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From the perspective of D-S evidence theory and area measurement, a risk-based comprehensive decision-making method that
considers both the expected utility and the uncertainty of the scheme is proposed under the interval uncertainty environment of
attribute values..e upper and lower bounds of the synthetic probability distribution of attributes values in different natural states
are constructed based on the belief measure and plausibility measure. Based on the areameasurement, a method for calculating the
expected utility of each scheme is proposed. To reflect the influence of the uncertainty in the evaluation value of each scheme
attribute on the final decision result, two indexes are defined: the evaluation uncertainty of attributes (EUA) and the uncertainty of
the expected utility of scheme (UEU). Finally, considering the expected value of the expected utility and its uncertainty, three
decision methods, namely, risk-neutral, risk-averse, and risk-preference, are constructed. An example is considered to show that
the proposed method is effective and practical, and the uncertainty of the expected utility has a significant impact on the result of
risky decisions. .e newmethod can solve the problems of existing methods that overlook the impact of epistemic uncertainty on
the decision-making process.

1. Introduction

As a special form of multiattribute decision-making, risky
decision-making is characterized by the presence of different
natural states in the decision-making process, each of which
has a certain occurrence probability, and the attribution of
values as the natural state changes. Risky decision-making is
common in investment decision-making [1, 2], emergency
decision-making [3, 4], ecological risk assessment [5, 6], and
other fields and has attracted extensive attention in recent
years.

Due to the complexity, uncertainty, and unpredictability
of risky decision-making problems, it is often difficult to
accurately predict information such as attribute values and
natural state occurrence probabilities during the decision-
making process, leading to epistemic uncertainty, which has
been described in various ways, such as fuzzy numbers/
intuitive fuzzy sets [7, 8], interval numbers [9, 10], and

linguistic variables [11, 12]. To obtain the final decision-
making conclusion in different uncertain environments,
various methods of converting risky decision-making into
deterministic decision-making have been proposed.

Generally, two approaches are used to solve the risk
decision-making problem. In the first approach, the interval
probability is transformed into a point probability. Refer-
ence [13] used the continuous ordered weighted average (C-
OWA) operator to convert the interval probability into a
point probability. Reference [14] proposed an interval
probability conversion method based on the Monte Carlo
simulation method. Reference [10] proposed another in-
terval probability conversion method based on belief and
plausibility measures to transform interval risky decision-
making into deterministic decision-making. .ese methods
rank the decisions based on the expected utility theory
without considering the psychological factors of decision-
makers. In the second approach, the psychological and
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behavioral factors of decision-makers are accounted for.
Representative methods mainly include prospect theory-
based methods and regret theory-based methods. Reference
[15] calculated the weighted prospect value (interval num-
ber) of each scheme and used the expected value of the
interval number as the basis for deterministic decision-
making. Reference [16] calculated the value of the potential
response result related to each criterion based on cumulative
prospect theory and determined the prospect value of each
alternative by aggregating the values and weights of the
response results, based on which the alternatives were
sorted. Considering that it is difficult for prospect theory-
based methods to determine reference point information,
some researchers have investigated risky decision-making
methods based on regret theory. Reference [17] proposed a
decision analysis method that considers the regret-aversion
psychological behaviors of decision-makers. In this method,
the alternatives are sorted based on the calculated overall
regret value and overall gratification value of each alternative
relative to other alternatives. Reference [18] proposed the
VIKOR method based on regret theory. A decision-making
mechanism coefficient was introduced to measure the im-
pact of the maximum group utility value and the minimum
individual regret value on the decision-making result, and an
optimization model was constructed and then solved to
obtain the final decision-making result.

.e aforementioned methods can be used to address
risky decision-making problems from different perspec-
tives. However, previous studies have focused on trans-
forming risky decision-making problems into deterministic
decision-making problems while overlooking the influence
of uncertainty information in the decision-making process
on the decision-making result. Because the attribute values
and natural state occurrence probabilities of different
schemes often contain massive amounts of uncertainty
information, uncertainty is always present regardless of the
description method used (e.g., intuitionistic fuzzy sets,
interval numbers, and linguistic variables). As the uncer-
tainty of a scheme increases, the uncertainties contained in
the expected utility value or prospect value increase, so
ignoring the influence of these uncertainties and only
sorting the schemes based on the mathematical expectation
of the expected utility or prospect value may lead to irra-
tional decisions. For example, the expected values of the
expected utility of schemes A and B are 1 million yuan and
0.9 million yuan, respectively, and scheme A is superior to
scheme B if the schemes are sorted according to the ex-
pected value; however, if the uncertainties of the expected
utility of schemes A and B are 300,000 yuan and 30,000
yuan, respectively, then, for risk-averse decision-makers,
scheme B is superior to scheme A.

