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�is paper addresses the asynchronous control problem for power systems subject to abrupt variations and cyber-attacks. In the
sequel, the transient faults of circuit breakers can be described as the Markov process. In light of these situations, the power
systems are transmitted to discrete-time Markov switching systems. Meanwhile, the deception attacks with time-varying delays in
dispatchers are regulated by a Markov process. �e controller and dispatcher are mode-dependent and their modes are non-
synchronous with those of power systems, which are modeled by the hiddenMarkovmodels. On the basis of the deception attacks,
su�cient conditions are presented to guarantee the stochastic mean-square stability of the closed-loop dynamic. Finally, the
proposed control design strategy is testi�ed via a simulation result.

1. Introduction

As a type of complex nonlinear system, power systems have
gained considerable interest due to their spontaneous os-
cillation characters and high penetration [1–3]. Over the past
decades, many signi�cant methods have been devoted to
power systems, such as state estimation [4–8]. For the
purpose of stabilizing interconnected power systems, many
e�orts have been devoted to exploring the mismatch be-
tween load demand and total power generation. Following
this character, many techniques are forwarded to maintain
the frequency balance including the load frequency control,
state feedback control [9–11]. �erefore, how to keep the
frequency deviation of power systems within a certain range
remains a hot topic. For instance, to overcome the low/zero
inertia, stability has been studied for power systems with
�uctuation and intermittency in [12]. In [13], the load
frequency control technique has been utilized to balance the
power exchanges among di�erent areas. In [14], the net-
work-induced time delay has been considered in supplying
high-quality electric energy. In [15], the fuzzy-dependent
power system stabilizer with uncertain factors has been
investigated.

In reality, owing to many unexpected factors such as
component faults, external disturbances, and unknown at-
tacks, the power systems always experience random varia-
tions in parameters/structures, which lead to the resulting
operation changes and performance degeneration [16, 17].
Markov switching is identi�ed as an e�ective tool in
modeling the aforementioned conditions [18]. Note that
Markov switching is ubiquitous, which has been applied in
many physical situations, such as tunnel-diode-circuit-
model and complex networks [18–20]. However, to our
knowledge, little attention has been given to Markov
switching power systems (MSPSs) except for [21–23]. In
[21], the random switching of power systems can bemodeled
as MSPSs. Lately, the continuous-time interconnected
multiarea MSPSs with load frequency control are considered
in [22]. In [23], the discrete-time MSPSs are studied with a
hidden Markov model. Nevertheless, in contrast with the
fruitful achievements of power systems, MSPSs have not
gained suitable attention.

On the other hand, many valuable results have been
reported on the networked power systems subjected to many
network-induced factors, such as communication delays,
packet losses, quantization e�ects, and event-triggered
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protocols [24–26]. By comparison, potential cyber-attacks
may destroy the stability of power systems via a shared
communication network. In light of the different attack
ways, cyber-attacks can be summarized into three categories:
denial-of-service [27], repeat attack [28, 29], and deception
attacks [30–33]. In more detail, the former aims at
destroying the channel of signal exchange, and repeat attacks
inject historic data into the network affect the performance,
while deception attacks attempt to inject false data into the
communication network to destroy the data trustworthiness.
On the basis of these cyber-attacks, the conventional control
law becomes untrusted. It is of significance to be concerned
with cyber-attacks. Among these cyber-attacks, deception
attacks are common in practice. For instance, in [34], the
unified power systems against random-occurring deception
attacks have been studied. In [35], on the basis of credibility,
the multiarea power systems with deception attacks have
been well concerned. Nevertheless, the security issues of
power systems with regard to cyber-attacks have not been
adequately explored, such as random occurring deception
attacks with time-varying delays, not to mention power
systems against Markov switching.

