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Leukemia is a fatal category of cancer-related disease that affects individuals of all ages, including children and adults, and is
a significant cause of death worldwide. Particularly, it is associated withWhite Blood Cells (WBC), which is accompanied by a rise
in the number of immature lymphocytes and cause damage to the bone marrow and/or blood. (erefore, a rapid and reliable
cancer diagnosis is a critical requirement for successful therapy to raise survival rates. Currently, a manual analysis of blood
samples obtained through microscopic images is done to diagnose this disease, which is often very slow, time-consuming, and less
accurate. Furthermore, in microscopic analysis, the appearance and shape of leukemic cells seem very similar to normal cells
which make detection more difficult. In the past decades, deep learning utilizing Convolutional Neural Networks (CNN) has
provided state-of-the-art approaches for image classification problems; however, there is still a gap to improve their efficacy,
learning procedure, and performance. (erefore, in this research study, we proposed a new variant of deep learning algorithm to
diagnose leukemia disease by analyzing the microscopic images of blood samples. (e proposed deep learning architecture
emphasizes the channel associations on all levels of feature representation by incorporating the squeeze and excitation learning
that recursively performs recalibration on channel-wise feature outputs by modeling channel interdependencies explicitly. In
addition, the incorporation of the squeeze-and-excitation process enhances the feature discriminability of leukemic and normal
cells, and strategically assists in exposing informative features of leukemia cells while suppressing less valuable ones as well as
improving feature representational power of deep learning algorithm. We show that piling these learning operations of squeeze
and excite together in a deep learning model can improve the performance of the model in diagnosing leukemia frommicroscopic
images based on blood samples of patients. Furthermore, an extensive set of experiments are performed on both cropped cells and
full-size microscopic images as well as with data augmentation to address the problem of fewer data and to further boost their
performance. (e proposed model is tested on two publicly available datasets of blood samples of leukemia patients, namely,
ALL_IDB1 and ALL_IDB2. (e suggested deep learning model exhibits good results and can be utilized to make a reliable
computer-aided diagnosis for leukemia cancer.

1. Introduction

Leukemia is a type of cancer that has a very high mortality
rate [1]. It is accompanied by the malicious cloning of ab-
normal white blood cells (WBC) and is hence referred to as
a malignant hematological tumor [2]. Usually, the human

body comprises three cell types: red blood cells, white blood
cells, and platelets, as shown in Figure 1. (e supply of
oxygen from the heart to all tissues is often the responsibility
of red blood cells [3]. (ey account for up to half of the total
volume of blood. Likewise, the white blood cells play
a pivotal role in the immune system of the human body and
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act as a defense wall from numerous infections and diseases
[4]. As a result, the correct categorization of these white
blood cells is critical to determine the nature of the disease.
(ey are divided according to the composition of the cy-
toplasm. Lymphocytes are one of the categories of white
blood cells and their disorders caused Acute Lymphoblastic
Leukemia (ALL) [5]. Generally, leukemia is categorized into
two subtypes known as acute leukemia and chronic leuke-
mia. Without any particular treatment, the overall recovery
rate of acute leukemia is barely three months while the onset
period of chronic leukemia is more than acute leukemia.
Acute lymphocytic leukemia (ALL) is one of the widespread
types of acute leukemia responsible for about 25% of all
childhood cancers [6]. It originates in the lymphatic system,
which generates the blood cells. At the beginning stage, it
appears in the bone marrow and is subsequently dissemi-
nated throughout the human body. In a healthy individual,
the growth of WBC is dependent on the requirements of the
body, but in the context of leukemia, they are formed ab-
normally while becoming ineffective.

Usually, the dark-purple-like color of these leukemic
cells makes it easy to identify them but the assessment and
further processing become extremely sophisticated due to
the pattern and texture-based variations. Leukocytes are
a class of cells that vary dramatically from each other. (ey
might be recognized by their shape or size, but one prob-
lematic factor is that they are flanked by some other elements
of the blood which includes red blood cells and platelets.(e
shape of lymphocytes is somewhat regular, and their nuclei
have uniform and flat borders. (e lymphocytes also called
lymphoblast in patients of ALL have a quite minimal uni-
form border and tiny cavities in the cytoplasm known as
vacuoles as well as inside the nuclei spherical particles are
referred to as nucleoli. (e disease becomes more acute as
the stated morphology becomes more prominent. (is
might also result in premature death if the intervention is
neglected and if its diagnosis is done later in the disease’s
progression. (e age of a patient has a vital risk factor
influencing prognosis because the probability of having ALL
is greater in children aged 7–8 years. (is probability is
eventually reduced up to the age of 20 and starts to rise again
around the age of 50. According to information reported by
Ref. [7], 5930 new cases had the disease ALL in the United
States in 2018, and around 1500 individuals, including both
children and adults, are likely to die fromALL. Furthermore,

according to data reported in Ref. [8], in 2015, there were
around 876,000 individuals who experienced ALL world-
wide, and it triggered 111,000 deaths. (e medication of
acute lymphoblastic leukemia has evolved to make great
development in the past 50 years. (e survival rate of pa-
tients has increased up to 70% with early assessment and
intervention [9]. Hence, at the earlier stages of acute lym-
phoblastic leukemia, its diagnosis and effective treatment are
very essential. One of the important tools employed by the
medical operators to diagnose acute lymphoblastic leukemia
is referred to as morphology. With this diagnostic tool, it can
be observed that a patient is suffering from acute lym-
phoblastic leukemia whenever the bone marrow has a con-
siderable amount of cancer cells (B-lymphoblast cells). (e
fundamental factor to diagnose acute lymphoblastic leukemia
is precisely discerning of cancer cells from normal cells (B-
lymphoid precursors). On the contrary, the visual appearance
of cancer cells is somewhat very similar to normal cells in
microscopic images, which makes it hard to distinguish be-
tween them. Furthermore, it is very crucial for the hema-
tologist to diagnose the presence of leukemia along with its
specific form to prevent medical problems and determine the
optimal treatment of leukemia disease. (e screening of
leukemia by a specialist through human blood samples is
a critical and time-consuming task.