Current methods to deal with uncertainty include
probability theory [19, 20], fuzzy theory [21–23], and
Dempster–Shafer (D-S) evidence theory [24, 25]. D-S ev-
idence theory has a strong ability to deal with epistemic
uncertainty. Compared with probability theory, fuzzy
theory, and other approaches, it can be used to evaluate and

quantify the existing uncertainty only by using the obtained
information without any additional assumptions, for ex-
ample, by assuming a random distribution and a mem-
bership function. Based on the above analysis, in this paper,
from the perspective of D-S evidence theory, we consider
the case in which the attribute value is an interval number
and construct the upper and lower bounds of the com-
prehensive probability distribution of the attribute evalu-
ation values in various natural states based on the
plausibility measure and belief measure. We propose an
expected utility value calculation method based on area
metrics. In addition, we consider the influence of the un-
certainty in the final decision evaluation information by
defining two indicators of the scheme: the evaluation un-
certainty of attributes (EUA) and the uncertainty of the
expected utility of schemes (UEU). Finally, we make a
comprehensive decision by simultaneously considering the
expected utility and the UEU based on the different risk
preferences of decision-makers (risk-preferred, risk-averse,
and risk-neutral). .e new evaluation framework considers
the preferences of decision-makers and their aversion to
risk and can thus provide a more comprehensive basis for
decision-makers with different risk preference types when
making decisions in the real world.

2. D-S Evidence Theory

D-S evidence theory is an uncertainty reasoning method
proposed by A. P. Dempster and further expanded by his
student G. Shafer. It is based on the frame of discernment,
which represents a nonempty set containing all possible
results that are generally expressed as a nonempty set Θ.

Definition 1. [26]: Basic probability assignment (BPA) is a
mapping from a power set to interval numbers [0, 1], i.e.,m:
2Θ⟶[0, 1]. .e reliability of a set A is denoted as m(A),
which represents the degree of confidence in A but not any
subset of A. Reliability has the following basic attributes:

m(∅) � 0,

0≤m(A)≤ 1, ∀A⊆Θ,

􏽘
A⊆Θ

m(A) � 1
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

If m(A)> 0, then A is called a focal element.

Definition 2. [27]: For a proposition A, the degree of
confidence in this proposition can be represented by interval
numbers [Bel(A), Pl(A)], and Bel(A) and Pl(A) are both
numbers between 0 and 1, as shown in Figure 1. Bel(·) and
Pl(·) are called the belief function and the plausibility
function, respectively, and are defined as follows:

Bel(A) � 􏽘
B⊆A

m(B),

Pl(A) � 􏽘
B∩A≠∅

m(B).
(2)
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3. Risky Decision-Making Method Based on an
Area Measure

3.1. Problem Description. In a risky multiattribute decision-
making problem, there are n schemes, denoted as
a � a1, a2, · · · , an􏼈 􏼉, ai(i � 1, 2, · · · , n) ∈ ℓ; 1 is the decision
space with N natural states, denoted as W �

W1, W2, · · · , WN􏼈 􏼉; the probability of the occurrence of the
jth natural state Wj(j � 1, 2, · · · , N) is pj(j � 1, 2, · · · , N);
and there are m decision attributes, denoted as C �

C1, C2, · · · , Cm􏼈 􏼉, with attribute weights of ω � ω1,ω2, · · · ,􏼈

ωm} that satisfy ωk > 0(k � 1, 2, · · · , m) and 􏽐ωk � 1.
In general, attributes Ck(k � 1, 2 · · · , m) are evaluated

with two types of indicators: benefit and cost. For benefit-
type indicators, a greater value is better, while for cost-type
indicators, a smaller value is better.

For the jth natural state, the decision-maker’s evaluation
value of attribute Ck(k � 1, 2 · · · , m) is an interval number
[xL

jk, xU
jk], and the expected utility of each scheme according

to the expected monetary value criterion is as follows:

Ei � 􏽘
N

j�1
pjuij, (3)

where uij is the utility value of scheme ai in natural stateWj.

3.2. Area Metrics Definition of Attribute Evaluation Value.
For attribute Ck(k � 1, 2 · · · , m) under scheme
ai(i � 1, 2, · · · , n), the decision information for different
natural states is a set of data, as shown in Table 1.

