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Feature extraction and selection are important parts of motor imagery electroencephalogram (EEG) decoding and have always
been the focus and difficulty of brain-computer interface (BCI) system research. In order to improve the accuracy of EEG
decoding and reduce model training time, new feature extraction and selection methods are proposed in this paper. First, a new
spatial-frequency feature extraction method is proposed. The original EEG signal is preprocessed, and then the common spatial
pattern (CSP) is used for spatial filtering and dimensionality reduction. Finally, the filter bank method is used to decompose the
spatially filtered signals into multiple frequency subbands, and the logarithmic band power feature of each frequency subband is
extracted. Second, to select the subject-specific spatial-frequency features, a hybrid feature selection method based on the Fisher
score and support vector machine (SVM) is proposed. The Fisher score of each feature is calculated, then a series of threshold
parameters are set to generate different feature subsets, and finally, SVM and cross-validation are used to select the optimal feature
subset. The effectiveness of the proposed method is validated using two sets of publicly available BCI competition data and a set of
self-collected data. The total average accuracy of the three data sets achieved by the proposed method is 82.39%, which is 2.99%
higher than the CSP method. The experimental results show that the proposed method has a better classification effect than the
existing methods, and at the same time, feature extraction and feature selection time also have greater advantages.

1. Introduction

Motor imagery electroencephalogram (EEG) signal is widely
used in brain-computer interface (BCI) system, but it has
strong randomness and low signal-to-noise ratio and is easily
disturbed by physiological and nonphysiological noises, which
makes it difficult to decode [1]. In EEG decoding, feature
extraction and selection are the core components [2]. On the
one hand, extracting discriminative and stable features can
effectively improve the performance of EEG decoding [3]. On
the other hand, the extracted features usually contain noise and
redundant information, so feature selection is required to
eliminate invalid information [4]. In addition, feature selection
can reduce the feature dimension and the complexity of the
classification model and avoid dimension disaster and over-
fitting. Therefore, feature extraction and selection have always
been the focus and difficulty of BCI system research.

Common spatial pattern (CSP) is a relatively effective
method for feature extraction of motor imagery EEG among
many methods [5]. The traditional CSP method extracts
logarithmic variance as features after spatial filtering [6], but
some studies have shown that this feature extraction method
is not necessarily optimal. For example, literature [7] pro-
posed the logarithmic band power (LBP) feature based on
the CSP transform, which is called CSP-LBP in this paper.
The experimental results show that CSP-LBP is superior to
the traditional CSP method. In addition, the traditional CSP
method lacks frequency domain information. Therefore, a
lot of work has been done to select the optimal frequency
band for CSP. For example, in literature [8], the original
EEG signal was filtered into multiple subbands by filter bank
method, and then CSP was used to extract features. Finally,
mutual information was used to select the features of the
optimal frequency band. Zhang et al. [9] proposed a sparse
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filter band common spatial pattern (SFBCSP) method.
SFBCSP carried out band-pass filtering on original EEG
signals through multiple frequency subbands with a fre-
quency range of 4-40Hz, a bandwidth of 4Hz, and an
overlap rate of 2Hz between subbands. CSP was used to
extract features on each subband, and the least absolute
shrinkage and selection operator (LASSO) was used for
frequency band feature selection. Finally, the support vector
machine (SVM) was used to classify selected features.
Subsequently, Zhang et al. [10] proposed a subband opti-
mization method that implements sparse Bayesian learning
of frequency bands (SBLFB) for motor imagery classifica-
tion. The subbands filtering method was the same as that in
literature [9], but sparse Bayesian learning was used to select
sparse frequency band features. The above spatial-frequency
feature extraction methods filter the original EEG signals
into multiple subbands, which requires a large amount of
computation and a long time.