To tackle such challenges, quantifiable analysis of dif-
ferent blood samples is performed in the computer-aided-
diagnosis (CAD) systems that are designed by employing
either machine learning or deep learning approaches. (ere
exist numerous research studies in which leukemic cancer
detection is performed. With regard to traditional machine
learning methods, a discriminative set of leukemic cells’
features are first extracted followed by the process of clas-
sification [10]. Some researchers have suggested the seg-
mentation process so that the accurate features are extracted
from the region of interest, i.e., segmented lymphocyte
images [11]. (ese segmentation methods include k-means,
watershed, as well as HSV color-based segmentation [11]. In
these segmentations, the extra elements present in the blood
are eliminated and thus only details related to WBC in-
volving lymphocytes and lymphoblast are drawn [10].
Specifically, for leukemic disease, the segmentations are
generally divided into pixel-based, region-based, as well as
shape-based approaches [12]. It has been observed that
segmentation strategies based on K-means and edge-based

(a) (b) (c)

Figure 1: Types of blood cells in the human body. (a) Red blood cells. (b) White blood cells. (c) Platelets.
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are widely used to segment out the cells of a blast from
various smears of blood [13]. Recently, it is reported that by
combining thresholding and morphological techniques
superior segmentation is achieved [14]. Furthermore, the
complex images having variations such as low contrast,
noise-sensitivity are challenging to segment accurately using
these approaches [15]. Furthermore, a lot of feature ex-
traction approaches are employed in leukemic cell analysis.
(ese include morphological features, such as shape, and
edge features. In addition to these, textural, color, and
GLCM, as well as geometrical and statistical features are also
employed [10]. Some research studies have performed the
hybridization of these features to further enhance the per-
formance [16, 17]. Likewise, different classifiers have been
exploited to perform the classification among leukemic and
normal cells. (ese include Support Vector Machines
(SVM), K-nearest neighbor (KNN), Random Forest (RF),
Naive-Bayes, etc. [10, 18, 19]. All of these traditional ma-
chine learning approaches show significant results; however,
these approaches require a lot of parametric steps as well as
accurate analysis and feature engineering before the clas-
sification phase. When opposed to a good data represen-
tation, a bad data portrayal frequently results in worse
performance [20].

Subsequently, with the emergence of deep learning, a lot
of problems and challenges in image analysis have been
solved as these approaches employed automated feature
engineering. In the recent past, the automated diagnosis of
several diseases with the science of computer vision emerges
as a potential research area [21, 22]. Image recognition and
segmentation using deep learning are some of the imperative
elements in the technology of computer vision [23]. One of
the most frequently used deep neural networks in computer
vision is Convolutional Neural Networks (CNNs) [24–27].
(ese CNNs possess a great deal of self-learning capability,
adaptability, and generalization power and are heavily used
in medical imaging problems and IoT-based systems
[28, 29]. Conventional image identification techniques need
hand-crafted features extraction followed by categorization,
while the CNN-based methods only require the image data
which are given as an input to the network, and the task of
image classification is achieved by their self-learning
property [30]. Besides this, they have also required a sub-
stantial amount of data as well as computing power to train.
In many circumstances, the total number of data samples is
inadequate for a CNN to train from the beginning. In such
situations, transfer learning is employed to exploit the po-
tential of CNNs, while minimizing the computing cost.

Particularly, for the diagnosis of leukemia cancer, a lot of
research studies have been proposed based on deep learning
frameworks. In such methods, some research studies have
suggested CNN-architectures with different depth levels and
the setting of layers to perform leukemia cancer detection
[31, 32]. It has been observed that deep learning through
transfer learning method is the most widely used approach
in leukemia cancer detection [33]. Several different pre-
trained models including AlexNet, MobileNet, ResNet,
Vgg16, etc., have been exploited [34, 35]. In addition, it is

indicated that deep learning methods work better than
traditional machine learning methods in leukemia cancer
detection [36]. However, in terms of feature learning, ac-
curacy, and effectiveness, these techniques still have some
shortcomings and need to be addressed. (e emergence of
new CNN architectures is a difficult engineering endeavor
that often necessitates the choice of several new hyper-
parameters and layer settings. Furthermore, in existing
studies, the feature discriminability among leukemic and
normal cells is not well-considered; hence, what if the
learning or feature representation of deep learning algorithm
is improved by adding more discriminating power to further
boost up the performance? Secondly, most approaches are
based on transfer learning methods and have reported very
accurate results. Is there, however, a method other than
transfer learning such as to increase the performance of
a simple deep learning algorithm? (is research study at-
tempts to answer these questions, by suggesting a deep
learning algorithm whose representational power is improved
by incorporating squeeze-and-excitation learning. (e main
aim of this article is to provide a deep learning solution with
the goal of addressing different challenges such as assisting
timely as well as an accurate diagnosis by empowering the
feature discriminability among leukemic and normal cells.
Furthermore, it is worth noting that improving deep learning
algorithms is an ongoing research challenge among numerous
researchers. Convolutional neural networks (CNNs) and
traditional deep learning models are excellent algorithms for
solving a wide range of visual problems. Recent research [37],
however, indicates that the representational power of tradi-
tional CNN architecture can be improved by adding modules
that accurately describe dynamic and nonlinear relationships
among channels using global details. Further, these modules
aid in the learning of the model and considerably improve its
accuracy. Hence, deploying and suggesting better deep
learning solutions is one of the secondary objectives of this
study. In addition, the proposed technique does not require
a prior segmentation and all its parametric steps adjusted by
the user to further perform the leukemia detection, rather it
defines a fully automated solution to leukemia cancer
detection.

More specifically, in this research article, we proposed an
effective learning-based deep learning model for leukemia
disease detection using microscopic blood samples–based
image modality. (e feature representation at every layer of
feature extraction and representation is improved by em-
phasizing the interdependencies among channels [37]. (is
can be accomplished by the squeeze and excitation learning
process in which we first squeeze the features acquired by
convolution layers from microscopic blood samples to
generate the channel descriptor. (is descriptor combines
the wide-range distribution of outcomes provided by
channel-wise features and causes the feature details global
receptive field of the model to be utilized by bottom layers.
Similarly, after the squeeze, the excitation process further
enhances the features in which the activations related to
samples are being learned for every channel by a self-gating
process depending on channel reliance, by regulating the
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excitation of each channel. Both types of learning operations
empower the feature representation of blood samples of
leukemia disease which ultimately results in an inaccurate
diagnosis of leukemia cancer. In addition, these operations
also help in improving the feature discriminability among
leukemic and normal cells. Furthermore, the total number of
blood samples in both of the datasets is not appropriate for
the training of the model; therefore, an excessive augmen-
tation is also performed to boost the performance. Besides,
we have demonstrated the results of leukemia diagnosis by
the proposed Model using both cropped and full-size mi-
croscopic images, respectively. Some samples images from
ALL_IDB1 and ALL_IDB2 are shown in Figure 2. (e re-
search has the following contributions:

(i) An all-inclusive efficient and improved represen-
tational power-based deep learning model is pro-
posed to diagnose the leukemia disease from
microscopic blood samples

(ii) A feature discriminability among leukemic and
normal cells in blood samples is enhanced by
global information embedding in squeeze opera-
tion and recursive recalibration using the excita-
tion process

(iii) During the feature extraction process, the proposed
improved deep-learning model emphasizes relevant
features of leukemic cells while suppressing irrele-
vant ones, resulting in improved performance

(iv) (e proposed model shows significant improve-
ments over the traditional deep learning model and
can be integrated with any Internet of Medical
(ings (IoMT)-based systems

(e rest of the paper is partitioned into several sections:
Section 2 presents some existing work, Section 3 describes
the proposed method in detail, Section 4 explains experi-
mentation results, and Section 5 concludes the paper fol-
lowed by future direction.