-rough expounds of the above discussion, this work
shall consider the nonsynchronous controller design issue
for MSPSs with cyber-attacks. -e main contributions are
listed below: (1) a generalized MSPS is established, which
covers asynchronous dispatcher, asynchronous controller,
and deception attacks, simultaneously. (2) Deception at-
tacks with time-varying delays are taken into consideration.
-e probability of each time-varying delay is different, and
random-occurring deception attacks are described by a
sequence of stochastic variables induced by a new Markov
process. (3) A more general scenario is that the asyn-
chronous phenomena among system mode, controller
mode, and dispatcher mode are well revealed and the
hidden Markov model technique is applied. Finally, the
effectiveness of the gained methodology is verified via an
illustrated example.

Notations: the notations in this paper is standard. N
symbols the set of all non-negative integers. diag · · ·{ } means
a block-diagonal matrix. He Z{ } � Z + Z⊤. ‖ · ‖ implies the
Euclidean norm of a vector. Rn signifies the n dimensional
real space. E ·{ } represents the mathematical expectation. ∗
describes the symmetric term.

2. Problem Formulations

As sketched in Figure 1, a type of single-machine infinite bus
(SMIB) through tie line is explored in the current study.
From the SMIB, we can observe the dynamic behavior of
large interconnected power systems. Following this trend,
the basic components of SMIB power systems (SMIBPSs) are
expressed in Figure 2. Accordingly, the following formula
can be established:

_δ � ω0ω,

_ω �
Tm − Te

M
,

Tdo
′ _Eq
′ � Efd −

xd + xe

xd
′ + xe

Eq
′ +

xd + xd
′

xd
′ + xe

V cos(δ),

TE
_Efd � KEEref − KEVt + KEu − Efd,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where δ, ω, Eq
′, and Efd refer to the generator angle, gen-

erator speed, q-axis voltage, and generator voltage, respec-
tively. Meanwhile, other physical meanings are summarized
in Table 1.

In view of the aforementioned observation, the fourth-
order state-space model of SMIBPS is formulated as

_x(t) � Ax(t) + Bu(t), (2)

where
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ΔEfd
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(3)

Similar to the work of [10], Q and P, respectively,
represent the reactive and real power loading, whose
functions are presented by the parameters kl(l � 1, . . . , 6).
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More specifically, the values of parameters in Table 1 are
given by xq � 1.55pu, xd � 1.6pu, xd

′ � 0.32pu, Tdo′ � 6s,
M � 10s, xe � 0.4pu, ω0 � 50πrad/s, TE � 0.05s, kE � 50,
and Ll � 0.8(l � 1, 2).

By resorting to a discretization period T, the discrete-
time SMIBPS (2) can be established as

x(k + 1) � Ax(k) + Bu(k), (4)

where A � eAT and B � 
T

0 eAtBdt.
In light of the unreliability of the network medium, the

abrupt variations of SMIBPS cannot be avoided. To model
the variation of SMIBPS in a suitable way, a stochastic
variable σ(k) takes values within a spaceM � 1, . . . ,M{ }, is
presented to depict the Markov switching SMIBPSs as
follows:

x(k + 1) � Aσ(k)x(k) + Bσ(k)u(k), k � 0, 1, . . . , (5)

where σ(k) refers to a Markov chain, whose transition
probability matrix (TPM) Π � [πmn]M×M is inferred as

πmn � Pr σ(k + 1) � n | σ(k)m{ }, (6)

where 0≤ πmn ≤ 1 and 
M
n�1 πmn � 1 for all

m, n ∈M � 1, 2, . . . ,M{ }.
Notice that the data are transmitted to controllers via an

unencrypted communication network, which is always being
attacked on the sensor-to-controller channels. It is well-
known that deception attacks are commonly encountered,
which launch some deception signals to destroy the infor-
mation authenticity of x(k). -us, as depicted in Figure 1,
we consider the random occurring deception attacks in
power systems, which damage/destroy the performance to
the data integrity. -erefore, the real system information is
modeled as

x(k) � x(k) + αε(k)(k)ζ(k), (7)

where ζ(k) � −x(k) + f(x(k − τε(k)(k))). τε(k)(k) stand for
the jump-mode-dependent time-varying delay of deception
attacks, and τε(k)(k) ∈ [τ1, τ2]. τ1 and τ2 are two constants,
which satisfies 0≤ τ1 ≤ 2. f(x(k)) � [f(x1(k − τε(k)(k)))