For N natural states, the evaluation values can be
expressed as a set of D-S evidence theory focal elements:

hi,1k � x
L
i,1k, x

U
i,1k􏽨 􏽩

hi,2k � x
L
i,2k, x

U
i,2k􏽨 􏽩

· · ·

hi,Nk � x
L
i,1k, x

U
i,1k􏽨 􏽩

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

.e BPA corresponding to each focal element is as
follows:

m hi,1k􏼐 􏼑 � p1

m hi,2k􏼐 􏼑 � p2

· · ·

m hi,Nk􏼐 􏼑 � pN

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

Based on (4), the upper and lower bounds of attribute Ck

can be obtained as follows:

X
L
i,k � min x

L
i,1k, x

L
i,2k, · · · , x

L
i,Nk􏼐 􏼑

X
U
i,k � max x

U
i,1k, x

U
i,2k, · · · , x

U
i,Nk􏼐 􏼑

.
⎧⎪⎨

⎪⎩
(6)

Based on the above information, the belief function and
plausibility function of the attribute evaluation value of
attribute Ck can be calculated as follows:

Beli,k x<x∗( 􏼁�

􏽘

sup hi,jk( 􏼁<x∗

m hi,jk􏼐 􏼑x
∗ ∈ X

L
i,k,X

U
i,k􏽨 􏽩

1x
∗>XU

i,k

0x
∗<XL

i,k

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

Pli,k x<x∗( 􏼁�

􏽘

inf hi,jk( 􏼁<x∗

m hi,jk􏼐 􏼑 X
L
i,k,X

U
i,k􏽨 􏽩

1x
∗>XU

i,k

0x
∗<XL

i,k

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

In this manner, the upper and lower bounds of the
comprehensive probability distribution of attribute Ck are
constructed; Beli,k(x< x∗) is the lower bound, and
Pli,k(x<x∗) is the upper bound, as shown in Figure 2.

In Figure 2, Beli,k(x<x∗) represents the lower bound of
the comprehensive probability distribution of evaluation
values in various natural states, and Pli,k(x< x∗) represents
the upper bound of the comprehensive probability distri-
bution, while the actual probability distribution
Pi,k(x<x∗) ∈[Beli,k(x<x∗), Pli,k(x<x∗)] is shown as the
double-dotted line in Figure 2.

Definition 3. Area metric of the attribute evaluation value
(AMA). For Pli,k(x< x∗), the area metric is defined as
follows:

A
L
i,k � 􏽚

1

0
Pli,k

− 1
x< x
∗

( 􏼁dx. (9)

Clearly, a greater evaluation value of attribute Ck indi-
cates that Pli,k(x< x∗) is closer to the right side of the
coordinate axis and greater values of AL

i,k; this function can
reflect the size of the evaluation value of attribute Ck. If Ck is
a benefit-type index, then a value of AL

i,k is better; if Ck is a
cost-type index, a smaller value of AL

i,k is better. As indicated
by (9), the area metric index AL

i,k is a point value that realizes
the transformation from a random probability distribution
to a deterministic index and is thus beneficial to subsequent
decision-making.

Similarly, the area measure for the lower bound of the
probability of attribute Ck can be obtained as follows:

A
U
i,k � 􏽚

1

0
Beli,k

− 1
x< x
∗

( 􏼁dx. (10)

Table 1: Decision information of Ck under scheme ai.

W1 W2 . . . WN

[xL
i,1k, xU

i,1k] [xL
i,2k, xU

i,2k] . . . [xL
i,Nk, xU

i,Nk]
Bel (A)Bel (A) Uncertainty

Pl (A)

Figure 1: Belief function and plausibility function.
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.en, the AMA indicator of attribute Ck is
Ai,k � [AL

i,k, AU
i,k], and its expected value is the median of the

interval:

A
%

i,k �
A

L
i,k + A

U
i,k􏼐 􏼑

2
. (11)

For all attributes, the AMA expectation vector can be
calculated as follows:

A
%

i � A
%

i,1, A
%

i,2, · · · , A
%

i,m􏼠 􏼡. (12)

Definition 4. Area metric of the expected utility (AME) of
the scheme. Based on the AMA indicator of each attribute,
the AME value of scheme ai is as follows:

􏽢Ei � 􏽘
m

k�1
ωk

􏽥Ai,k. (13)

Because the evaluation value of attribute Ck is an interval
number, it describes the epistemic uncertainty of the de-
cision-maker on the value of the attribute; a greater epi-
stemic uncertainty indicates a greater uncertainty of the
expected utility value 􏽢Ei reflected in the final scheme. .e
greater the uncertainty is, the greater the expected volatility
of the scheme is, and the worse the worst-case scenario of its
expected utility is. .is information is also an important
indicator in decision-making. .erefore, in this study, we
define the EUA and UEU of an attribute to reflect the
information.