2. Related Work

Over the decades, several strategies for automated leukemia
identification on microscopic images have been established
in the literature. (ese strategies include the traditional
machine learning classifiers and deep learning algorithms.
However, some approaches have employed ensemble ma-
chine learning as well as hybrid deep learning methods for
leukemia cancer detection.

2.1. Conventional Machine Learning Approaches. In the
existing literature, machine learning methods are extensively
employed for leukemia cancer detection. (ese methods are
generally categorized into several steps such as pre-
processing, feature extraction, followed by classifications.
However, some methods also involve segmentation and
feature selection procedures to further improve the per-
formance. For instance, Singhal et al. employed the Support
Vector Machine (SVM)-based approach for automated di-
agnosis of Acute Lymphoblastic Leukemia (ALL) [13]. (is

diagnosis can be accomplished by extracting the geometric
features as well as texture features using Local Binary Pat-
terns (LBP). (e experimental outcomes of their proposed
method demonstrate that texture features surpass the geo-
metric features and exhibit an accuracy of 89.72%, which is
a little bit high than the 88.79% accuracy given by geometric
features. Similarly, Mohamed et al. proposed another
method in which the color space of every microscopic image
is transformed into YCbCr followed by acquiring the values
of Gaussian distribution of Cb and Cr [38]. Later on, dif-
ferent sets of features are computed including morpho-
logical, texture, and size to train the classifier.(eir designed
strategy attained 94.3% accuracy by using the Random
Forest as a classifier for the detection of two classes of
leukemia (ALL and AML) and Myeloma. Mohapatra et al.
suggested a framework for screening acute leukemia in
pigmented blood samples and microscopic images of bone
marrow [39]. After the extraction of features from micro-
scopic images, a model based on the ensemble approach is
trained for classification. In contrast to other traditional
classifiers, such as naive Bayesian (NB), K-nearest neighbor,
radial basis functional network (RBFN), multilayer per-
ceptron (MLP), and SVM, their proposed ensemble attained
94.73% performance accuracy along with above 90% re-
sultant values of average sensitivity and specificity. Sub-
sequently, Patel and Mishra designed the framework using
unsupervised learning in which leukemia identification is
performed using k-means clustering [40]. With the help of
this, leukemia detection is estimated by computing the
proportion. Bhattacharjee et al. suggest an approach for the
identification of acute lymphoblastic leukemia that employs
the watershed transforms preceded by morphological
transformations for segmentation. After extraction of
morphological features, the Gaussian Mixture Model
(GMM) and Binary Search Tree (BST) are employed to carry
out the classification. (eir proposed approach shows
95.56% accuracy. Mishra et al. proposed a model based on
Linear Discriminant Analysis (LDA) for the classification of
leukemia disease by employing Discrete Orthogonal
Stockwell Transform (DOST) [41] for feature extraction
from blood sample images [42].

2.2. Deep Learning Approaches. In the context of deep
learning, many researchers adopt and design several ar-
chitectures for the automated classification of leukemia
cancer. (ese deep learning methods are further classified
into traditional standalone deep learning models or the
transfer of learning-based approaches. For instance, Shaheen
et al. suggested the AlexNet-based deep learning model to
diagnose Acute Myeloid Leukemia (AML) using blood
samples in the form of microscopic images [34]. (ey have
compared the performance of their presented approach with
the LeNet-5 model in terms of accuracy, quadratic loss,
recall, and precision. (eir proposed method shows 98.58%
accuracy along with 88.9% of the microscopic images being
accurately classified with 87.4% accuracy. Rehman et al.
suggested a CNN architecture comprising several con-
volutional and max-pooling layers for leukemia cancer
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detection [31]. Prior to providing data samples as an input to
the CNN algorithm, all microscopic samples are first pre-
processed to be converted into HSV color space followed by
a segmentation process to obtain the required region-of-in-
terest. In their work, an accuracy of 97.98% is reported for
leukemia cancer detection. Zakir Ullah et al. suggest the at-
tention-based deep learning model to extract the most relevant
features of leukemic cells [43]. However, the designed model is
based on VGG16, which is one of the pretrained deep learning
models. (eir proposed method utilizes the segmented leu-
kemic (malignant) and normal cell images and validation is
performed using a 7-fold cross-validation. Pansombut et al.
suggested a CNNmodel called ConVNet to detect ALL and all
its subtypes [44]. (ey have compared their designed frame-
work with traditional machine learning techniques including
SVM,multi-layer perceptron (MLP), and Random Forest (RF).
(ey employed two kinds of datasets with a total number of
images in the collection being 363. Shafique and Tehsin
designed a deep learning model to categorize leukemia disease
into six different classes [2]. (ey employed a pretrained
AlexNet to undertake binary classification on 368 images to
avoid having to train from the beginning. A classification al-
gorithm forWBC employing both transfer and deep learning is
designed by Habibzadeh et al. [45] In the first stage, they have
performed the preprocessing steps on the dataset followed by
the process of feature extraction. In the last stage, the classi-
fication procedure is carried out through Inception and ResNet
model. A total of 352 images are used in their work to validate
the model’s accuracy. Ahmed et al. also designed an efficient
approach for the categorization of White Blood Cell Leukemia
[46]. In their work, the deep features are extracted using
VGGNet and reduced by Swarm Optimization. (is bio-in-
spired optimization technique plays a pivotal role in optimizing
the deep features for accurate and reliable classification of
White Blood Cell Leukemia. (is work also reports encour-
aging results. One of the latest research in leukemia detection is
the study by Bibi et al. [47]. (ey proposed an Internet of
Medical things (IOMT)-based framework [48]along with the
assistance of cloud computing and diagnostic devices that are
connected through Internet resources. (e designed system

enables real-time synchronization for screening and treat-
ment of leukemia in patients as well as medical operators
and professionals, thereby potentially decreasing the work
and effort for patients and doctors. (eir automated system
is based on Dense Convolutional Neural Network (Dense-
Net-121) [49] and Residual Convolutional Neural Network
(ResNet-34). (e performance of the proposed method is
validated on two different benchmark datasets referred to as
LL-IDB and ASH image bank and the reported results are
exceptional.