, f(x2(k − τε(k)(k))), . . . , f(xn(k − τε(k)(k)))]⊤ being the
nonlinear function of deception attacks subject to random
occurring time-varying delays. αε(k)(k) implies the Ber-
noulli variable, in which αε(k)(k) � 1 and αε(k)(k) � 0
signify the transmission channel with and without attack. It
yields

E αε(k)(k) � 1  � αε(k),E αε(k)(k) � 0 

� 1 − αε(k),

E αε(k)(k) − αε(k) 
2

  � αε(k) 1 − αε(k) 

� α2ε(k).

(8)

In particularly, ε(k) is a Markov process having values
over a set S � 1, . . . ,S{ }, whose TPM Ω � [ψms]Ms with
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Figure 2: Basic components of SMIBPSs with faults.
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Figure 1: Signal model of SMIBPSs.

Table 1: -e parameters of power systems.

xd
′ Generator d-axis transient reactance

xd, xq d − q axis synchronous reactance
Te,Tm Electrical, mechanical torque
kE,TE Exciter gain and time constant
V Infinite busbar voltage
Vt Terminal voltage
P,Q Real and reactive power loadings
M Inertia coefficient
Tdo′ Open circuit d-axis transient time constant
u Stabilizing signal
xe External reactance
Δw Speed deviation

k1, . . . , k6
Linearized model constants of the synchronous

machine
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ψms � Pr ε(k) � s|σ(k) � m{ }, (9)

where 0≤ψms ≤ 1 and 
S
s�1 ψms � 1 for any m ∈M and

s ∈ S.
Accordingly, the actual system information can be

reformulated as

x(k) � 1 − αε(k)(k) x(k) + αε(k)(k)f x k − τε(k)(k)  . (10)

Remark 1. In contrast to the reporting literature with mode-
independent deception attacks [30–33], the deception at-
tacks have the Markov behavior, and the attack indication
scalar αε(k)(k) is presented to describe the dynamic behavior.
Meanwhile, in the current study, time-varying delays against
Markov behavior are considered in the deception attacks,
which covers the existing deception attacks as special cases
[30–33].

Assumption 1. (see [36]). -e embedded function
f(x(k − τε(k)(k))), which is adopted to restrain deception
attacks with random occurring time-varying delays, satisfies
the following condition:

f x k − τε(k)(k)  
�����

�����
2
≤ Qx k − τε(k)(k) 

�����

�����
2
, (11)

where Q indicates a known matrix implying an upper bound
of embedded function f(x(k − τε(k)(k))).

It is noteworthy that the resulting mode information
determines the controller design and effects the perfor-
mance. With respect to the mode information that cannot be
observed when an attack occurs, in the current study, an
asynchronous controller was developed as follows:

u(k) � Kθ(k)x(k), (12)

where Kθ(k) being the controller gains. Stochastic variable
θ(k) implies a Markov chain having values in a space
D � 1, 2, . . . ,D{ }, whose TPM Ξ � [φmd]MD with

φmd � Pr θ(k) � d|σ(k) � m{ }, (13)

where 0≤φmd ≤ 1 and 
D
d�1 φmd � 1 for any m ∈M and

d ∈ D.
Let σ(k) � m ∈M, ε(k) � s ∈ S, and θ(k) � d ∈ D,

combining (5), (10), and (12), we have

x(k + 1) � Amsdx(k) + αsBmKdf x k − τs(k)( ( 

+ αs(k) − αs( BmKd −x(k) + f x k − τs(k)( ( ( ,
(14)

where Amsd � A + (1 − αs)BmKd.

