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In an open environment, the demands of users are diverse and dynamic because users can participate in product design from
beginning to end. Owing to this, the disorderly and unplanned participation of users will greatly increase the complexity of multi-
attribute decision-making (MADM) in the product design process. In order to ensure the smooth development of the open design
process, the decision support model and method need to repeatedly provide decision makers (DMs) with necessary decision
support information in a relatively short period of time, which can realize the evaluation of the scheme and improve the utilization
e�ciency of community resources. However, the process of eliciting preference information is complex, exhausting, ine�cient,
and time-consuming in existing methods, which will result in a poor decision-making. With the purpose of optimizing the
eliciting process in MADM, a rule-based decision support method is proposed in this paper, where the process of eliciting
preference information and decision-making are synchronized and guided by pre-extracted decision rules. �e rules are deduced
from comparison relations on attributes and their outcomes through the combination of variable precision rough set approach
(VPRS) and stochastic multi-objective acceptability analysis (SMAA). With the concept of attribute reduction and approximation
accuracy in rough set theory, the extracted rules could eliminate redundant attributes and assign the relative priority of preference
information. Based on the extracted rules, the multi-attribute decision-making process could be carried out step by step in an
orderly manner. In each step, DMs only need to provide partial preference information by non-quantitative statements according
to extracted rules. Once the decision result is reliable enough, the eliciting and decision-making process can be terminated
promptly. In order to validate the proposed approach, experiments of decision rule extraction are implemented, and the results
show that the proposed approach is e�ective both in the weak rule extraction and the strong rule extraction.

1. Introduction

Multi-attribute decision-making (MADM), also referred to
as multi-objective decision-making, is an important com-
ponent of modern decision science [1]. It refers to the
problem of evaluating and prioritizing a �nite set of alter-
natives based on a collection of attributes. �e theory and
methods of MADM have been extensively applied to the
�elds of society, economy, management, military, engi-
neering design, and so on. Generally, the process of solving
MADM problems can be divided into two steps. One step is
to collect decision information, thus determining attribute

values and weights. �e other step is to synthesize the
collected decision information through a proper aggregation
operator (e.g., the simple averaging operator and the ordered
weighted averaging operator). �e ranking of alternatives
can be obtained according to their synthesized values.

�e complexity of MADM is mainly due to the di�culty
of assessing the relative importance of di�erent attributes. In
MADM problems, attributes are assigned di�erent weight
values to indicate their relative importance. Depending on
the information provided, the methods of determining at-
tribute weights are divided into subjective methods and
objective methods [2]. In subjective methods, attribute
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weights are derived from value judgments about attributes
given by decision makers (DMs), including eigenvector-
based method [3–6], weighted averaging or least square
method [7–10], AHP or ANP-based method [11, 12], and
D-TOPSIS method [13]. And the objective methods deter-
mine attribute weights according to objective information
(e.g., the information in the decision matrix), such as
principal component analysis method [14], entropy method
[15, 16], and multi-objective programming model-based
method [17, 18]. Either way, the process of determining
attribute weights is not easy. Especially in subjective
methods, attribute weights reflect the group preference of
DMs. (erefore, the first thing to address is to collect and
aggregate DMs’ preference information through proper
means. In the study of most subjective methods, the process
of eliciting preference information highly depends on fre-
quent and deep involvement of DMs. For example, the
Delphi method uses multiple rounds of surveys to collect
and aggregate preference information through a series of
data collection and analysis techniques interspersed with
feedback [19]. In each round, DMs (experts) need to do a
series of questionnaires focusing on problems, opportuni-
ties, solutions, or forecasts until an agreement is reached. In
AHP and ANP-based methods, a complete pairwise com-
parison matrix is the prerequisite. Many research studies
point out that it is hard to ensure the consistency of the
pairwise comparison matrix, especially when the number of
attributes is large [20, 21]. In addition, for various reasons,
the comparison relation between attributes could not be
given by DMs precisely and completely. Predictably, the
process of eliciting preference information based on these
methods would be very time-consuming and exhausting
when the number of attributes and DMs is large. In order to
the uncertainty and fuzziness of MADM, Ning et al. [22]
proposed a novel probabilistic dual hesitant fuzzy-enabled
MADM technique. Wang et al. [23] proposed a multi-ob-
jective particle swarm optimization-enabled approach to
optimize park-level integrated energy systems with multi-
attribute decision analysis frameworks. Li et al. [24] pro-
posed a data-driven approach to solve the problem of
personalized individual semantics under the background of
MADM, and the experiment showed that the proposed
approach can obtain personalized numerical scales of lin-
guistic terms for a decision maker. In order to solve the
problem of the AC transmission systems appropriate
placement, Chinda et al. [25] proposed a novel MADM
approach combined with a particle mobility honey bee al-
gorithm, which can maximize efficiency of the energy
planning. Rahman et al. [26] proposed a MADM approach
combined with AND OR operations, which can effectively
deal with the uncertainties of possibility neutrosophic
hypersoft set. Zhang et al. [27] proposed a bisimulation-
based generalized fuzzy variable precision rough set model
to solve the problem of the decision-making, which can
effectively tackle complicated problems including the at-
tribute and the relational data. Ye et al. [28] proposed a fuzzy
rough sets-enabled decision-making approach, which can
effectively tackle the uncertainty and imprecision problem in
MADM. Jiang et al. [29] proposed a rough sets-enabled risk