Existing feature selection methods mainly include filter,
wrapper, and embedded [11]. The filter feature selection
method uses evaluation criteria such as information mea-
surement and distance measurement to select features. The
wrapper feature selection method generates feature subsets in
a specific way and then uses the results of classifiers as the
evaluation criteria for feature selection. The embedded feature
selection method can automatically remove some features
during classifier training, so feature selection and classifica-
tion can be carried out simultaneously. The above three types
of methods have their advantages and disadvantages, and the
organic combination of these methods can achieve comple-
mentary advantages. Therefore, the hybrid feature selection
method has been studied widely in recent years. Moradi et al.
[12] proposed a novel hybrid feature selection algorithm
based on particle swarm optimization (PSO) and the local
search strategy, and the local search strategy was embedded in
the PSO to select the less correlated and salient feature subset.
Jain et al. [13] proposed a hybrid model for gene selection and
cancer classification, and the optimal gene subset was selected
by correlation-based feature selection method combined with
improved binary PSO. Lu et al. [14] proposed a hybrid feature
selection algorithm for gene expression data classification.
The algorithm combined the mutual information maximi-
zation and the adaptive genetic algorithm to reduce the di-
mension of gene expression data and remove the
redundancies for classification. Ghareb et al. [15] combined
six filtering feature selection methods and an improved ge-
netic algorithm to form a new hybrid feature selection
method. Literature [16] is a review article that comprehen-
sively introduces the hybrid feature selection method for
cancer classification. Although the hybrid feature selection
method has been widely used, as far as we know, few hybrid
feature selection methods have been applied to EEG decoding.
In addition, the existing hybrid feature selection methods are
mostly based on intelligent optimization algorithms such as
PSO and genetic algorithms, so the feature selection time is
relatively long.

In order to further improve the performance of motor
imagery EEG decoding, a new spatial-frequency feature
extraction method and hybrid feature selection method are
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proposed in this paper. First, considering the effectiveness of
the CSP-LBP method [7] and the frequency defects of CSP, a
new spatial-frequency feature extraction method based on
CSP transform, filter bank (FB), and logarithmic band power
(LBP) is proposed; we call it CSP-FBLBP. The original EEG
signals are preprocessed and then spatially filtered by CSP
transform. After that, the spatially filtered signals are
decomposed into multiple subbands using a filter bank, and
the logarithmic band power of each subband is extracted as
the feature. Second, a new hybrid feature selection method
based on Fisher score (F-score) and SVM is proposed to
select subject-specific spatial-frequency features; we call it
F-score-h. The Fisher score of each feature is calculated, then
a series of threshold parameters are set to generate different
feature subsets, and finally, SVM and 10-fold cross-valida-
tion are used to select the optimal feature subset. After
feature extraction and selection are completed, SVM is used
for classification. Two public data sets and a self-collected
data set are used to verify the proposed method.

The main contributions of this paper are in two aspects:

First, a new spatial-frequency feature extraction method
is proposed. CSP is used for dimensionality reduction, and
then the spatial projection signal is band-pass filtered using
the filter bank method. Finally, logarithmic band power is
used for feature extraction. CSP dimensionality reduction
effectively reduces the number of signal channels, thereby
reducing the calculation amount and time of band-pass
filtering, which greatly improves the timeliness of feature
extraction. In addition, the experimental results show that
logarithmic band power is more effective than the loga-
rithmic variance of the traditional CSP method.

Second, a new hybrid feature selection method is pro-
posed. The Fisher score is used for feature sorting, and the
threshold method, SVM, and cross-validation are combined
for optimal feature subset selection. The proposed method
takes full advantage of the simple calculation of the filtering
method and the supervised selection of the wrapped method,
which not only reduces the feature selection time but also
improves the classification performance of EEG decoding.

2. Materials and Methods

2.1. EEG Data Description. Data set 1: data set IIa of BCI
competition IV (2008) [17]: this data set contains 22 elec-
trode channels, and the sampling rate is 250 Hz. Nine
healthy subjects (A01, A02, A03, A04, A05, A06, A07, A0S,
and A09) performed left-hand, right-hand, foot, and tongue
motor imagery tasks, respectively. Since we only consider
binary classification tasks, C2 = 6 groups of binary classi-
fication tasks are obtained by permutation and combination
of four types of tasks. Since there are nine subjects, 9 x 6 =54
data subsets could be obtained. The number of samples in
the training set and test set of each subject is 144,
respectively.

Data set 2: data set ITb of BCI competition IV (2008) [18]:
this data set contains 3 electrode channels, and the sampling
rate is 250 Hz. Nine healthy subjects (B01, B02, B03, B04,
B05, B06, B07, B08, and B09) performed left-hand and right-
hand motor imagery tasks, respectively. This data set has five
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sessions, and we only analyzed the data of the third session
[10]. The number of samples in the training set and test set of
each subject is 80, respectively.

Data set 3: data set self-collected from our laboratory:
NuAmps amplifier and electrode cap from Neuroscan
company are used for scalp EEG signals collection, and the
sampling rate is 250 Hz. A total of 36 electrode channel data
in this data set, including 30 channels of EEG data, 4
channels of electrooculogram data, and two reference
channels, and only 30 channels of EEG data, are analyzed
in this paper. Six healthy subjects (S01, S02, S03, S04, S05,
and S06) performed left-hand and right-hand motor im-
agery tasks, respectively.

