
random selection of the first unit, and subsequently selecting
every kth unit after each interval of k. We’ll use the formula
N � nk, with n and k being positive integers. For selected
systematic random sample, say yij, xij, where
i � 1, 2, . . . n, j � 1, 2, . . . , k, are the values of jth unit in the
ith selected sample for Y, X, and Z variables correspond-
ingly. For y, x, and z, the sample mean in systematic random
sampling is

Ysys �
1
n



n

j�1
yij,

Xsys �
1
n



n

j�1
xij,

Zsys �
1
n



n

j�1
zij,

(1)

those are unbiased estimators for population means for the
variables Y,X, and Z, respectively. (e bias and mean
squared error were calculated, let us define
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Y
,
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X
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(2)

such that, E(e0) � E(e1) � E(e2) � 0
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where
ρ∗y � 1 +(n − 1)ρy,

ρ∗x � 1 +(n − 1)ρx,

ρ∗z � 1 +(n − 1)ρz,
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(e coefficients of y, x, and z are Cy, Cx, and Cz,
respectively,

and

ρy �
E yij − Y  y

�

ij − Y  

E yij − Y 
,

ρx �
E xij − X  x

�

ij − X  

E xij − X 
,

ρz �
E zij − Z  z

�

ij − Z  

E zij − Z 
,

(5)

are interclass correlation in the systematic sample for the
research variable y as well as the auxiliary variables x and z,
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���������������������
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2
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(6)

is the correlation between the study variable y and auxiliary
variables (x, z).

Many genuine data sets have unexpectedly large or tiny
(ymax) or (ymin) values. When such values appear in the
estimation of a finite population mean, the results are
vulnerable. (e findings will be either inflated or under-
estimated if ymax and ymin exist. To deal with such a situ-
ation, [17] suggested the following unbiased estimator for
the estimation of finite population mean using maximum
and minimum values:

% Ys �

Y + c, if samples containymin but notymax

Y − c, if samples containymax but notymin

Y, for all other samples.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

(e variance of Ys, is calculated as follows:

V
Ys  � λS

2
y −

2λnc

N − 1
ymax − ymin − nc( , (8)

the population variance is S2y, and the constant is c. c has a
minimum value of

copt �
ymax − ymin( 

2

2n
. (9)

(e variance of Ys, is calculated as follows:

V
Ys 

min
� V(

Y) −
λ ymax − ymin( 

2

2(N − 1)
, (10)

this is always less than the variance of Y.
Under a systematic sampling approach, the usual ratio

estimator is

YRsys �
Ysys

X

Xsys
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Z

Zsys

⎛⎜⎝ ⎞⎟⎠. (11)

(e bias and mean squared error of YRsys are provided
by the following up to the first order of approximation:
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and
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(13)

where, R1 � Y/X and R2 � Y/ZUnder systematic sam-
pling, the product estimator is as follows:

YP(sys) �
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X
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Z
⎛⎝ ⎞⎠. (14)
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up to the first order of approximation:
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(16)

Under a systematic sampling procedure, the standard
regression estimator for predicting the unknown population
mean is as follows:

Ylr(sys) �
Ysys + b1 X −

Xsys  + b2 Z −
Zsys . (17)

(e sample regression coefficients are b1 and b2, re-
spectively. If b1 and b2 are the least square estimators of B1
and B2, respectively, then up to the first order of approxi-
mation, the variance of the estimator Ylr(sys) is as follows:
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V
Ylr(sys)  � λS

2
yρ
∗
y 1 − ρ2yx + ρ2yz − 2ρyxρyzρxz  . (18)

3. Suggested Estimators

We provide a ratio, product, and regression type estimator
using auxiliary variables and the study variable in a sys-
tematic sampling method, based on [18]. We also take into
account the study’s minimum and maximum values, as well
as the two auxiliary variables.

3.1. First Situation. When the study variable and the aux-
iliary variable have a positive connection, a bigger value of

the auxiliary variable should be chosen, as should a greater
value of the study variable. A smaller study variable value
should also be chosen, as well as a smaller value of the
auxiliary variable. To make use of these type of data, using
auxiliary variables and the research variable, we recommend
using a ratio type estimator.
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(e estimator of regression type is:
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3.2. Second Situation. When the study variable and the
auxiliary variable have a negative correlation, choose the
auxiliary variable with the bigger value and the study variable
with the smallest value. (e smaller value of the auxiliary
variable is chosen, while the larger value of the study variable is
chosen. (e proposed product type estimator using the aux-
iliary variables (x, z) with the study variable y is given by
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(e estimator of regression type is as follows:
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Also c1, c2, and c3 are unknown constants. (e following
relative error terms and their expectations are used to
generate biases and mean squared errors.
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Expressing (19) in terms of e′s, we have
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Expressing (27) we have the following results up to the first
order of approximation:
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We have after squaring (28) and taking expectations
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

and
MSE YPsuggested(sys)

 
min

� MSE YPsuggested(sys)
 

−
λ

2(N − 1)
Δy + R1Δx + R2Δz 

2
,

(35)

where

MSE YPsuggested(sys)
 

� λ
S
2
yρ
∗
y + R

2
1S

2
xρ
∗
x + R

2
2S

2
zρ
∗
z − 2R1Syx

����
ρ∗yρ
∗
x



+2R1R2Sxz

����

ρ∗xρ
∗
z



− 2R2Syz

����
ρ∗yρ
∗
z


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(36)

In the case of positive correlation, the minimumMSE of
the regression estimator is provided by
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MSE Ylrsuggested(sys)
 

min
� MSE Ylrsuggested(sys)

 

−
λ

2(N − 1)
Δy − β1Δx − β2Δz 

2
,

(37)

where

V
Ylrsuggested(sys)

  � λS
2
yρ
∗
y 1 − ρ2yx + ρ2yz − 2ρyxρyzρxz  ,

β1 � ρyx

Sy

��
ρ∗y



Sx

��

ρ∗x
 ,

β2 � ρyz

Sy

��
ρ∗y



Sz

��

ρ∗z
 .