Definition 5. EUA of an attribute. .e evaluation uncer-
tainty of Ck is the area enclosed between Beli,k(x<x∗) and
Pli,k(x< x∗):

EUAi,k � 􏽚
XU

i,k

XL
i,k

Pli,k
− 1

x< x
∗

( 􏼁 − Beli,k
− 1

x< x
∗

( 􏼁􏼐 􏼑dx. (14)

Based on (14), the greater the EUAi,k value is, the greater
the EUA of attribute Ck is, and vice versa; if
Beli,k(x< x∗) � Pli,k(x<x∗), i.e., if the epistemic uncer-
tainty disappears and only random uncertainty remains,
then the probability envelope is transformed into a deter-
ministic probability distribution Pi,k(x<x∗), where the
EUA of attribute Ck is zero.

Definition 6. UEU of a scheme. For all attributes, the EUA
indicator vector is given as follows:

EUAi � EUAi,1, EUAi,2, · · · , EUAi,m􏼐 􏼑. (15)

.e UEU indicator of scheme ai is defined as follows:

UEUi � 􏽘

m

k�1
ωkEUAi,k. (16)

In summary, 􏽢Ei reflects the expected value of the ex-
pected utility of scheme ai, and UEUi reflects the uncertainty
of the expected utility of scheme ai; a greater 􏽢Ei value is
better, while a smaller UEUi value is better. .ese two in-
dicators need to be considered when making decisions.

3.3. Decision-Making Algorithm. .e diagram of the pro-
posed decision-making algorithm is shown in Figure 3.

Step 1. If the dimensions and scales of the attribute evaluation
valuesofC1, C2, · · · , Cm are identical, thengotoStep2directly;
otherwise, first perform nondimensionalization as follows:

If the evaluation value of attribute ai of scheme Ck in the
jth natural state is the interval number hi,jk � [xL

i,jk, xU
i,jk],

then for benefit-type attributes, the upper and lower bounds
of the interval after nondimensionalization are as follows:

h
U
i,jk �

x
U
i,jk

􏽐i x
L
i,jk + x

U
i,jk􏼐 􏼑/2n

h
L
i,jk �

x
L
i,jk

􏽐i x
L
i,jk + x

U
i,jk􏼐 􏼑/2n

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

For cost-type attributes, the upper and lower bounds of
the interval after nondimensionalization are as follows:

h
U
i,jk �

1/xL
i,jk

􏽐i 1/xL
i,jk + 1/xU

i,jk􏼐 􏼑/2n

h
L
i,jk �

1/xU
i,jk

􏽐i 1/xL
i,jk + 1/xU

i,jk􏼐 􏼑/2n

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Step 2. Construct the upper and lower bounds (Pli,k(x< x∗)

and Beli,k(x< x∗)) of the probability distribution of the
evaluation values of attribute Ck using equations (8) and (9).

Step 3. Calculate the areametric index 􏽥Ai,k and the EUAi,k of
attribute Ck using equations (10) and (15).

CDF (y)

1

Beli,k (x < x*)

Xi
U
,kXi

L
,k

Pli,k (x < x*) Pi,k (x < x*)

Figure 2: Comprehensive probability distribution of attribute Ck.
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Step 4. Calculate the 􏽢Ei of scheme ai using equation (14).

Step 5. Calculate theUEUi of scheme ai using equations (16)
and (17).

Step 6. Repeat Steps 2 to 5 to calculate the 􏽢Ei and UEUi

values of all n schemes.

Step 7. .e decision-maker makes risk-based decisions on n
schemes according to the following principles:

(1) Risk-neutral decision-makers: Decisions are made
directly according to the order of 􏽢Ei. If the 􏽢Ei values
of the two schemes are identical, the scheme with a
smaller UEUi value is preferred.