2.3. Hybrid Deep Learning Approaches. Other than
employing standalone deep learning models, some research
studies designed the hybrid deep learning frameworks to
perform the leukemia cancer detection. For instance, Yu
et al. proposed a hybrid method in which ResNet50 [50],
VGG16 [51], and VGG19 [51], based on state-of-the-art
convolutional neural networks (CNNs), are employed to
carry out the automated identification of cells [52]. (e
outcomes of their proposed approach are compared with
conventional machine learning approaches, i.e., K-Nearest
Neighbors (KNN), Logistic Regression (LR), Support Vector
Machine (SVM), and Decision Tree (DT). (eir proposed
technique shows 88.50% accuracy for cell recognition.
Mourya et al. also design a hybrid model based on deep
learning architecture in which dual CNN architectures are
employed to enhance performance accuracy [53]. (e
proposed approach is validated on 636 blood samples of
healthy and ALL cells and exhibits 89.70% accuracy. Fur-
thermore, Jiang et al. employed the ViT-CNN referred to as
vision-transformer CNN based on ensemble learning [54].
(e proposed technique is able to distinguish the normal
and cancer cells that are helpful in the detection of Acute
Lymphoblastic Leukemia (ALL). In their work, both vision
transformer and CNN-based model are integrated to draw
the extensive set of cells features into distinct ways to obtain
the improved classification outcomes. (ey have also en-
hanced the data by employing enhancement-random sam-
pling (DERS) to overcome the challenges of the unbalanced

(a)

(b)

Figure 2: Some samples from ALL_IDB1 and ALL_IDB2 databases. (a) (e first row corresponds to cropped microscopic images of blood
samples. (b) (e second row corresponds to full-size microscopic images of blood samples of “Acute lymphoblastic leukemia” and “non
acute lymphoblastic leukemia”.
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dataset. (eir proposed algorithm shows outstanding results
of 99.03% which proves the effectiveness of the proposed
method as a CAD system for Acute Lymphoblastic Leu-
kemia (ALL). Kassani et al. designed a hybrid approach in
which VGG16 and MobileNet are combined to extract the
deep features followed by classification of Leukemic B-
lymphoblast [55]. (eir proposed approach is enriched with
various data augmentation methods and attained 96.17%
accuracy, 95.17% sensitivity, and 98.58% specificity. Fur-
thermore, Zoph et al. merge the two deep learning models,
namely, NASNetLarge [56] and VGG19 to categorize the
leukemic B-lymphoblast cells and normal B-lymphoid
precursor cells, with a detection performance of 96.58% [57].
(eir proposed model effectively diagnoses acute lympho-
blastic leukemia and illustrated that in contrast to a single
model, the ensemble learning is much better.

In addition, optimization-based algorithms are also
employed for Leukemia disease classification. Krishna et al.
proposed Chronological Sine Cosine Algorithm (SCA)-
based deep learning model to detect the acute lymphocytic
leukemia from the blood sample images and attained
a 98.70% value of accuracy [58]. For instance, Tuba et al.
employed the Generative Adversarial optimization (GAO)
[59] for the detection of acute lymphocytic leukemia and
achieved a 99.66% resultant value of accuracy [60]. Similarly,
Saif et al. employed both Artificial Neural Network (ANN)
and Genetic Algorithm (GA) [61] and carried out the
segmentation of acute lymphoblastic leukemia utilizing local
pixel information and reported 97.07% accuracy [15].
Acharya et al. proposed to design an acute lymphoblastic
leukemia diagnosis by employing image segmentation and
data mining techniques [62] and achieved 98.60% accuracy.
Our suggested simple deep learningmodel employs squeeze-
and-excitation learning and addresses the problem of
morphological similarity among leukemic and normal cells,
thereby increasing the accuracy of the traditional deep
learning model and categorizing the images as healthy or
unhealthy blood samples.

3. Methodology

(e design overview of the proposed methodology is
depicted in Figure 3. (e proposed framework begins with
the acquisition of microscopic images of blood samples.
Later on, the data augmentation techniques are employed to
overcome the problem of fewer data since in deep neural
networks more data are required for their training and
superior performance. Lastly, a deep CNN architecture-
based squeeze and excitation learning is proposed to di-
agnose leukemia from the inputted microscopic images of
blood samples. Each step is explained in-depth in the fol-
lowing subsections of methodology:

3.1. Acquisition of Data. (e data utilized in this work to
evaluate the model’s performance were obtained from the
Acute Lymphoblastic Leukemia Image Database for image
processing (ALL-IDB). We used both of the datasets given
by this database, ALL-IDB1 and ALL-IDB2. (ese are

publicly available datasets that comprise microscopic images
of blood samples. (e database focuses on Acute Lym-
phoblastic Leukemia (ALL), which is a potentially deadly
type of leukemia. It is most frequently found in childhood,
with the highest prevalence between the ages of 2 and 5
years. In the datasets, the labeling of ALL lymphoblast is
annotated by experienced oncologists. All microscopic
images are captured by a Canon Power Shot G5 camera
which was used in conjunction with an optical laboratory
microscope. (e range of magnifications of the microscope
is from 300 to 500 during data collection. All microscopic
blood sample images are in the jpg. format, along with a 24-
bit color depth. More precisely, the first dataset ALL-IDB1 is
comprises 108 images including 39000 components of
blood, wherein the lymphocytes have been annotated.
Similarly, in the second dataset, the regions of cells are
cropped from the whole microscopic image. Except for the
image dimensions, ALL-IDB2 images have comparable grey
level features to ALL-IDB1 images.

3.2. Data Augmentation. CNN exhibited cutting-edge per-
formance in a variety of tasks. However, the amount of the
training data has a significant influence on CNN perfor-
mance [24, 25, 63]. Acquiring sufficient clinical images is
a challenging task, due to data privacy concerns especially in
the field of medical imaging. On the other hand, if machine
learning and deep learning models were trained using the
original images as well as with augmented samples, they
might be more generalizable. In various image-based studies
with CNNs, several ways of data augmentation have di-
minished the error rate of the network by providing spec-
ulation. (e dataset used in this research includes a wide
variety of microscopic blood sample images, but the quantity
of blood samples in both datasets is quite limited. Hence, to
tackle the problem of small dataset size, and overcome the
problem of overfitting, we have employed several types of
data augmentation to artificially increase the data for
training of the model. In this research study, the augmen-
tation type of rotation at 60 degrees, 90 degrees, and random
shift in range (−1.0, 1.0) is employed.

3.3. Proposed CNN Architecture. (e proposed deep CNN
architecture is described below in detail:

3.3.1. Convolutional Layers and Max-Pool Layers.
Generally, the two fundamental operations of the Con-
volutional neural networks (CNNs) include the convolution
and max-pooling layers mimicking a variety of substantially
complex cells in the visual cortex. Besides this, CNNs have
a localized perceptive area, hierarchical organization, feature
extraction, and classification phase that can automatically
learn the appropriate feature and categorization process, and
has a significant implication in the domain of computer
vision. In the proposed model, microscopic images of blood
samples are preprocessed by data augmentation and directly
fed into the proposed deep learning model design to craft the
localized features. Consider a microscopic blood sample
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image of a patient of dimension M × N with a kernel size of
w × h which is convolved over the image to generate
a collection of features maps of dimensions ow × oh, as
shown in equations (1) and (2):

In equations (1) and (2), the zero-padding in the di-
rection of both width and height is denoted by pw and ph

while the value of stride in both vertical and horizontal
directions is denoted by sh and sw, respectively. (e input
image of size 224 × 224 × 3 is provided as an input to the first
convolutional layer. Continuing to follow the convolution
layers, a pooling layer is also used which contributes to
diminishing the computing and spatial necessities of the
activation function and makes the proposed model to be
translation invariant and functions interdependently on
each layer of the input data and spatially downscales it.