2.2. 'The Proposed Method. The data processing flow of the
proposed method is shown in Figure 1, which mainly in-
cludes preprocessing, feature extraction, feature selection,
and feature classification. In the preprocessing stage, all data
sets performed 8-30 Hz band-pass filtering using a 6-order
Butterworth filter. The time window with 0.5-2.5 s is selected
for single-trial data extraction. In the following content, we
will introduce the core work of the proposed method in
detail.

2.2.1. The New Spatial-Frequency Feature Extraction Method.
The new spatial-frequency feature extraction method in-
cludes CSP dimensionality reduction, filter bank band-pass
filtering, and logarithmic band power feature extraction.

(1) CSP Dimensionality Reduction. The solution of the CSP
objective function can be equivalent to a generalized ei-
genvalue problem [19]. After the eigenvector matrix is
obtained, the eigenvectors corresponding to the first m
largest eigenvalues and the last m smallest are selected to
form the final spatial filter. Assuming that the spatial filter is
W and the single-trial data is D, the spatial projection signal
Z can be calculated by the following calculation formula:

Z=W'D, (1)

where W € R D € R®K, C represents the total number
of electrode channels, m represents the pair number of the
spatial filters, and K represents the number of sampling
points for each electrode channel.

After the single-trial data D is transformed by CSP, the
EEG signal has only 2m channels. The value of m is usually
set to 3 or 1, so the number of EEG signal channels is
significantly reduced after CSP transformation. For example,

1

F(i) =

data set 1 has 22 electrode channels; if 1 is set to 3, the EEG
signal has only 6 channels after CSP dimensionality re-
duction. The specific form of the signal Z is as follows:

211 %12 21K
Z Z oo Z
2,1 22 2K
A e (2)
Zom1 Rom2 Tt RamK

(2) Filter Bank Band-Pass Filtering. The signal Z is band-pass
filtered using a filter bank with frequency subbands of
4-8Hz, 6-10Hz, ..., 26-30 Hz. Specifically, band-pass fil-
tering is performed on each channel of the signal Z, which is
shown in Figure 2.

(3) The Logarithmic Band Power Feature Extraction. The
logarithmic variance is extracted as the feature in the tra-
ditional CSP method [6]. However, the experimental results
in literature [7] prove that the logarithmic band power is
more effective. Therefore, after band-pass filtering, the
logarithmic band power is extracted as the feature in this
paper, specifically as follows [7]:

K
LBP, = log<% > |Zp(i)|2>,p =1,2,...2m,  (3)
i=1

where Z , (i) represents the i — th sample point of the p — th
channel of the signals Z.

In the newly proposed spatial-frequency feature ex-
traction method, CSP spatial filtering is performed first, and
then band-pass filtering and feature extraction are per-
formed on the spatially filtered signal. This processing has
two advantages. On the one hand, after the signal is spatially
filtered by the CSP, the signal quality is improved, and the
extracted features are more stable and more discriminative.
On the other hand, after CSP dimensionality reduction, the
signal channel is greatly reduced, thereby reducing the
calculation amount of band-pass filtering. Therefore, the
time of feature extraction is greatly reduced, and it is not
affected by the actual number of electrode channels.

2.2.2. Hybrid Feature Selection Method. The Fisher score can
measure the distinguishing ability of features between two
categories [20]. The Fisher score is obtained by calculating
the variance ratio between-classes and within-classes of each
feature, details as follows:

1

(x9-x) +(x -x)

where F (i) represents the Fisher score of i — th future. n, and
n_, respectively, represent the number of positive samples

2 2 (4)
(1 (n, - 1))22:(@;’ - xf”) CU(n - 1) Y (xi,;’ - xi‘-))

and negative samples, and n =mn, +n_ represents the
number of total samples. X;, %", and Ei(_) are, respectively,

i
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FIGURE 1: The data processing flow of the proposed method.
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FIGURE 2: The band-pass filtering on each channel of the signal Z.

the mean value of the i — th feature in the whole data sample
set, the mean value of the i — th feature in the positive sample
set, and the mean value of the i — th feature in the negative
sample set. x; € R? represents the k —th feature sample,
x,ij.) is the feature value of the i —th feature of the k —th
positive class sample, x,i;) is the feature value of the i — th
feature of the k —th negative class sample, and p is the
feature dimension. The larger the F value, the stronger the
discrimination of the corresponding features [21]. The
traditional F-score method sorts the features according to
the Fisher score and then selects the top K features for
subsequent classification.