Remark 2. Actually, the mode information of the SMIBPSs
is difficult to achieve due to many factors, including higher
costs and time-wasting. In order to describe the dynamic
behavior of random occurring deception attacks and control
laws, the hidden Markov models are adopted to model these
asynchronous phenomena. More specifically, we get the
two-independent conditional probabilities as follows:

Pr ε(k) � s, θ(k) � d|σ(k) � m{ }

� Pr ε(k) � s|σ(k) � m{ } × Pr θ(k) � d|σ(k) � m{ }

� ψmsφmd.

(15)

For the convenience of presentation, the following
definition is recalled:

Definition 1. (see [37]). -e closed-loop dynamic (14) is
stochastically mean-square stable (SMSS), if under any
initial condition α(t0), φ(t0) ∈L, and υ(t0) ∈M, such that

E 
∞

0
‖x(k)‖

2
|x k0( , σ k0( 

⎧⎨

⎩

⎫⎬

⎭ <∞. (16)

3. Main Results

In the current section, the SMSS criteria for the closed-loop
dynamic (14) and controller design method will be estab-
lished in -eorem 1 and -eorem 2, respectively.

Theorem 1. For given scalars τ2 ≥ τ1 ≥ 0, and αs(s ∈ S).,
and gain matrix Kd, the closed-loop dynamic (14) is SMSS, if
there exist matrices Pm > 0(m ∈M), R> 0, such that for any
(m, n ∈M, s ∈ S, d ∈ D),



S

s�1
ψms 

D

d�1
φmdU

−1
msd <P

−1
m , (17)

Σmsd � Υ1msd + Υ2⊤msdPmΥ
2
msd + α2sΥ

3⊤
msdPmΥ

3
msd < 0, (18)

where

Υ1msd � diag −U
−1
msd + τ2 − τ1 + 1( R, −R + αsQ

⊤
Q, −αsI ,

Υ2msd � Am + 1 − αs( BmKd0αsBmKd ,

Υ3msd � −BmKd0BmKd .

(19)

Proof. Let us construct the following Lyapunov functional:

V(x(k), σ(k)) � 
3

ι�1
Vι(α(t), φ(t), υ(t)), (20)

where

V1(x(k), σ(k)) � x
⊤

(k)P
−1
σ(k)x(k),

V2(x(k), σ(k)) � 
k−1

δ�k−τs(k)

x
⊤

(δ)Rx(δ),

V3(x(k), σ(k)) � 

−τ1+1

l�−τ2+2


k−1

δ�k+l−1
x
⊤

(δ)Rx(δ).

(21)

Calculating the derivation of V(x(k), σ(k)) along the
trajectories (14), yields
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E ΔV(k){ } � E V(x(k + 1), σ(k + 1) � n)|x(k), σ(k) � m{ } − V(x(k), σ(k))

� E x
⊤

(k + 1)Pmx(k + 1)  − x
⊤

(k)P
−1
m x(k)

� Amsdx(k) + αsBmKdf k − τs(k)(  
⊤



S

s�1
ψms 

D

d

φmdPm

× Amsdx(k) + αsBmKdf k − τs(k)(  

+ α2s BmKd −x(k) + f k − τs(k)( (  
⊤



S

s�1
ψms 

D

d

φmdPm

× BmKd −x(k) + f k − τs(k)( (   − x
⊤

(k)P
−1
m x(k).

(22)

E ΔV2(k)  � E V2(x(k + 1), σ(k + 1))  − V2(x(k), σ(k))

≤ x
⊤

(k)Rx(k) − x
⊤

k − τs(k)( Rx k − τs(k)(  + 

k−τ1

k+1−τ2

x
⊤

(δ)Rx(δ).
(23)

E ΔV3(k)  � E V3(x(k + 1), σ(k + 1))  − V3(x(k), σ(k))

≤ τ2 − τ1( x
⊤

(k)Rx(k) − 

k−τ1

k+1−τ2

x
⊤

(δ)Rx(δ).
(24)

Recalling Assumption 1, the following formula can be
acquired:

− αsx
⊤

k − τs(k)( Q
⊤

Qx k − τs(k)( 

+ αsf
⊤

k − τs(k)( f k − τs(k)( ≤ 0.
(25)