(2) Risk-averse decision-makers: Set the risk aversion
coefficient to α(0≤ α≤ 1) and sort the schemes using
the following equation:

􏽢E
L

i � 􏽢Ei − α · UEUi. (19)

(3) Risk-preferred decision-makers: Set the risk pref-
erence coefficient to β(0≤ β≤ 1) and sort the
schemes using the following equation:

􏽢E
L

i � 􏽢Ei + β · UEUi. (20)

4. Case Study

A new energy vehicle is to be selected to support the
company plans to invest in a power battery project..ere are
four investment schemes for selection: ternary lithium
batteries, lithium iron phosphate batteries, nickel-metal
hydride batteries, and hydrogen fuel cells, denoted as
a � a1, a2, a3, a4􏼈 􏼉. .e attributes of the schemes include
sales volume C1 (unit: 10,000 units/year), rate of return C2
(unit: %/year), R&D cost C3 (unit: 10,000 yuan/unit), and
payback period C4 (unit: year). Of these attributes, C1 and
C2 are benefit-type indicators, and C3 and C4 are cost-type
indicators. .e decision-maker assigns weights to the four
attributes as ω � (0.35, 0.2, 0.2, 0.25). In addition, after the
product is put on the market, there are three natural states,
W � W1, W2, W3􏼈 􏼉, corresponding to fast-selling, fair, and
slow-selling, respectively. .e probabilities of occurrence of
the three natural states are determined by experts to be
p � (0.5, 0.3, 0.2). .e risk decision information of each
scheme is shown in Tables 2-4.

First, the data in Tables 2-4 are nondimensionalized, and
the results are shown in Tables 5-7.

Next, the upper and lower bounds (Plk(x< x∗) and
Belk(x< x∗)) of the comprehensive evaluation probability
distribution of attribute Ck are constructed. Taking the at-
tribute C1 of scheme a1 as an example, the probability
distribution of the evaluation values of C1 can be obtained
through (7) and (8), as shown in Figure 4.

Using (9) and (10), AL
1,1 � 0.8910 and AU

1,1 � 1.1160 can
be obtained. .us, (11) yields the expected value of the
evaluation value of C1􏽥Ai,k � 1.0035, and the evaluation
uncertainty is EUA1,1 � 0.2250. Similarly, the expected
values and EUA values of attributes C2–C4 can be calcu-
lated, as listed in Table 8.

Similarly, the comprehensive evaluation results of each
attribute of scheme a2-a4 can be obtained, as shown in
Tables 9-11.

Assuming the coefficient of risk aversion and the coef-
ficient of risk preference are α � 1 and β � 1, respectively,
and using Tables 8-11 and (13) and (16), the expected values
(􏽢Ei) and uncertainty values (UEUi) of the expected utility of
the four alternatives can be calculated. .e results are listed
in Table 12.

Based on the calculation results in Table 12, the
comprehensive evaluation results for the risk-preferred,
risk-averse, and risk-neutral cases are obtained using the
decision-making method described in Step 7 of Section
2.3, as shown in Table 13.

Nondimensionalization of the attributes

Start

Are the dimensions of
the attributes the same?

Calculate the belief and plausibility function of Ck

Calculate the area metric index and EUA of Ck

Calculate the area metric of the expected utility for scheme ai

Calculate UEU of scheme ai

i > n?

Make risk-based decisions

Finish

Y

Y

N

N

Figure 3: Diagram of the proposed decision-making algorithm.
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As shown in Table 13, when deciding about the four
alternatives, the risk-neutral, risk-averse, and risk-preferred
decision-makers show completely different decision-making
results.

Table 2: Risk decision information table of each scheme (natural
state W1).

Attribute C1 C2 C3 C4

Scheme

a1 [45, 60] [15, 20] [3.2, 3.6] [4.5, 6.0]
a2 [42, 54] [18, 22] [3.1, 3.4] [5.5, 6.5]
a3 [38, 46] [12, 18] [2.5, 2.8] [4.0, 5.0]
a4 [40, 70] [13, 17] [3.8, 4.3] [5.0, 7.0]

Table 3: Risk decision information table of each scheme (natural
state W2).

Attribute C1 C2 C3 C4

Scheme

a1 [31, 35] [12, 16] [3.5, 4.1] [5.5, 7.0]
a2 [22, 34] [13, 17] [3.4, 3.9] [6.5, 7.5]
a3 [27, 30] [10, 11] [3.0, 3.2] [4.8, 6.4]
a4 [24, 39] [11, 13] [4.2, 4.5] [6.5, 8.5]

Table 4: Risk decision information table of each scheme (natural
state W3).