However, it is difficult to determine exactly how many
features should be selected to achieve the best classification
effect. Therefore, a hybrid feature selection method based on
F-score and SVM classifier is proposed in this paper; we call
it F-score-h. Unlike the filter feature selection method based
on F-score, F-score-h uses feature weights (i.e., the Fisher
score of the feature) to select the optimal feature subset, as
shown in Figure 3. Specifically, after the features are sorted
by the Fisher score, we set a series of thresholds to generate
different feature subsets; the features greater than the set
threshold will be selected. The set of candidate parameters
for the threshold is Th € {0,0.05,0.1...,0.8}. For each
threshold parameter, the average verification accuracy of
each feature subset is calculated by combining SVM and
10-fold cross-validation (CV). The threshold corresponding
to the highest average accuracy is selected, and the optimal
feature subset is further selected according to the optimal
threshold.

The newly proposed hybrid feature selection method
takes advantage of the small amount of calculation of the

filtering method and the supervised selection of the wrapped
method, which can take into account the time efficiency and
the classification performance for feature selection at the
same time.

2.2.3. SVM Classification. SVM is used as the classifier. The
SVM classification model used in this paper is as follows
[22]:

1
= +C
m1n2ww Zf

wbE

subject to yl(w o(x;) + b) =&, 2

fiZO,iz 1,...,1,”,

where x; € R? represents the i-th feature sample
(feature vector). y; represents the i—th label. &; rep-
resents the i—th slack variable. x; is mapped into a
higher-dimensional space by ¢(x;), and C>0 is the
regularization parameter. Using the primal-dual algo-
rithm to solve (5), the following decision function can
be obtained:

flx)= sgn(i yioiK (x, x;) +b>’ (6)
i=1

where «; is the Lagrange multiplier, K (x, x;) = gb(x)Tqb(x,-)
is the kernel function, and sgn(:) represents a symbolic
function. SVM is implemented with the linear kernel using
the LIBSVM toolbox [22]. The model parameter of SVM
adopts the default setting of the toolbox [22].
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FIGURE 3: The hybrid feature selection method based on F-score and SVM.

3. Results
3.1. Results for Feature Extraction Methods

3.1.1. Comparison Methods and Parameter Settings. In order
to verify the effectiveness of the proposed feature extraction
method, the proposed method is compared with the other
four CSP methods, which are the traditional CSP method
[6, 19], CSP-FB [11], SEBCSP [9], SBLFB [10], and CSP-LBP
[7]. If there is no special instruction, the pair number of
spatial filters for CSP and its improvement methods are set
as follows: m = 3 for data set 1 and data set 3; m = 1 for data
set 2; SVM 1is used for classification. The comparison al-
gorithms and their parameter settings are as follows:

CSP: CSP feature extraction refers to literature [6, 19].

CSP-FB: the parameter setting of the CSP-FB algorithm
refers to literature [11]. F-score-h is used to select features.

SFBCSP: the parameter setting of the SFBCSP algorithm
refers to literature [9]. Seventeen subbands (4-8Hz,
6-10Hz, ..., 36-40 Hz) with a bandwidth of 4 Hz and an
overlap rate of 2Hz are used for band-pass filtering. A
6-order Butterworth filter is used. LASSO is used to select
sparse band features.

SBLFB: the parameter setting of the SBLFB algorithm
refers to literature [10]. The subbands setting is the same as
SEFBCSP. Sparse Bayesian learning is used to select sparse
band features.

CSP-LBP: CSP-LBP feature extraction refers to literature
[7].

CSP-FBLBP: CSP-FBLBP is used for feature extraction,
and F-score-h is used for feature selection.

3.1.2. Experimental Results. Tables 1-3, respectively, show
the classification accuracy and the total average classification
accuracy of all the subjects in the three data sets. The highest
accuracy is marked in bold. In Table 1, the left-hand, right-
hand, foot, and tongue motor imagery tasks in data set 1
were represented by letters L, R, F, and T, respectively. L
versus R means left-hand and right-hand binary classifica-
tion tasks, and the others can be deduced by analogy. Due to
space constraints, only the average classification accuracy of
each binary classification task is given. It can be seen from
Table 1 that CSP-FBLBP achieves the highest average
classification accuracy on data set 1, and the accuracy is
3.24% higher than that of CSP. CSP-LBP and CSP-FB are

better than CSP, but SFBCSP and SBLCSP are lower than
CSP. Similarly, CSP-FBLBP also achieved the highest av-
erage classification accuracy on data sets 2 and 3; see Table 2
and Table 3 for details.