3.3.2. Integrating Squeeze-and-Excitation Learning. In order
to raise a network’s representational potential, we have
employed the Squeeze-and-Excitation learning to strengthen
the spatial encoding of the model [37]. (is learning em-
phasizes the channels’ relationships by recursively recali-
brating the outputs of channel-wise features as well as
simultaneously considering channel interdependencies. It
can be added as a computing unit that can be formed for any
particular transformation such as
Ftr: X⟶ U, X ∈ RH,×W,×C,

, U ∈ RH×W×C. For the sake of
clarity, Ftr is supposed to be a convolutional function in the
accompanying notation. Consider the
V � [v1, v2, v3, . . . . . . , vC], which signifies the learned set of
filter kernels, wherein vC indicates the cth filter’s parameters.
(erefore, the outcomes of the Ftr can be specified as
U � [u1, u2, u3, . . . . . . , uC], in which the value of u is de-
fined in equation (3):

uc � vc ∗X � 􏽘

C,

s�1
vc

s ∗X
s
. (3)

In equation (3), ∗ represents the convolution,
vc � [vc

1, vc
2, . . . . . . , vc

C,

] and X � [x1, x2, xc] (the bias
terms are ignored for simplicity], while vc

s denotes the filter

of size 2D, and hence indicates the singular vc channel that
operates on the equivalent X channel. (e correlations
among channels are implicitly encoded in vc because the
result can be computed by summing all the channels but they
are jumbled with the spatial correlation acquired by the
filters. Here the main objective is to assure that the model is
able to improve its sensitivity to relevant features so that they
can be accessed by some transformations while silencing less
relevant ones. (is can be accomplished by modeling the
channel interdependencies explicitly and recalibrating ker-
nel outputs in two stages, squeeze and excitation operation,
before passing them into the succeeding transformation.(e
pictorial representation of squeeze and excite operations is
shown in Figure 4.

ow �
M − w + 2pw

sw

+ 1, (1)

oh �
N − h + 2ph

sh

+ 1, (2)

(1) Embedding of Global Information by Squeeze Operation.
(e signal to every channel is taken into account in final
features to address the channel dependencies. Since every
learned kernel applies with a local receptive field, each
component of the transformation result U is not capable of
employing the context-related information beyond this
region. (e bottom layers of the model where the sizes of
the receptive fields are smaller also become the major cause
of this problem. (is can be addressed by adding spatial
details of squeeze global into a descriptor channel. More
precisely, this can be accompanied by adding the average
pooling, i.e., global to produce the statistics of channel-wise
information. Mathematically, a statistic z ∈ RC is formed
by contracting U through H × W spatial dimensions in
which the cth component of z is computed by the following
equation:

zc � Fsq uc( 􏼁 �
1

H × W
􏽘

H

i�1
􏽘

H

i�1
uc(i, j). (4)

Patient
Blood Sample Microscopic Blood

Sample Images
Resizing Images Data Augmentation

Leukemia Cancer
Detection Trained Model

Deep CNN Model based on
Squeeze and Excite Learning

Figure 3: An overview of the proposed methodology.
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(e output of transformation U could well be interpreted
as a group of descriptors that are local as well as for those whose
statistics represent the complete microscopic image of the
blood sample. Usually, in the feature engineering part, such
information is useful [64–66]. (e aggregation technique used
here is the global average pooling.

(2) Recalibration through Excitation Operation. In order to
completely acquire the channel-wise dependencies, an-
other operation, namely, excitation is done to take ad-
vantage of the information attained in the squeeze
operation. (is aim can be accomplished by fulfilling two
important conditions. (e first one is flexibility indicating
that the model should be able to comprehend the non-
linear relationships among channels. Similarly, the second
criteria are that the model should learn a nonexclusive
relationship because we would like to guarantee that
different channels are allowed to be noticed in contrast to
one-hot activation. For this purpose, a gating mechanism
is employed along with sigmoid activation.

s � Fex(z, W) � σ(g(z, W)) � σ W2δ W1z( 􏼁( 􏼁. (5)

In equation (5), the term δ denotes the ReLu activa-
tion, W1 ∈ RC×c/r and W2 ∈ RC×c/r. To incorporate the
generalization and reduce the complexity of the model,
the gating process is parameterized by designing a bot-
tleneck along with two FC layers with nonlinearity, i.e.,
the parameters W1 and r denoting reduction ratio forms
a layer of dimensionality reduction followed by ReLu
activation. Lastly, by the use of parameters W2, a di-
mensionality growing layer is added. (e block’s final
result is computed by rescaling the result U of the
transformation with the following activations:

􏽢xc � Fscale uc, sc( 􏼁 � sc.uc, (6)

where 􏽢X � [􏽢x1, 􏽢x2, . . . . . . , 􏽢xc] and Fscale(uc, sc) denote
channel-wise multiplication among the feature maps
uc ∈ RH×W and the scalar sc. (e activations are served as
channel weights that are tuned to the particular descriptor z.
In this manner, the squeeze and excite operation assists to

improve the feature learning discriminability by introducing
dynamics that are conditional on the input.

3.3.3. Network Architecture. (e architecture of the proposed
model is amalgamated with convolution, max-pool, as well as
squeeze and excite operations, as indicated in the above
sections. It consists of a stack of these layers configured with
the best set of parameters to efficiently perform leukemia
cancer detection. (e network begins at the input layer, where
microscopic blood samples of dimension 224 × 224 × 3 are
provided as input. Later on, this input is propagated to
convolutional and max-pool layers. (is convolution layer
operated on the image with a kernel size of 3 × 3 to provide
low-level optimum interpretations of the image that are ef-
fective for any image classification task. As depicted in Fig-
ure 5, this process of obtaining advantageous representations
including both mid and high levels is further strengthened by
employing subsequent convolution layers of the same kernel
size. Furthermore, the total number of filters in each of the
nonpadded convolution layers is configured to 32, 64, and 128,
respectively. Following each convolution layer, a ReLu [67]
activation function is implanted to bring the nonlinearity in
the network learning. In addition, we have supplemented the
network with batch normalization after every convolution
operation to normalize the data and improve the performance.
More specifically, there are three convolution layers, with each
followed by ReLu [67] activation and batch normalization.
After batch-normalization, the input is passed through
squeeze and excite block. (e squeeze operation enables the
global information embedding while the recalibration process
is attained through excite operation as described in the above
sections. Subsequently, the max-pooling layer with a window
size of 2 × 2 is used after every batch normalization layer. (e
stride size during pooling is set to 1. (e sizes of feature maps
after every Convolution⟶ ReLu⟶ BatchNormalization
⟶ MaxPool are 222 × 222 × 16, 52 × 52 × 32, and
26 × 26 × 64, respectively. After this, a global max-pooling
layer is added to reduce the extracted feature dimensions
followed by two dense layers with hidden units set to 128 and
1. (e activation function on the second last dense layer is

H´

X´

C´

W´ Ftr Fsq (.)H

H

W

W

C

C

UX Squeeze Operation

Excite Operation

1*1*C

1*1*C
Fscale (. , .)