decision-making approach, which not only consider the
decision risk but also offer instructions to select the ap-
propriate semantic explanation. Sarwar [30] proposed a
rough D-TOPSIS method to manipulate the subjectiveness
and vagueness of MADM, which unites the competency to
analyze changeable and ambiguous information without
additional assumptions. Fei et al. [31] proposed a rough
D-TOPSIS method to solve the problem of the human re-
sources selection, and an effectual method was applied by
authors to describe the changeable data and information
called D-numbers. Lin et al. [32] proposed a rough
ELECTRE-II method to deal with the selection problem of
the edge nodes, and an entropy measure is devised to
measure the uncertainty degree. Akram et al. [33] proposed a
rough ELECTRE-II method with the specific structure,
through which the diverse opinions of decision experts can
be well handled. Kuncova et al. [34] proposed a fuzzy rough
PROMETHEE method which can evaluate the order of 14
regions of the Czech Republic in regard to economic indices.
Liu et al. [35] proposed a fuzzy rough PROMETHEEmethod
to accomplish the process for optimal alternative selection.

However, existing methods prefer to solve MADM
problems through a “top-down” way, in which organizers
collect preference information based on the essential
characteristics of the problem. For example, in plant location
selection (PLS) problem, alternatives are usually evaluated
based on environmental index, economic index, social in-
dex, and geological index [36, 37]. However, in some cases,
alternatives may be similar in some attributes. (e relative
importance of such attributes, which are called redundant
attributes, have no effect on the final ranking result. (e
existing method cannot eliminate redundant attributes from
the perspective of the attribute value. (erefore, it is nec-
essary to clarify which attribute should be involved and
which weight should be given priority.

In order to fill in the above research gaps, a rule-based
decision support method for MADM (R-MADM) is pro-
posed in this paper to help optimize the process of eliciting
preference information in MADM. (e contribution and
motivation of this paper is summarized as follows:

(1) In R-MADM, the process of eliciting preference
information and the process of decision-making are
synchronized and guided by pre-extracted decision
rules. In contrast to existing methods, R-MADM is a
“bottom-up” method.(eMADM problem could be
solved through two stages based on the proposed
method, namely, decision rule extraction and deci-
sion rule application.

(2) In the first stage, outcomes (ranking results) cor-
responding to different comparison relations are
obtained using stochastic multi-objective accept-
ability analysis (SMAA). Decision rules are then
extracted based on SMAA analysis results through
the variable precision rough set (VPRS) approach.

(3) In the second stage, according to the decision rules,
the preference eliciting process and the decision-
making process could be carried out step by step.
DMs only need to provide partial preference
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information according to extracted rules in each
step. Based on the SMAA analysis result, the mea-
surement of the reliability of decision-making is
given. Once the decision result is reliable enough, the
process of eliciting preference information and the
process of decision-making can be terminated.
(erefore, the efficiency of MADM can be improved.

(e remainder of this paper is organized as follows.
Relevant theoretical foundations about VPRS and SMAA are
introduced in Section 2. In Section 3, the proposed
R-MADM method is illustrated in detail. A numerical ex-
ample is used to illustrate the implementation of the pro-
posed method in Section 4. Section 5 provides a conclusion
and discusses the limitations of the proposed method as well
as research directions for in-depth studies in the future.