In order to make a more intuitive comparison of the
classification effect achieved by various methods, the average
classification accuracy achieved by different feature ex-
traction methods is shown in Figure 4. It can be seen from
Figure 4 that the classification effect of CSP-FBLBP is sig-
nificantly better than other methods. The total average
classification accuracy of CSP, CSP-FB, SFBCSP, SBLFB,
CSP-LBP, and CSP-FBLBP in all data is 79.40, 80.53, 75.88,
75.63, 80.01, and 82.39, respectively.

Furthermore, the distribution of classification accuracy
achieved by various feature extraction methods is shown in
Figure 5. The red line represents the median value of
classification accuracy. It can be seen that the median value
of CSP-FBLBP is higher than that of other methods. The
maximum value of CSP-FBLBP is 100%, and the minimum
value of CSP-FBLBP is also higher than other methods. In
addition, the accuracy distribution of CSP-FBLBP is rela-
tively compact and close to the top. Therefore, CSP-FBLBP is
superior to other methods.

In order to fully reflect the advantages of CSP-FBLBP,
we further studied the time efficiency of CSP-FBLBP; the
running time of various feature extraction methods is
shown in Table 4. The training sets of the three subjects
(A01, BO1, and SO1) are selected to calculate the feature
extraction time. The feature extraction time of CSP-FB,
SFBCSP, SBLFB, and CSP-FBLBP includes two parts,
namely, CSP spatial filtering time and band-pass filtering
time. For CSP-FB, SFBCSP, SBLFB, and CSP-FBLBP
methods, two types of time are listed in brackets. The first
one represents the spatial filtering time, and the last one
represents the band-pass filtering time. It can be seen from
Table 4 that the feature extraction time of SFBCSP and
SBLEFB is the longest, mainly because their band-pass fil-
tering is relatively time-consuming. It is worth pointing out
that the feature extraction process of SFBCSP and SBCSP
is the same, so the feature extraction time is the same.
Although the feature extraction time of CSP-FBLBP is
longer than that of CSP-LBP and CSP, such time does not
affect the use of CSP-FBLBP in a real-time BCI system. In
addition, we can see that CSP-FBLBP has a greater time
advantage than CSP-FB, SFBCSP, and SBLFB.
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TasLE 1: The classification accuracy achieved by various feature extraction methods (data set 1).

Subject CSP CSP-FB SFBCSP SBLFB CSP-LBP CSP-FBLBP
L versus R 77.62 79.01 76.39 77.01 77.47 77.78
L versus F 82.41 85.88 79.32 80.25 82.33 87.58
L versus T 85.26 85.42 82.87 81.25 85.80 85.65
R versus F 81.02 84.72 76.93 76.62 84.10 86.96
R versus T 82.95 81.79 79.78 79.32 83.34 85.80
F versus T 72.61 72.61 71.30 70.68 74.46 77.55
Mean + Std 80.31 £ 14.25 81.57 £12.56 77.76 £12.06 77.52+£12.03 81.25+12.73 83.55+12.32

TaBLE 2: The classification accuracy achieved by various feature extraction methods (data set 2).

Subject CSP CSP-FB SFBCSP SBLFB CSP-LBP CSP-FBLBP
BO1 80.00 83.75 78.75 77.50 80.00 76.25
B02 60.00 55.00 50.00 42.50 56.25 61.25
B03 43.75 41.25 47.50 46.25 43.75 50.00
B04 97.50 97.50 97.50 98.75 92.50 97.50
B05 87.50 93.75 81.25 80.00 91.25 92.50
B06 81.25 76.25 73.75 75.00 80.00 78.75
B07 81.25 87.50 85.00 82.50 82.50 87.50
B08 92.50 92.50 80.00 76.25 91.25 95.00
B09 80.00 80.00 70.00 70.00 83.75 78.75
Mean + Std 78.19 £16.61 78.61 +£18.86 73.75+16.12 72.08 £ 17.62 77.92+16.84 79.72+15.86

TasLE 3: The classification accuracy achieved by various feature extraction methods (data set 3).

Subject CSP CSP-FB SFBCSP SBLFB CSP-LBP CSP-FBLBP
S01 70.31 68.75 51.56 50.00 67.19 76.56
S02 68.75 72.92 65.63 68.75 64.06 70.83
S03 68.75 84.62 64.58 62.50 72.92 78.46
S04 78.13 75.00 70.31 73.44 79.69 78.13
S05 75.00 78.13 43.75 45.31 73.44 76.56
S06 77.08 64.62 77.08 83.33 75.00 75.38
Mean + Std 73.00 +£4.25 74.01 £7.04 62.15+12.31 63.89 +14.37 72.05+5.61 75.99 £2.77
90 T T T T

Accuracy

datasetl dataset2 dataset3 All data
Dataset
mmm CSp @ SBLFB
mmm CSP-FB @ CSP-LBP
—3 SFBCSP mmm CSP-FBLBP

FIGURE 4: The average classification accuracy achieved by various feature extraction methods.
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TaBLE 4: The feature extraction time of various methods (unit: second).