Attribute C1 C2 C3 C4

Scheme

a1 [12, 15] [8, 12] [3.7, 4.4] [8.5, 10.0]
a2 [10, 13] [7, 10] [3.8, 4.2] [10.0, 12.0]
a3 [11, 14] [6, 9] [3.3, 3.5] [9.0, 10.5]
a4 [10, 18] [5, 10] [4.4, 4.7] [12.0, 13.0]

Table 5: Risk decision information table of each scheme (natural
state W1).

Attribute C1 C2 C3 C4

Scheme

a1 [0.91, 1.21] [0.88, 1.18] [0.90, 1.01] [0.87, 1.17]
a2 [0.85, 1.09] [1.06, 1.30] [0.95, 1.04] [0.81, 0.95]
a3 [0.76, 0.93] [0.71, 1.06] [1.16, 1.30] [1.05, 1.31]
a4 [0.81, 1.41] [0.77, 1.00] [0.75, 0.85] [0.75, 1.05]

Table 6: Risk decision information table of each scheme (natural
state W2).

Attribute C1 C2 C3 C4

Scheme

a1 [31, 35] [12, 16] [3.5, 4.1] [5.5, 7.0]
a2 [22, 34] [13, 17] [3.4, 3.9] [6.5, 7.5]
a3 [27, 30] [10, 11] [3.0, 3.2] [4.8, 6.4]
a4 [24, 39] [11, 13] [4.2, 4.5] [6.5, 8.5]

Table 7: Risk decision information table of each scheme (natural
state W3).

Attribute C1 C2 C3 C4

Scheme

a1 [31, 35] [12, 16] [3.5, 4.1] [5.5, 7.0]
a2 [22, 34] [13, 17] [3.4, 3.9] [6.5, 7.5]
a3 [27, 30] [10, 11] [3.0, 3.2] [4.8, 6.4]
a4 [24, 39] [11, 13] [4.2, 4.5] [6.5, 8.5]

C1

0

0.2

0.4

0.6

0.8

1

CD
F
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 4: Comprehensive probability distribution of attribute a1.

Table 8: Comprehensive evaluation results of each attribute under
scheme a1.

Attribute C1 C2 C3 C4

AL
1,k 0.8910 0.8970 0.8950 0.8440

AU
1,k 1.1160 1.1700 1.0290 1.0950

􏽥A1,k 1.0035 1.0335 0.9620 0.9695
EUA1,k 0.2250 0.2730 0.1340 0.2510

Table 9: Comprehensive evaluation results of each attribute under
scheme a2.

Attribute C1 C2 C3 C4

AL
1,k 0.7950 0.9940 0.9350 0.7720

AU
1,k 1.0810 1.2840 1.0470 0.9000

􏽥A1,k 0.9380 1.1390 0.9910 0.8360
EUA1,k 0.2860 0.2900 0.1120 0.1280

Table 10: Comprehensive evaluation results of each attribute under
scheme a3.

Attribute C1 C2 C3 C4

AL
1,k 0.7650 0.7280 1.1430 0.9570

AU
1,k 0.9220 0.9990 1.2510 1.2080

􏽥A1,k 0.8435 0.8635 1.1970 1.0825
EUA1,k 0.1570 0.2710 0.1080 0.2510

Table 11: Comprehensive evaluation results of each attribute under
scheme a4.

Attribute C1 C2 C3 C4

AL
1,k 0.7450 0.7580 0.7820 0.7060

AU
1,k 1.2890 1.0380 0.8640 0.9310

􏽥A1,k 1.0170 0.8980 0.8230 0.8185
EUA1,k 0.5440 0.2800 0.0820 0.2250

Table 12: Expected utility evaluation results of four alternatives.

Attribute 􏽢Ei UEUi

Scheme

a1 0.9927 0.2229
a2 0.9633 0.2125
a3 0.9780 0.1935
a4 0.9048 0.3191
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Risk-neutral decision-makers conclude that scheme a1 is
the best, and they sort the schemes as follows: a1 > a3
> a2 > a4.

Risk-averse decision-makers conclude that scheme a3 is
the best, and they sort the schemes as follows: a3 > a1
> a2 > a4.

Table 13: Comprehensive evaluation results of alternative schemes under different risk preferences.

Attribute Risk-neutral Risk-averse Risk-preferred
Value Rating Value Rating Value Rating

Alternatives

a1 0.9927 1 0.7698 2 1.2156 2
a2 0.9633 3 0.7508 3 1.1758 3
a3 0.9780 2 0.7845 1 1.1715 4
a4 0.9048 4 0.5857 4 1.2239 1

Table 14: Comparison of the proposed method and other methods for different α and β.