If follows from (20)–(25), it can be obtained that
E ΔV(k){ } � E ΔV1(k)  + E ΔV2(k)  + E ΔV3(k) 

� E η⊤(k) 
S

s�1
ψms 

D

d�1
φmd

Σmsdη(k) − x
⊤

(k)P
−1
m x(k)

⎧⎨

⎩

⎫⎬

⎭

≤E η⊤(k) 
S

s�1
ψms 

D

d�1
φmdΣmsdη(k) − x

⊤
(k)P

−1
m x(k)

⎧⎨

⎩

⎫⎬

⎭

� E x
⊤

(k) 
S

s�1
ψms 

D

d�1
φmdU

−1
msd − P

−1
m

⎛⎝ ⎞⎠x(k)
⎧⎨

⎩

⎫⎬

⎭,

(26)

where η⊤(k) � [x⊤(k)x⊤(k − τs(k))f⊤(x(k − τs(k)))],
Σmsd � diag U−1

msd, 0, 0 .
In light of condition (17), the above inequality equiva-

lents to

E ΔV(k){ }≤ − λmin −Σmsd( η⊤(k)η(k)≤ − υx
⊤

(k)x(k), (27)

where υ � inf λmin(−Σmsd) . Obviously, it yielded
E ΔV(k){ }< 0, which means

E 
∞

k�0
‖x(k)‖

2⎧⎨

⎩

⎫⎬

⎭ ≤
1
υ
EV(x(0), σ(0)){ } − E V(x(∞), σ(∞)){ }

≤
1
υ
E V(x(0), σ(0)){ }<∞.

(28)

Based on Definition 1, the closed-loop dynamic (14)
achieves SMSS, which completes the proof.□ □

Theorem 2. For given scalars τ2 ≥ τ1 ≥ 0, and αs(s ∈ S), and
gain matrix Kd, the closed-loop dynamic (14) is SMSS, if there
exist matrices Pm > 0(m ∈M)., Umsd > 0(m, n ∈M, s ∈ S,

d ∈ D)., R> 0, and matrix Yd(d ∈ D) such that for any
(m, n ∈M, s ∈ S, d ∈ D),

−Pm Φmsd

∗ diag −Um11, . . . , −Umsd, . . . − UmSD 
 < 0, (29)

where

Φmsd �
�������
ψm1φm1


Pm . . .

�������
ψmsφmd


Pm · · ·

��������
ψmSφmD


Pm ,

Υ
→1

msd � diag Umsd − sym Yd  + τ2 − τ1 + 1( Rd,

−Rd, αs I − sym Yd ( ,

Υ
→2

msd � ϖmΥ
→2,1⊤

msdϖmΥ
→2,2⊤

msd Υ
→2,3

msd ,

Υ
→3

� diag Υ3,1
,Υ3,1

, −I ,

Υ
→2,1

msd � AmYd + 1 − αs( BmKd0αsBmKd ,

Υ
→2,2

msd � −BmKd0BmKd ,

Υ
→2,3

msd � 0
��
αs

√
QYd0 

⊤
,

ϖm �
���
πm1

√
I

���
πm2

√
I · · ·

����
πmM

√
I ,

Υ3,1
� diag −P1, −P2, . . . , −PM .

(30)
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Furthermore, the controller gains are achieved as

Kd � KdY
−1
d , ∀d ∈ D. (31)

Proof. Firstly, premultiplying and postmultiplying the
condition (29) by term diag P−1

m , I, . . . , I  and its transpose,
we can get that

−P
−1
m Φmsd

∗ diag −Um11, . . . , −Umsd, · · · − UmSD 

⎡⎣ ⎤⎦< 0, (32)

where

Φmsd �
�������
ψm1φm1


I · · ·

�������
ψmsφmd


I · · ·

��������
ψmSφmD


I . (33)

According to Schur complement, one can derive (33) is
equivalent to (17).