Fex (. , W)

Figure 4: A pictorial representation of squeeze and excite operation.
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ReLu while on the last layer it is sigmoid. In addition, the
model is trained with loss function “binary_crossentropy” as
well as weight optimizer Adam with a learning rate of 0.001.
(e graphical representation of the traditional deep learning
model is depicted in Figure 6 while Figure 4 shows the ar-
chitecture of the proposed model. All of the architecture as-
pects stated above are included in the traditional deep learning
model illustrated in Figure 6 to increase its performance.

4. Experiments and Results

(is section discusses the findings of the designed model in
various experimental scenarios, followed by discussions and
comparisons. In addition, the proposed model is imple-
mented using Python with Keras deep learning framework
and all simulations are run on Google Colab with a 12GB
NVIDIA Tesla K80 GPU. (e experimental setup includes
two datasets, and performance is validated both alone and in
combination. All of the parameters are defined by trial and
error procedure, and the results are reported with the best set
of parameter settings.

4.1. Evaluation Criteria. (e criteria used to evaluate the
performance of the proposed model are determined by the
following metrics:

4.1.1. Accuracy. (is metric measures the total number of
classes accurately predicted by the trained model out of all
categories, i.e., an Acute Lymphoblastic Leukemia (ALL)
and not Acute Lymphoblastic Leukemia (ALL). (is mea-
sure indicates how many patients are diagnosed with leu-
kemia and those who are not. (e higher the value of
accuracy, the more accurate is the model [68–71]. (e
equation of accuracy is shown in the following equation:

Accuracy �
TP + TN

TP + TN + FP + FN
. (7)

4.1.2. Precision. Out of all positive cases, this metric mea-
sures the proportion of true positives [72]. In the instance of
leukemia disease, it is the ability of the model to accurately
highlight those patients who have leukemia disease.
Mathematically, it is defined as in the following equation:

Precision �
TP

TP + FP
. (8)

4.1.3. Recall. (e recall assesses how the model is correctly
highlighting the leukemia disease patients based on the overall
relevant data. It is computed by the following equation:

Recall �
TP

TP + FN
. (9)

4.1.4. FScore. (is metric measures the overall efficiency of
the model by integrating both values of recall and precision.

F1 � 2.
Precision.Recall
Precision + Recall

. (10)

In equations (7)–(10), the term TN represents the True
negative, TP represents the true positive, FP represents the
false positive, and FN denotes the false negative.

4.2. Results of the ALL_IDB1 Database. To assess the per-
formance of the proposed model, we first validate this model
with the ALL_IDB1 database. (e whole database is parti-
tioned into two nonoverlapping collections of train and test
samples with a ratio of 80:20. As previously stated, the total

1.Global Information Embedding
2.Adaptive Recalibration

Microscopic
Images

224*224*3 224*224*16 109*109*32 54*54*32 52*52*64

54*54*64

222*222*16
109*109*32

Leukemia

Not leukemia

Squeeze and
Excite

Squeeze and
Excite

Squeeze and
Excite

2D convolution
Relu
Batch normalization
Squeeze and Excite

Max pooling
Global Max-Pool
Dense Layers

Figure 5: An architecture diagram of the proposed deep learning model.
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number of microscopic blood samples of both ALL and
without ALL is very less for training. Hence, we have
employed data augmentation techniques to increase the total
number of blood samples for training, as shown in Figure 7.
(e total number of train and test blood samples for both
ALL and without ALL classes is provided in Table 1. Sub-
sequently, after data augmentation, the train set sufficiently
contains a large number of samples that are used to train the
model. (ese augmented images are used to train the model.
(e proposed model extracts the features of leukemic cells
from convolution and max-pool layers. At each feature level
representation of images, the squeeze and excitation learning
is incorporated to improve the representational capacity of
the model by modeling the interdependencies among the
channels explicitly with the help of these extracted convo-
lution operations. (e results on the ALL-IDB1 dataset are
shown in Table 2. As illustrated in Table 2, it is observed that
the proposed model is performing very efficiently in di-
agnosing the patients having leukemia disease with 100%
accuracy.

Furthermore, the additional evaluation indicators that
comprise precision, recall, and FScore values are 100%,
100%, and 100%, respectively. In addition, we have also
verified the reliability of the model class-wise on the ALL-
IDB1 database. In this examination, the performance is
analyzed on individual classes, i.e., patients with ALL and
without ALL. It has been revealed that the model is also
performing very accurately in individual instances, as shown
in Table 2. Furthermore, in the ALL_IDB1 dataset, the
number of test samples is very limited and does not contain
diverse variations. Hence, we validate the model three dif-
ferent times, and each time we formed the train and test set
differently by random shuffling. After division, we aug-
mented the train set only. Alternatively, we have also charted
the confusionmatrix of this experiment, which is depicted in
Figure 8 (first image). For each class category present in the
dataset, the confusion matrix illustrates the overall efficiency
of the model. It is evident from the outcomes that the
proposed model shows better performance in classifying the
microscopic blood samples into ALL and without ALL
classes. (e model learns well due to an adaptive

recalibration of channel responses by considering in-
terdependencies among channels. (e squeeze and excita-
tion learning brings the dynamics in the input to empower
the feature discrimination. Both operations of squeeze and
excitation can be included by global information embedding
and recursive recalibration.

4.3. Results of the ALL_IDB2 Database. In the second phase
of validation, we have employed the second dataset, namely,
ALL_IDB2. In this dataset, the total number of microscopic
blood samples is also very insufficient for the training of the
proposed model. Hence, the same procedure of data aug-
mentation is applied to this dataset. Later on, the train set
with an excessive type of variations in the images is used to
train the model. (e total number of training and testing
instances for this experimental setup is given in Table 3.
Furthermore, all of the hyperparameters of the proposed
model are the same as we set with the first database. (e
results of the proposed model on this database are shown in
Table 2. As done previously with the first experiment, the
features of microscopic images of blood samples are drawn
from the convolutional and pooling layers whose learning
improves by incorporating the squeeze and excitation op-
erations. Table 2 shows that themodel is also exhibiting good
scores on this dataset. (e overall accuracy obtained by the
model in the first run is about 96% while values of precision,
recall, and F-Score are 96%, respectively. Similarly, the re-
sults of the second and third runs in which we divided the
train and test sets with different random shuffling are also
encouraging, i.e., accuracy with the second run is 98% while
with the third run it is 99.98%. Besides this, the performance
of the model is also examined by demonstrating the class-
wise performance of themodel, as shown in Table 2. Another
noteworthy thing to be mentioned here is that in this dataset,
the regions of cells are cropped from the microscopic images
while in the first experiment we have employed the full
microscopic images of blood samples. (e proposed model
shows the best results on both types of image settings.
Subsequently, the confusion matrix is also drawn for the
experiment in which cropped cell images are used. Figure 8
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Figure 6: Leukemia cancer detection using traditional deep learning model.
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(second image) shows the confusion matrix for this
experiment.