Method Condition a1 a2 a3 a4

Proposed method

α� 0.1 1 3 2 4
α� 0.3 1 3 2 4
α� 0.5 1 3 2 4
α� 0.7 1 4 3 2
α� 0.9 1 3 4 2
β� 0.1 1 3 2 4
β� 0.3 1 3 2 4
β� 0.5 1 (tied) 3 1 (tied) 4
β� 0.7 2 3 1 4
β� 0.9 2 3 1 4

[9] — 1 3 2 4

Table 15: Risk decision information table of each scheme (natural state W1, uncertainty increased by 20%).

Attribute C1 C2 C3 C4

Scheme

a1 [0.94, 1.18] [0.91, 1.15] [0.911, 0.999] [0.9, 1.14]
a2 [0.874, 1.066] [1.084, 1.276] [0.959, 1.031] [0.824, 0.936]
a3 [0.777, 0.913] [0.745, 1.025] [1.174, 1.286] [1.076, 1.284]
a4 [0.87, 1.35] [0.793, 0.977] [0.76, 0.84] [0.78, 1.02]

Table 16: Risk decision information table of each scheme (natural state W2, uncertainty increased by 20%).

Attribute C1 C2 C3 C4

Scheme

a1 [1.033, 1.137] [0.961, 1.209] [0.905, 1.025] [0.935, 1.135]
a2 [0.76, 1.08] [1.032, 1.288] [0.944, 1.056] [0.863, 0.967]
a3 [0.9, 0.98] [0.778, 0.842] [1.147, 1.203] [1.033, 1.297]
a4 [0.839, 1.231] [0.865, 0.985] [0.816, 0.864] [0.773, 0.957]

Table 18: Risk decision information table of each scheme (natural state W1, uncertainty decreased by 20%).

Attribute C1 C2 C3 C4

Scheme

a1 [0.88, 1.24] [0.85, 1.21] [0.889, 1.021] [0.84, 1.2]
a2 [0.826, 1.114] [1.036, 1.324] [0.941, 1.049] [0.796, 0.964]
a3 [0.743, 0.947] [0.675, 1.095] [1.146, 1.314] [1.024, 1.336]
a4 [0.75, 1.47] [0.747, 1.023] [0.74, 0.86] [0.72, 1.08]

Table 17: Risk decision information table of each scheme (natural state W3, uncertainty increased by 20%).

Attribute C1 C2 C3 C4

Scheme

a1 [0.953, 1.137] [0.998, 1.382] [0.907, 1.043] [0.702, 0.798]
a2 [0.793, 0.977] [0.866, 1.154] [0.94, 1.02] [0.582, 0.678]
a3 [0.873, 1.057] [0.746, 1.034] [1.127, 1.183] [0.671, 0.759]
a4 [0.832, 1.328] [0.65, 1.13] [0.836, 0.884] [0.534, 0.566]
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Risk-preferred decision-makers conclude that scheme a4
is the best, and they sort the schemes as follows: a4 > a1
> a2 > a3.

By carefully analyzing the results in Table 13, although
the expected value of the expected utility of scheme a1 is the
greatest, its uncertainty is also higher (ranks second), so it
ranks first when its uncertainty is ignored; however, when
considering the risk of uncertainty during decision-making,
scheme a1 is no longer the best choice. Scheme a4 has the
greatest uncertainty and the greatest risk, but from the
perspective of risk-preferred decision-makers, it also has the
greatest opportunity and enables the highest return in the
best case, so it is the best choice for risk-preferred decision-
makers.

5. Validation of Results

To further verify the proposed method, the risk preference
coefficient α and the risk aversion coefficient β are set to
different values, and the schemes are sorted using the
proposed method. .e results are then compared with the
ranking results in [9], as shown in Table 14.

As shown in Table 14, when the risk preference coeffi-
cient α and the risk aversion coefficient β are set to low
values, the ranking results of the four schemes are identical
and consistent with the ranking results of [9]:
a1> a3> a2> a4. When α and β are set to high values, the
ranking results begin to change; for example, when α� 0.7,
a1> a4> a3> a2, and when β� 0.7, a2> a3> a1> a4. .e
ranking result is associated with the values of α and β and the
values of 􏽢Ei and UEUi.