(38)

(e population regression coefficients are β1 and β2.
Similarly, in the case of negative correlation, the minimal

MSE of Ylrsuggested(sys)
is

MSE Ylrsuggested(sys)
 

min
� MSE Ylrsuggested(sys)

 

−
λ

2(N − 1)
Δy + β1Δx + β2Δz 

2
.

(39)

In the case of both positive and negative correlation
between the study and the auxiliary variable, a general form
for MSE is

MSE Ylrsuggested(sys)
 

min
� MSE Ylrsuggested(sys)

 

−
λ

2(N − 1)
Δy − β1


Δx − β2


Δz 

2
.

(40)

4. Comparison of Estimators

In this part, we use a systematic sampling approach to
compare the suggested estimators against classic ratios,
products, and regression estimators.

Condition (i).
By (13) and (32)

MSE YR(sys)  − MSE YRsuggested(sys)
 

min
 ≥ 0, (41)

if

Δy − R1Δx − R2Δz 
2 ≥ 0. (42)

Condition (ii).
By (16) and (33)

MSE YP(sys)  − MSE YPsuggested(sys)
 

min
 ≥ 0, (43)

if

Δy + R1Δx + R2Δz 
2 ≥ 0. (44)

Condition (iii).
By (18) and (37)

MSE 
Ylr(sys)  − MSE 

Ylrsuggested(sys)
 

min
 ≥ 0, (45)

if

Δy − β1


Δx − β2


Δz 
2 ≥ 0. (46)

We found that if Conditions (i) –(iii) are met, the
suggested estimators outperform the existing
estimators.

5. Empirical Study

For numerical comparisons, we utilize two distinct data sets:

Population 1: (Source: [19]).
y � Imports of merchandise in millions.
x � In billions, the gross national GDP.
z �Cumulative price in index, all items (1967�100).
N � 12, n � 5,
Y � 132.7322, X � 1781.125, Z � 174.075,
Cy � 0.5665, Cx � 0.3451, Cz � 0.2794, Sy � 75.19282,
Sx � 614.6662, Sz � 48.63655, ρyx � 0.9949,

Table 1: MSE.

Estimator Data set 1 Data set 2
YR(sys)

317.2277 307097.1
YRsuggested(sys)

309.0105 256051.6
YP(sys)

317.2294 307097.4
YPsuggested(sys)

309.0122 256051.6
Ylr(sys)

187.2088 47065.9

Ylrsuggested(sys)
154.5798 18097.1

Table 2: PRE.

Estimator Data set 1 Data set 2
YR(sys)

100.0000 100.0000
YRsuggested(sys)

102.6599 119.9356
YP(sys)

100.0000 100.0000
YPsuggested(sys)

102.6592 119.9357
Ylr(sys)

100.0000 100.0000

Ylrsuggeste d(sys)

121.1080 260.0743
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ρyz � 0.9916, ρxz � 0.9949, ρy � 0.2867, ρx � 0.2991,
ρz � 0.3421, Syx � 0.08535, Sxz � 0.1018, Syz � 0.0972,
ymax � 265.086, ymin � 39.866, xmax � 2957.8,
xmin � 992.7, zmax � 272.41, zmin � 116.3.
Population 2: (Source: [20])
y �Production output from 40 factories.
x �(e total number of employees.
z � Fixed capital.
N � 40, n � 10,
Y � 5078.575, X � 230.325, Z � 945.425, Cy �

0.329525, Cx � 0.84056, Cz � 0.67555, Sy � 1673.517,
Sx � 193.602, Sz � 638.6819, ρyx � 0.8005, ρyz �

0.83491, ρxz � 0.98161, ρy � 0.23, ρx � 0.086,
ρz � 0.16, ymax � 8512, ymin � 1451, xmax � 662,
xmin � 52, zmax � 2355, zmin � 107.

From the results of MSEs, which are available in Table 1, the
mean squared errors of the suggested estimators are lower
than the existing estimators. We can also see from Table 2,
that PREs of all suggested estimators are surpassing all the
existing estimators. Of all the suggested estimators, the
regression estimator has the best performance.

6. Conclusion

We proposed several standard ratios, products, and re-
gression estimators using auxiliary variables in a systematic
sampling method in the presence of maximum and mini-
mum values. Under some conditions, the proposed esti-
mators are more efficient than traditional mean ratios,
products, and regression estimators. Table 1 shows that the
suggested estimators outperform the standard estimators in
both populations. (e numerical study also supports the
superiority of our proposed estimators. It is found that the
new suggested estimators of the finite population mean are
more precise than some of the existing estimators.
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