Subject CSP CSP-FB SFBCSP (SBLFB) CSP-LBP CSP-FBLBP

A0l 0.076 0.912 (0.041, 0.871) 55.380 (0.774, 54.606) 0.052 0.542 (0.040, 0.502)
BO1 0.034 0.264 (0.025, 0.239) 11.769 (0.499, 11.270) 0.027 0.173 (0.024, 0.149)
S01 0.050 0.537 (0.026, 0.511) 54.765 (0.756, 54.009) 0.031 0.326 (0.027, 0.299)

3.2. Results for Feature Selection Methods

3.2.1. Comparison Methods and Parameter Settings. In order
to verify the effectiveness of the proposed feature selection
method, the proposed method was compared with four
other feature selection methods, namely, LASSO [23], ge-
netic algorithm (GA) [24], binary particle swarm optimi-
zation (BPSO) algorithm [25], and binary differential
evolution (BDE) algorithm [26]. CSP-FBLBP is used for
feature extraction, and SVM is used for classification.

LASSO: the alternative parameter set for LASSO is
A €0.1x{1,2,...,30}. The optimal parameter is selected by
10-fold cross-validation. LASSO with regression model is
implemented by the SLEP toolbox [27]. After the LASSO
model is determined, the features with a weight coeflicient
greater than 0 are selected as the optimal feature subset.

GA: the parameter setting of GA refers to literature [24].
The binary encoding is selected as the feature encoding
method. The fitness function is the classification accuracy of
the k-nearest neighbor classifier, where k = 5. The population
size is 10, the number of iterations is used as the termination
condition of the algorithm, and the maximum number of
iterations is 100. The crossover probability is 0.8, and the
mutation probability is 0.01.

BPSO: the implementation of BPSO refers to literature
[25], and the parameter setting is consistent with literature
[25]. The fitness function is the classification accuracy of the
k-nearest neighbor classifier, where k=5. The population
size is 10, the number of iterations is used as the termination
condition of the algorithm, and the maximum number of
iterations is 100. The acceleration coeflicients of the BPSO

are set as ¢; = 2,¢, = 2. The maximum and minimum ve-
locities are 6 and -6, respectively. The maximum and
minimum inertial weights are 0.9 and 0.4, respectively.

BDE: the parameter setting of BDE refers to literature
[26]. The population size is 10, and the number of iterations
is used as the termination condition of the algorithm, and
the maximum number of iterations is set to 100. The
crossover probability is 0.9.

3.2.2. Experimental Results. The average classification ac-
curacy achieved by different feature selection methods is
shown in Figure 6. The total average classification accuracy
of LASSO, BPSO, GA, BDE, and F-score-h in all data is
77.57, 80.62, 80.56, 80.43, and 82.39, respectively. F-score-h
is significantly better than other feature selection methods.
BPSO, GA, and BDE are equally effective, and the effect of
LASSO is relatively poor.

The distribution of classification accuracy achieved by
various feature selection methods is shown in Figure 7. It can
be seen that the median value of F-score-h is higher than that
of other methods. The maximum value of F-score-h is 100%,
and the minimum value of F-score-h is also higher than
other methods. In addition, the overall classification accu-
racy distribution of F-score-h is relatively compact and close
to the top. These results fully prove the superiority of
F-score-h.

The running time of various feature selection methods is
shown in Table 5. The training sets of the three subjects
(A01, BO1, and SO1) are selected to calculate the feature
selection time. The feature selection time of F-score-h is the
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TaBLE 5: The feature selection time of various feature selection methods (unit: second).
Subject LASSO BPSO GA BDE F-score-h
A01 2.865 39.917 74.561 47.257 0.070
BO1 1.879 40.337 77.432 45.693 0.050
S01 2.271 47.711 73.017 46.408 0.037

shortest, which is much lower than other methods. The feature
selection time of BPSO, GA, and BDE methods is relatively
long. In contrast, F-score-h has a huge time advantage.

In summary, F-score-h has great advantages in classi-
fication performance and feature selection time.