2. Theoretical Foundations

2.1. Rough Set %eory. Rough set theory (RST) proposed by
Pawlak provides a useful tool for extracting knowledge
(decision rules) from inexact, uncertain, or vague infor-
mation. RST has been widely used in the area of machine
learning [38], knowledge management [39], expert system
[40], decision support system [41], pattern recognition [42],
yield prediction [43], and so on. (e basic idea of RST is
using available information to perform complete approxi-
mation (classification) of the given objects without any
preliminary assumptions. In RST, the approximation of an
object is related to its attribute information, and an infor-
mation system is often expressed as a quadruple as

S � (U, A, V, f), (1)

where U is referred to as the universe consisting of a finite set
of objects, A is a non-empty and finite set of attributes, V is
the union of attribute domains, i.e., V � ∪Va for any a ∈ A,
and f is an information function which associates every
object in U with a unique attribute value.

Generally, the information system (IS) in RST is rep-
resented in the form of a decision table (knowledge table), in
which rows and columns correspond to objects and their
attributes, respectively.(e attribute set A is divided into the
condition attribute set C and the decision attribute set D, i.e.,
A � C∪D. (e value of the decision attribute in D is related
to the value of the condition attribute in C. (e objects in U

can be partitioned into a group of disjoint subsets based on
the indiscernibility relation RP, and it is defined as

RP � (x, y) ∈ U × U: f(x, a) � f(y, a)∀a ∈ P, P⊆A . (2)

Each indiscernibility relation partitions the universe U

into a family of disjoint subsets U/RP called equivalent
classes, which is expressed as

U/RP � [x]P: x ∈ U . (3)

Given X⊆U, X can be approximated by its lower ap-
proximation RP (X) and upper approximation RP(X). (e
lower approximation RP (X) is the union of equivalent
classes that belong to the subset X with certainty, i.e.,

RP (X) � x ∈ U: [x]P⊆X  � ∪ [x]P: [x]P⊆X . (4)

And the upper approximation RP(X) is the union of
equivalent classes that partly belong to the subset X, i.e.,

RP(X) � x ∈ U: [x]P ∩X≠φ  � ∪ [x]P: [x]P ∩X≠φ .

(5)

(e pair (RP (X), RP(X)) is called the rough set of X

with respect to P. Based on the lower and upper approxi-
mation, the universe U could be partitioned into three
regions.

(1) POSP(X) is referred to as the positive region of X

with respect to P, and it is the lower approximation
of X, i.e., POSP(X) � RP (X)

(2) BNDP(X) is referred to as the boundary region of X

with respect to P, and it is the subtraction of the
upper approximation and the lower approximation
of X, i.e., BNDP(X) � RP(X) − RP (X)

(3) NEGP(X) is referred to as the negative region of X
with respect to P, and it is the subtraction of the
universe and the upper approximation of X, i.e.,
NEGP(X) � U − RP(X)

2.1.1. Variable Precision Rough Set Approach. (e classical
rough set approach only can be used to model fully correct
classification problem. (is is primarily due to the fact that
the classical rough set approach is based on a deterministic
approach which deliberately ignores the available probabi-
listic information in its formalism. (e classification with a
controlled misclassification error, which is referred to as
partial classification, is outside the realm of this approach.
(is limitation severely reduces the applicability of RST to
problems which are more probabilistic than deterministic in
nature. To solve this problem, the variable-precision rough
set (VPRS) approach is proposed by taking partial classifi-
cation into account. In VPRS, the standard set inclusion
relation used in the classical rough set approach is replaced
by the majority inclusion relation. In the majority inclusion
relation, the classification error of classifying objects of a set
X into another set Y is measured by

c(X, Y) � 1 −
car d(X∩Y)

car d(X)
if car d(X)> 0,

c(X, Y) � 0 if car d(X) � 0,

(6)

where car d(X) denotes set cardinality. For a given ad-
missible classification error (0≤ β≤ 0.5), the majority in-
clusion relation in VPRS can be expressed as

Y⊇βX if an d only if c(X, Y)≤ β. (7)

It can be observed that the standard set inclusion relation
is a special case of the majority inclusion relation when
β � 0. Based on the majority inclusion relation, Ziarko gives
the definitions of β-lower and β-upper approximations of a
set X with respect to P⊆A in VPRS, which are defined as
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RP

β
(X) � ∪ [x]P: c [x]P, X( ≤ β ,

RP

β
� ∪ [x]P: c [x]P, X( < 1 − β .