4.4. Results of Combining BothDatasets. Furthermore, in the
third experiment, we have combined the microscopic images
of both datasets to create more diversity and increase the
number of test images. Similarly, in this experiment, we have
also performed the data augmentation to increase the
training size. (e total number of testing and training
samples of both ALL and not ALL classes is given in Table 4.
As done previously for both of the datasets separately, the
train set with extensive data augmentation is given as an

input to the proposed model.(emodel extracts the features
of leukemic and normal cells from cropped and full-size,
respectively. (e accuracy achieved in this scenario is also
encouraging. Similarly, the recall, precision, and F-Score
values are also better. (e recall value of 99.24% is achieved
on ALL classes with the third experiment while it is 97.01%
in the first experiment, respectively.

Besides this, the confusion matrix of this experiment is
also plotted, as shown in Figure 8 (third image). Moreover,
the training loss and accuracy curves are also plotted for all
of the experiments, as shown in Figure 9.(e learning curves
indicate that the model performance on epoch 5, in terms of
accuracy is leading towards the best values of the accuracy.

Table 1: Training samples and testing samples on the ALL_IDB1 dataset.

No# NOT ALL ALL Total
Training 800 920 1720
Test 13 9 22
Total 813 929 1742

Table 2: Results of the proposed model on both ALL1_IDB1 and ALL_IDB2.

Exp# Class-wise performance Run# Dataset Accuracy (%) Precision (%) Recall (%) FScore (%)
01 ALL 01 ALL_IDB1 100 100 100 100
02 Not ALL 01 ALL_IDB1 100 100 100 100
03 ALL 01 ALL_IDB2 96 96 96 96
04 Not ALL 01 ALL_IDB2 96 97 97 97
05 ALL 02 ALL_IDB1 100 100 100 100
06 Not ALL 02 ALL_IDB1 100 100 100 100
07 ALL 02 ALL_IDB2 98 100 96 98
08 Not ALL 02 ALL_IDB2 98 96 100 98
09 ALL 03 ALL_IDB1 100 100 100 100
10 Not ALL 03 ALL_IDB1 100 100 100 100
11 ALL 03 ALL_IDB2 99.98 99 .03 99.87 99.44
12 Not ALL 03 ALL_IDB2 99.98 99.24 99.63 99.43
Results by integrating both datasets i-e ALL_IDB1 and ALL_IDB2
12 Not ALL 01 ALL_IDB1+ALL_IDB2 97.06 97.12 97.01 97.06
13 ALL 01 ALL_IDB1+ALL_IDB2 97.06 97.03 97.21 97.11
14 Not ALL 02 ALL_IDB1+ALL_IDB2 99 100 97.00 99.00
15 ALL 02 ALL_IDB1+ALL_IDB2 99.24 97.00 100 99.00
16 ALL 03 ALL_IDB1+ALL_IDB2 99.33 99.3 99.24 99.26
17 Not ALL 03 ALL_IDB1+ALL_IDB2 99.01 99.36 99.00 99.17

Figure 7: Results of data augmentation on microscopic images.
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Similarly, on epoch 10, the loss values are approximating
near to zero. (is behavior demonstrates the effectiveness of
the proposedmodel during the learning process. In addition,
the receiver operating curves (ROC) are also drawn for both
of the databases. It is a likelihood curve that shows

a true-positive rate (TPR) versus a false-positive rate (FPR)
at various thresholds. ROC is a very accurate metric to
examine the efficiency of the binary classifier, but it can also
be plotted for multi-class problems [73]. (e ROC curve
demonstrates the trade-off between sensitivity (or TPR) and

Table 3: Training samples and testing samples on the ALL_IDB2 dataset.

No# Not All ALL Total
Training 1030 1050 2080
Test 27 25 52
Total 1057 1075 2132

Table 4: Training and testing samples by combining both datasets.

No# Not ALL ALL Total
Training 1036 1022 2058
Test 41 33 74
Total 1077 1055 2132
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specificity (1 – FPR). Classification methods that produce
curves nearer to the top-left corner function are the best.(e
nearer the curve gets to the ROC space’s 45-degree diagonal,
the slower and less reliable the assessment. (e ROC curves
are depicted in Figure 10 for all of the experiments.

In addition to the above results, we have compared the
results of the proposed CNN architecture with the tradi-
tional deep learning model, as shown in Figure 6. In a tra-
ditional deep learning model, we generally have several
convolution, max-pool, and dense layers. Here, in this study,
we empower the representational capabilities of this tradi-
tional deep learning model by incorporating squeeze and
excite operations. (e results shown in Table 5 provide the
details regarding improvements in terms of accuracy, pre-
cision, recall, and FScore values of the proposed model over
the traditional deep learning model. We tested both models
three times, each time randomly shuffling the whole dataset
to create the train and test sets. It has been demonstrated that
the proposed model shows 5.5% average accuracy im-
provement over the traditional deep learning model.

Furthermore, the precision, recall, and FScore values are
also encouraging and high than traditional deep learning
models. In addition, the average loss value on the test set for
traditional CNN is 1.44 while for the proposed this loss value
is 0.117. Furthermore, we have also examined the effect of
data augmentation on the performance of both models.
Generally, the effective training of deep learning models
requires a very large amount of data. On the contrary, with
less data, the underlying model is less generalizable and
more prone to overfitting issues. Hence, in order to show the
influence of data augmentation for this particular problem,
the results are listed in Table 6. In the first experiment, we
train the deep learning model three times by random
shuffling of the data without any form of data augmentation.
It is observed that without data augmentation the results are
less in terms of accuracy. More specifically, the accuracy of

the traditional deep learning model is 88.6% while with the
proposed model, it is 94%. However, when the data aug-
mentations are performed over the data, the results are
increased and models learn better, exhibiting accuracies of
92.8% and 98.43%, respectively.