3.3. Results Compared with Other Existing Methods. In order
to more fully reflect the advantages of the proposed method,
the classification results of the proposed method are com-
pared with that of the recently published papers. The clas-
sification results of data set 1 (L versus R binary classification
task) are shown in Table 6, and the classification results of
data set 2 are shown in Table 7. In data set 1, the proposed

method is superior to other existing methods. In data set 2,
the proposed method is second only to the NCFS method
[35] and is better than most existing methods. From the
above experimental results, it can be seen that the classifi-
cation effect of the proposed method has certain advantages.

4. Discussion

Comparing the classification results of CSP-FB and CSP as
well as CSP-FBLBP and CSP-LBP can prove that selecting a
subject-specific frequency band can improve the classifica-
tion performance of CSP. The reason why CSP-FB and
CSP-FBLBP obtain better classification results is mainly that
these two methods use the filter bank method to make up for
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TaBLE 6: The classification accuracy achieved by various methods (data set 1: left-hand versus right-hand).
Subject GRU-RNN [28] (2018) IST-TSVM [29] (2019) ICA +PSR+CSP [30] (2020) p-LTCSP [31] (2020)  CSP-FBLBP
A01 84.82 80.14 80 82.6 92.36
A02 65.32 51.55 65.36 70.23 54.17
A03 83.54 95.54 87.14 70.23 93.75
A04 67.67 53.6 67.5 55.15 67.36
A05 64 51.65 55.54 54.36 64.58
A06 70.87 56.83 50.18 60.14 64.58
A07 84.96 56.58 91.79 73.38 77.78
A08 71.95 93.42 84.11 85.29 93.75
A09 68.9 92.66 87.86 74.62 91.67
Mean + Std 73.56 +8.53 70.22+19.74 74.39+15.18 69.56 + 11.10 77.78 +15.53
TaBLE 7: The classification accuracy achieved by various methods (data set 2).
Subject DBN [32] (2018) CapsNet [33] (2019) SGRM [34] (2019) NCES [35] (2020) CSP-FBLBP
BO1 70.38 78.75 77.3 79.25 76.25
B02 70.34 55.71 59.1 63.48 61.25
B03 71.2 55 51.5 56.65 50
B04 71.24 95.93 97 99.28 97.5
BO5 71.21 83.12 87.4 88.67 92.5
BO6 70.52 83.43 72.5 79.96 78.75
B0O7 70.79 75.62 86.7 88.76 87.5
B08 70.49 91.25 84.7 92.66 95
B09 70.32 87.18 85.6 84.95 78.75
Mean + Std 70.72+0.4 78.44 + 14.44 78.0 £ 14.65 81.52+13.72 79.72 +15.86

the frequency information of CSP. To further illustrate the
problem, two subjects (A0l and BO1) have been selected to
show the spatial-frequency feature selection results, where
features are extracted by CSP-FBLBP and selected by
F-score-h. A total of six channels (B0l only has two
channels) of signals are retained after CSP dimensionality
reduction. The feature index 1-10 in Figure 8 corresponds to
the features of the first channel signal filtered by 8-12 Hz, . . .,
26-30 Hz band-pass filter. The other feature indexes can be
deduced by analogy. Figures 8(a) and 8(c) show the feature
weights calculated by Fisher score; Figures 8(b) and 8(d)
show the features selected by F-score-h. From the feature
index, it is possible to calculate which channel and which
frequency band the selected feature belongs to. It can be seen
from Figure 8 that only a few features with high scores are
retained. The channel (spatial information) and frequency
band (frequency information) selected for different subjects
are different; that is, the optimal spatial-frequency features
are subject-specific. CSP-FBLBP jointly considers subject-
specific spatial-frequency features, so a better classification
result is achieved.

In addition, CSP-FBLBP and CSP-FB use the same
method to compensate for the frequency defects of CSP, but
the classification effect of CSP-FBLBP is better than CSP-FB.
This result shows that the feature type extracted after CSP
spatial filtering is also very critical. It can be seen from the
experimental results that the logarithmic band power is
better than the traditional logarithmic variance features.
Based on CSP transformation, it is worth studying to further
improve the feature extraction method.

Compared with the existing spatial-frequency feature
extraction methods (CSP-FB, SFBCSP, and SBLCSP),
CSP-FBLBP has a greater time advantage, and the feature
extraction time is significantly lower than the existing
methods. The feature extraction time of SFBCSP and SBLFB
is the longest, mainly due to the time of band-pass filtering.
SFBCSP and SBLFB decompose the original EEG signals into
17 frequency subbands. The number of subbands and
channels is relatively large, and the amount of calculation is
relatively large, so the feature extraction time is long. After
CSP dimensionality reduction, the number of signal chan-
nels of CSP-FBLBP is greatly reduced, so its feature ex-
traction time is significantly reduced. In addition,
comparing the feature extraction time of CSP-LBP and CSP
as well as CSP-FBLBP and CSP-FB can show that the cal-
culation time and complexity of logarithmic band power
features are lower than a logarithmic variance.