Next, by means of Schur complement, it can be easily
obtained from (17)as follows:

Υ1msd ϖmΥ
2
msd

∗ Υ
→3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦< 0, (34)

where

Υ1msd � diag −U
−1
msd + τ2 − τ1 + 1( R, −R, −αsI ,

ϖmΥ
2⊤
msdϖmΥ

3⊤
msdΥ

4
msd ,

Υ2msd � Υ4msd

�
��
αs

√
Q00 
⊤

.

(35)

Premultiplying and postmultiplying (35) by
diag Yd, Yd, Yd, I, I, . . . , I  and its transpose, respectively. It
yields

Υ1msd
Υ2msd

∗ Υ
→3

m

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦< 0, (36)

where

Υ1msd � diag −YdU
−1
msdY
⊤
d + τ2 − τ1 + 1( Rd, −Rd, −YdαsY

⊤
d ,

Υ2msd � ϖm
Υ2,1⊤

msdϖm
Υ2,2⊤

msd Υ
→2,3

msd ,

Υ2,1
msd � AmYd + 1 − αs( BmKdYd0αsBmKdYd ,

Υ2,2
msd � −BmKdYd0BmKdYd ,

Rd � YdRY
⊤
d .

(37)

On the other hand, with respect to Umsd > 0, it can be
derived that

Umsd − Yd( U
−1
msd Umsd − Yd( 

⊤ ≥ 0, (38)

which equivalents to

Umsd − sym Y{ }d ≥ − YdU
−1
msdY
⊤
d . (39)

Similarly, in light of αs ≥ 0, one can also obtain

αs I − sym Yd ( ≥ − Yd αsI( Y
⊤
d . (40)

Substituting (40) and (41) into (37) and utilizing Schur
complement, (30) can be guaranteed. -is completes the
proof.

4. Numerical Examples

In the current section, to evaluate the efficiency of the
attainedmethodology, the off-on jumping of circuit breakers
subject to Markov switching that is associated with two
modes, similar to [9, 11], the parameters are listed as follows:

For Mode m � 1

A1 �

0.9833 9.368 −0.01264 −1.833 × 10− 5

−3.529 × 10− 3 0.9833 −2.655 × 10− 3
−5.542 × 10− 6

6.39 × 10− 3
−2.936 × 10− 2 0.955 3.681 × 10− 3

−0.2263 −1.253 −11.31 0.5231

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1 � −1.417 × 10− 4
− 5.836 × 10− 56.133 × 10− 222.27 

⊤
.

(41)

For Mode m � 2

A2 �

0.9866 9.378 −8.638 × 10− 3
−1.253 × 10− 5

−2.837 × 10− 3 0.9866 −1.812 × 10− 3
−3.878 × 10− 6

2.054 × 10− 3
−1.243 × 10− 2 0.9443 3.67 × 10− 3

−0.6894 3.545 −16.25 0.5118

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B2 � −9.692 × 10− 5
− 3.99 × 10− 56.123 × 10− 222.15 

⊤
.

(42)
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As stated in [11], a Markov chain is adopted to describe
the fault switching in power lines, the transition probabilities
are illustrated in Table 2. From which, it is clear that

Π �
−0.07 0.93
−0.2 0.8 .

Furthermore, the condition TPMΩ with two modes and
condition TPM Ξ with three modes are selected as

Ω �
0.4 0.6

0.5 0.5
 ,

Ξ �
0.1 0.4 0.5

0.6 0.2 0.2
 .

(43)

Meanwhile, choosing α1 � 0.5, α2 � 0.2, τ1 � 1, and
τ2 � 2. -e embedded function of deception attacks is
chosen as

f x k − τε(k)(k)   �

−tanh ϱ1x1 k − τε(k)(k)  

−tanh ϱ2x1 k − τε(k)(k)  

−tanh ϱ3x1 k − τε(k)(k)  

−tanh ϱ4x1 k − τε(k)(k)  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

with ϱ1 � 10− 4, ϱ2 � 5∗ 10− 4, ϱ3 � 2∗ 10− 4, and
ϱ4 � 3∗ 10− 4. From which, we get the upper bound
Q � 10− 4 × 1, 5, 2, 3{ }. On the basis of conditions in-eorem
2, the controller gains can be computed as

K1 � −0.0546 2.0486 0.0083 −0.0010 ,

K2 � −0.0492 1.7493 0.0296 −0.0013 ,

K3 � −0.0482 1.6955 0.0334 −0.0013 .