4.5. Comparison with Existing Works. Finally, we have
compared the results of the proposed model with the
existing work on leukemia cancer detection, as shown in
Table 7. For instance, Ahmed et al. proposed a CNN-based
architecture to classify the different types of leukemia, both
acute and chronic [32].(eir proposed architecture achieved
an average accuracy of 88.25. In their work, the comparison
is also performed with some traditional machine learning
approaches such as Naive Bayes, decision tree, K-nearest
neighbor, and support vector machines (SVM). Further-
more, the authors Shafique and Tehsin have suggested the
transfer learning approach using the AlexNet model for the
detection of acute lymphocytic leukemia (ALL) and its
subtypes [2]. For only ALL detection, their proposed ap-
proach exhibits 99.50% accuracy, which is remarkable. Jothi
et al. performed the ALL classification in which they
employed the optimization-based backtracking algorithm to
segment the leukemic cells from a given microscopic image
[74]. Later, a different set of features are extracted such as
morphological, color, and statistical, etc., followed by
a feature section. Finally, the classification between healthy
and leukemic cells is done by the Jaya algorithm, which is
population-based meta-heuristic optimization. (eir pro-
posed frameworks exhibit 99% accuracy. Subsequently,
Mishra et al. also performed the ALL classification by im-
proved feature extraction method using 2D-discrete or-
thonormal S-transform [42]. (is method extracts an
extensive set of relevant texture features which is further
reduced by PCA and LDA-based algorithms. Finally, one of
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the popular classifiers Adaboost is used to classify the leu-
kemic and normal cells with an accuracy of 99.66%. Fur-
thermore, Jiang et al. proposed a vision transformer–based

convolutional neural network (ViT-CNN) for acute lym-
phocytic leukemia detection [54]. To get superior classifi-
cation results, their proposed ViT-CNN ensemble model can

Table 5: Comparison with traditional deep learning model using ALLIDB1+ ALLIDB2 database.

Comparison of traditional deep learning model with the proposed model
Run# Model Loss value Accuracy (%) Precision (%) Recall (%) FScore (%)
1 CNN 0.92 95 95 94.5 94.5
2 CNN 1.67 92 92 92 91.5
3 CNN 1.73 91.4 90.5 92 91.5
Average CNN 1.44 92.8 92.5 95.28 92.5
1 Proposed 0.16 97 97 97 97
2 Proposed 0.092 99 98.5 98.5 98.5
3 Proposed 0.099 99 99 99 99
Average Proposed 0.117 98.3 98.16 98.16 98.43

Table 6: Effect of data augmentation on both models.

Effect of data augmentations
Augmentation Model Loss value Accuracy (%) Precision (%) Recall (%) FScore (%)
Yes CNN 1.44 92.8 92.5 95.28 92.5
No CNN 0.57 88.6 90.1 88.1 88.3
Yes Proposed 0.117 98.3 98.16 98.16 98.43
No Proposed 0.15 94 94 94 94
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extract features from cell images in two fundamentally
distinct approaches. (eir proposed method achieves an
accuracy of 99.03%, respectively. In addition, Agaian et al.
designed the cell energy feature–based approach to ALL
feature extraction followed by SVM classifier to perform the
classification [75]. (eir proposed framework shows 94%
accuracy in ALL detection. Tuba and Tuba perform acute
lymphocytic detection using five shapes and six texture-
based features. [60]. (e classification is performed by SVM
whose parameters are tuned with a generative adversarial-
based optimization algorithm. (eir proposed techniques
show 93.84% accuracy. Moreover, Jha and Dutta proposed
a chronological sine-cosine algorithm (SCA)-based deep
CNN model to classify the ALL images [58]. (e SCA al-
gorithm is employed to find the best weights of the deep
learning model to classify the microscopic images. (eir
proposed techniques demonstrate 98.70% accuracy. In
comparison with all these approaches, some studies utilize
the deep learning models, some are based on transfer
learning mechanisms, some utilized optimization-based
methods, while some have employed the traditional machine
learning approaches. All of them perform excellently well,
but the results of deep learning–based methods are more
accurate and better. Hence, the proposed framework is also
based on the deep learning method in which performance is
boosted up by incorporating the squeeze and excitation
learning. (e results are presented in the above sections as
well as according to comparison made in Table 7, and it is
observed that the proposed approach is good in classifying
leukemia cancer.

(e major reason behind the improvements is the
representational power of the model, as indicated in Ref.
[37], i.e., the representational power of traditional CNNs is
enhanced by explicitly considering the interdependencies
among convolutional features’ channels. (is mechanism is
accomplished by adding squeeze-and-excitation operations
into the layers of deep learning. More precisely, the squeeze
operations consolidate the widespread distribution of out-
puts acquired from channel-wise features. (is is followed
by an excitation operation, which takes the extracted in-
formation by squeeze operation as input to completely learn
channel-associations with the recalibration process. (ese
operations strengthen the model’s representational power.
(ey also improve its feature learning method in order to
extract more compact and discriminative features, which is

a critical prerequisite for microscopic image analysis. Fur-
thermore, the proposed model is also light-weighted in
terms of network depth and layers as well as a number of
trainable parameters. Furthermore, the suggested method is
a simple and enhanced deep learning approach that does not
require any post-processing or pre-processing techniques to
identify leukemia cancer. On the contrary, when there are
more different and complicated differences or variations in
microscopic blood samples, it may be necessary to upgrade
network configurations as well as network depth, since the
model presently does not have deeper depths as it is a light-
weighted model.

5. Conclusion

Leukemia is a form of blood cancer that is one of the
principal causes of cancer-related death. Recent research
studies propose deep learning–based strategies for leukemia
cancer detection, including transfer learning approaches,
and show incredibly precise outcomes. However, improving
deep learning algorithms is a continuing research problem
for various researchers. Hence, in this research study, an
improved deep learning model based on squeeze and ex-
citation learning is proposed to diagnose leukemia cancer
from a given microscopic blood sample of patients. In the
proposed model, the representation ability is improved at
every level of feature representation by permitting it to
undertake periodic channel-wise feature recalibration. (e
squeeze and excitation operations enable the model to ex-
tract strong, relevant, and discriminative features from
leukemic and normal cells. (e proposed model has been
validated on publicly available datasets and shows promising
results when compared to the traditional deep learning
model. In the future, the proposed technique can be vali-
dated on the different subtypes of acute lymphocytic
leukemia.
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Table 7: Comparison with existing work.

Sr. No. Authors Methods Dataset Accuracy (%)
1 Ahmed et al. [32] CNN ALL_IDB 88.25
2 Shafique and Tehsin [2] AlexNet-based transfer learning ALL_IDB 99.50
3 Jothi et al. [74] Jaya, SVM ALL_IDB 99
4 Mishra et al. [42] DOST, PCA, LDA ALL_IDB1 99.66
5 Jiang et al. [54] Vision transformer– based CNN ISBI2019 99.03
6 Agaian et al. [75] SVM with cell energy feature ALL_IDB1 94
7 Tuba and Tuba [60] Gao-based methods ALL_IDB2 93.84
8 Jha and Dutta [58] SCA-based deep CNN ALL_IDB2 98.70
9 Proposed Squeeze and excitation based CNN ALL_IDB1 100
10 Proposed Squeeze and excitation based CNN ALL_IDB2 99.98
11 Proposed Squeeze and excitation based CNN ALL_IDB1+ALL_IB2 98.3
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