From the comparative analysis of the above experimental
results, it can be concluded that the F-score-h feature se-
lection method has achieved better classification results, and
its feature selection time also has significant advantages.
F-score-h is a hybrid of filter and wrapper feature selection
methods. On the one hand, the filter feature selection
method has a small amount of calculation, so the calculation
time is short; on the other hand, the wrapper feature se-
lection method uses the classification performance of the
classifier as an evaluation standard, its classification per-
formance is generally better. F-score-h takes into account
the advantages of both filter and wrapper methods, so it has
achieved better classification performance.
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In this paper, for the LASSO method, we select the
features whose weight is greater than 0 as the optimal feature
subset. Generally, the larger the feature weight, the more
important the corresponding feature. However, the optimal
feature subset is selected by the LASSO model, which is not
necessarily the best on the SVM classifier [36]. Combined
with LASSO and SVM for feature selection, the classification
effect may be better [37]. The classification effect of BPSO,

GA, and BDE is relatively poor; there are many reasons. First
of all, the genetic algorithm may fall into a local optimal
situation, BPSO may appear a “premature” phenomenon
[25], and BDE may not be able to effectively converge. In
addition, the selection of initialization parameters for BPSO,
GA, and BDE also has a great influence on feature selection.
How to choose more suitable model parameters is a very
critical issue.
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TaBLE 8: The classification accuracy achieved by F-score and F-score-h.
F-score
Subject F-score-h
25% 50% 75% 100%
Dataset 1 83.35+12.23 82.78 £12.65 82.52+12.42 81.74+£13.17 83.55+12.32
Dataset 2 79.31 £15.30 78.06 £17.35 78.47 £16.70 78.89 £ 16.30 79.72 £ 14.95
Dataset 3 7417 £2.73 73.40+£5.58 74.11+£7.07 72.12+£5.66 75.99 +2.53
Dataset all 82.02+£12.49 81.35+13.25 81.26 +12.97 80.53 £13.45 82.39+12.41
To further compare the advantages of F-score-h, we  Data Availability

compared F-score-h with F-score. F-score is a filter method
that uses Fisher scores to rank the features and then select
the top K features for classification. The classification ac-
curacy when a different number of features is selected is
shown in Figure 9. The feature dimension extracted in data
set 2 is only 20, while the feature dimension of data sets 1
and 3 is 60; in order to compare the variation of the average
classification accuracy of the three data sets with the
number of features on the same axis, the number of features
is mapped to a percentage. For example, 25 on the abscissa
of Figure 9 indicates that the selected feature number is
25% of the total number of features. It can be seen from
Figure 9 that the number of features corresponding to the
optimal classification accuracy of each data set is different.
The filtering method selects the same number of features
for all data sets, and its classification effect is not good.
F-score-h selects features through feature weights, so the
selected feature subset is more discriminative and contains
less redundant information. In addition, F-score-h can
select subject-specific features. Therefore, F-score-h is
better than F-score.

The average classification accuracy of each data set when
the F-score takes a different number of features is shown in
Table 8. It can be intuitively observed from Table 8 that the
accuracy of F-score-h is optimal in each data set.

5. Conclusion

The new feature extraction and selection methods have been
proposed in this paper. In the new feature extraction
method, the logarithmic band power is used to replace the
logarithmic variance, and the filter bank method is used to
compensate for the frequency defects of CSP. In the new
feature selection method, the Fisher score is used to sort the
features, and then a series of threshold parameters are set;
SVM combined with cross-validation is used to select the
optimal threshold parameters so as to obtain the optimal
feature subset. The experimental results show that the
proposed feature extraction and feature selection method
has better classification performance than existing methods,
and both feature extraction time and feature selection time
have greater advantages, which can be applied to real-time
BCI systems.

Although the proposed method has achieved good
classification results, the impact of the time window on CSP
is not considered in the feature extraction process, and the
proposed method still has a large room for improvement. In
future work, we will jointly consider efficient time-spatial-
frequency feature extraction and selection methods.

In this study, we used three data sets for experiments. Data
sets 1 and 2 are public BCI competition data sets, which have
been deposited on the BCI competition website. Data set 3 is
self-collected by our laboratory and is not publicly available
but can be obtained from the corresponding author upon
reasonable request.
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