(45)

-e simulations are plotted in Figure 3, which presents
the uncontrolled curves of x(k). -e evolution of system
mode σ(k), dispatcher mode ε(k), and controller mode θ(k)

are depicted in Figure 4. -e random occurring deception
attacks and evolution of time-varying delays τε(k) are de-
scribed in Figures 5 and 6, respectively. Under the afore-
mentioned control gains, the state trajectories of the closed-
loop dynamic (14) is displayed in Figure 7, and the control
input u(k) is exhibited in Figure 8. It can be seen from
Figure 8 that the developed methodology works well.

Meanwhile, when M � S � D � 2{ } and TPMs

Π � Ω � Ξ �
−0.07 0.93
−0.2 0.8 , the asynchronous controller

degrades into the synchronous case. Similarly, the controller
gains can be acquired as

K1 � −0.0082 0.3773 0.0391 −0.0044 ,

K2 � −0.0459 1.9166 −0.0047 −0.0006 .
(46)

On the basis of the abovementioned controller gains, the
state trajectories of closed-loop dynamic (14) are plotted in

Table 2: -e transition probabilities.

System reliability Mode 1 Mode 2
Model 1 (maximum) 0.826 0.174
Model 2 (minimum) 0.00116 0.99884
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0.4

0.6
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x4 (k)

Figure 3: State trajectories of open-loop dynamic (14).
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Figure 4: Evolution of modes.
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Figure 9 and the control input u(k) is shown in Figure 10.
Clearly, it can be seen from Figures 9 and 10 that the ideal
control situation (synchronous control) can achieve better
performance.

On the other hand, to further verify the impact of the
deception attacks, let αε(k)(k) � 0, which signifies no de-
ception attacks occur. Similarly, by solving the conditions of
-eorem 2, the corresponding gains can be calculated as

K1 � −0.0571 1.8693 0.3956 −0.0407 ,

K2 � −0.0598 1.9824 0.3964 −0.0453 ,

K3 � −0.0597 2.0021 0.3918 −0.0458 .

(47)

Under the aforementioned control gains, the state tra-
jectories of the closed-loop dynamic (14) are displayed in
Figure 11 and the control input u(k) is exhibited in

-1

-0.5

0

0.5

1

1.5

2

αε(k) (k)

20 40 60 80 100 120 140 160 180 2000
Time (k)

Figure 5: Evolution of αε(k)(k).
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Figure 6: Evolution of time-varying delay.
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Figure 7: State trajectories of closed-loop dynamic (14).

8 Mathematical Problems in Engineering



-4

-3

-2

-1

0

1

2

3

4 ×10-3

500 1000 1500 2000 2500 30000
Time (k)

u (k)

Figure 8: Curve of control input with deception attacks.
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Figure 9: State trajectories of synchronous closed-loop dynamic
(14).
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Figure 10: Curve of synchronous control input.
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Figure 11: State trajectories of closed-loop dynamic (14) without
deception attacks.
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Figure 12. From the figures, it is clear that a better per-
formance can be achieved without considering the deception
attacks. From which, one concludes that deception attacks
degrade the dynamic performance to a certain extent.

5. Conclusion

-e problem of power systems being subject to abrupt
variations and cyber-attacks has been addressed in the
current study. Two hidden Markov models are expressed to
characterize the asynchronous phenomena among system
mode, dispatcher mode, and controller mode. Furthermore,
unlike the existing cyber-attacks, the deception attacks with
time-varying delays are regulated by a Markov process.
Based on the Lyapunov theory, sufficient conditions are
presented to guarantee the stochastic mean-square stability
of the closed-loop dynamic. Finally, the proposed control
design strategy is testified via a simulation result.
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