To assess the influence of attribute uncertainty on the
decision-making results, the uncertainty of the estimated

values of the various attributes in Tables 5–7 under different
natural states is reduced by 20% and expanded by 20%,
respectively. .e results are shown in Tables 15–20.

For α� 0.5 and β� 0.5, the schemes are sorted, and the
results are compared with the results from [9], as shown in
Table 21.

As shown in Table 21, when the uncertainties in the
attributes are reduced by 20%, the ranking results of the four
schemes are identical and consistent with the ranking results
of [9], i.e., a1> a3> a2> a4. However, when the uncertainties
are increased by 20%, the ranking results begin to change.
For example, for α� 0.5, a1> a4> a3> a2, while for β� 0.5
and the method in [9], the results are a2> a3> a1> a4 and
a1> a3> a2> a4, respectively.

.is case study demonstrates that uncertainty in deci-
sion-making information can have a great impact on the
final decision-making result and is thus an important factor
that must be considered in risky decision-making. In view of
previous studies, regardless of the method used, uncertain
decision-making information is converted into accurate
information to make final decisions. Clearly, these decision-
making methods overlook uncertainty, which may lead
decision-makers to overlook risks and make incorrect
choices.

6. Conclusion

In multiattribute risky decision-making processes, the at-
tribute evaluation information of a scheme often contains
interval epistemic uncertainty, which has a significant im-
pact on the decision outcome. From the perspective of D-S
evidence theory, in this paper, we construct the area metric
indicator AME for the expected utility of the scheme to

Table 20: Risk decision information table of each scheme (natural state W3, uncertainty decreased by 20%).

Attribute C1 C2 C3 C4

Scheme

a1 [0.907, 1.183] [0.902, 1.478] [0.873, 1.077] [0.678, 0.822]
a2 [0.747, 1.023] [0.794, 1.226] [0.92, 1.04] [0.558, 0.702]
a3 [0.827, 1.103] [0.674, 1.106] [1.113, 1.197] [0.649, 0.781]
a4 [0.708, 1.452] [0.53, 1.25] [0.824, 0.896] [0.526, 0.574]

Table 19: Risk decision information table of each scheme (natural state W2, uncertainty decreased by 20%).

Attribute C1 C2 C3 C4

Scheme

a1 [1.007, 1.163] [0.899, 1.271] [0.875, 1.055] [0.885, 1.185]
a2 [0.68, 1.16] [0.968, 1.352] [0.916, 1.084] [0.837, 0.993]
a3 [0.88, 1] [0.762, 0.858] [1.133, 1.217] [0.967, 1.363]
a4 [0.741, 1.329] [0.835, 1.015] [0.804, 0.876] [0.727, 1.003]

Table 21: Comparison of the proposed method and other methods under different uncertainties.

Condition Method a1 a2 a3 a4

Uncertainty
decreased by 20%

Proposed method α� 0.5 1 3 2 4
Proposed method β� 0.5 1 3 2 4

[9] 1 3 2 4

Uncertainty
increased by 20%

Proposed method α� 0.5 1 4 3 2
Proposed method β� 0.5 2 3 1 4

[9] 1 3 2 4

8 Mathematical Problems in Engineering



measure the expected value of the expected utility of the
scheme; we also construct the uncertainty index UEU of the
expected utility of the scheme to measure the risks and
opportunities of the expected utility of alternative schemes
so that quantitative risk and opportunity measures for de-
cision-makers with different risk preferences can be pro-
vided. When comparing and selecting schemes, decision-
makers must comprehensively consider the area metric
index AME and the uncertainty index UEU of the expected
value of the expected utility to make decisions that are more
aligned with reality.

.e main contributions of the risk-based decision-
making method proposed in this paper are as follows:

(1) .e area metric of the attribute evaluation value is
proposed. .e calculation process of the index does
not require any artificial assumptions, and the results
are more objective.

(2) Different from the existing methods that only con-
sider the expected utility index, the method proposed
in this paper establishes the expected utility uncer-
tainty index at the same time. Decision-makers can
comprehensively evaluate alternatives according to
the two indexes and draw more objective and con-
sistent conclusions.

(3) .e proposed evaluation framework considers the
preferences of decision-makers and their aversion to
risk, so it provides a more comprehensive basis for
decision-makers with different risk preference types
when making decisions in the real world.

In future work, more complex application scenarios will
be explored. For example, the uncertainty of attribute
weights and the uncertainty of natural state probability will
be considered [28].
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