(8)

In VPRS, the β-lower approximation of X constitutes its
β-positive region POSβP(X), i.e.,

POSβP(X) � RP

β
(X). (9)

And the β-boundary region is given by

BNRβ
P(X) � ∪ [x]P: 1 − β> c [x]P, X( > β . (10)

And the β -negative region of X is the complement of its
β-upper approximation, i.e.,

NEGβ
P(X) � ∪ [x]P: c [x]P, X( ≥ 1 − β . (11)

2.1.2. Dominance-Based Variable Precision Rough Set
Approach. In both the classical rough set approach and
VPRS approach, attribute information is assumed to be
nominal, which cannot be arranged in any particular order.
However, in some real-life applications, the information has
obvious ordinal characteristic where better condition at-
tribute values usually bring out better decision attribute
values. (e dominance-based variable precision rough set
(DB-VPRS) approach improves the VPRS approach by
replacing the indiscernibility relation with dominance re-
lation, thus taking the preference-orders into consideration
[44]. (e dominance relation with respect to attribute p is
represented as Dp, which is also denoted by ≻p, and x≻py

means that x dominates (is better than) y in terms of at-
tribute p. For the benefit index, x≻py means that the at-
tribute value of x is greater than the attribute value of y with
respect to attribute p, i.e.,

x≻py⇒f(x, p)≻pf(y, p)⇒f(x, p)>f(y, p). (12)

And for the cost index, x≻py means that the attribute
value of x is smaller than the attribute value of y with respect
to attribute p, i.e.,

x≻py⇒f(x, p)≻pf(y, p)⇒f(x, p)<f(y, p). (13)

Based on the dominance relation, the dominance set of x

is defined by

D
+
P(x) � y ∈ U|yDPx 

� y ∈ U|f(y, d)≻pf(x, d),∀p ∈ P, P⊆A .
(14)

And the dominated set of x is defined by

D
−
P(x) � y ∈ U|xDPy  �

y ∈ U|f(x, d)≻pf(y, d),

∀p ∈ P, P⊆A
 

(15)

Let Clt, t ∈ 1, 2, · · · , n{ } be decision classes. Each decision
class Clt is defined as Clt � x ∈ U: f(x, d) � vdt

,

d ∈ D, D⊆A}, where vdt
is the decision attribute value. It is

assumed that the total order of decision attribute values is
vd1
≺dvd2
≺d · · ·≺dvdn

; and then, the order relation of decision
classes can be written as Cl1≺Cl2≺ · · ·≺Cln. (e upward and
downward union of decision classes are defined as

Cl
≽
T � ∪ t≥TClt · Cl

≼
T � ∪ t≤TClt

t, T ∈ 1, 2, · · · , n{ },
(16)

where if x ∈ Cl≽T then f(x, d)≻dvdT
; and if x ∈ Cl≼T then

f(x, d)≺dvdT
.

For a given confidence level l ∈ (0.5, 1] in DB-VPRS,
the lower and upper approximation of Cl≽T and Cl≼T are
defined as

R
l
P Cl
≽
t  � ∪ x ∈ Cl

≽
t :

D
+
P(x)∩Cl

≽
t




D
+
P(x)



≥ l , (17)

RP

l
Cl
≽
t  � U − R

l
P U − Cl

≽
t  � U − R�

l
P Cl
≼
t−1 

� Cl
≽
t ∪ ∪

x ∈ Cl
≼
t :

D
−
P(x)∩Cl

≽
t




D
−
P(x)



> 1 − l

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,
(18)

R
l
P Cl
≼
t  � ∪ x ∈ Cl

≼
t :

D
−
P(x)∩Cl

≼
t




D
−
P(x)



≥ l , (19)

RP

l
Cl
≼
t  � U − R�

j
P U − Cl

≼
t  � U − R�

l
P Cl
≽
t+1 

� Cl
≼
t ∪ ∪

x ∈ Cl
≼
t :

D
+
P(x)∩Cl

≼
t




D
+
P(x)



> 1 − l

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.
(20)

In DB-VPRS, the positive region of Cl≽T with respect to
P⊆A is defined b.

Similarly, the positive region of Cl≼T with respect to P⊆A
is defined as

POSl
P Cl
≽
t  �

x ∈ U:

D
−
P(x)∩Cl

≽
t




D
−
P(x)∩Cl

≽
t


 + D

+
P(x)∩Cl

≼
t−1



≥ l

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(21)

Based on its duality characteristic, the negative regions of
Cl≽T and Cl≼T are defined by

NEGl
P Cl
≽
t  � U − POSl

P U − Cl
≽
t 

� U − POSl
P Cl
≽
t−1 

�

x ∈ U:

D
−
P(x)∩Cl

≽
t




D
−
P(x)∩Cl

≽
t


 + D

+
P(x)∩Cl

≼
t−1



≥ 1 − l

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(22)
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(e boundary regions of Cl≽T and Cl≼T can be obtained by

BNRl
P Cl
≽
t  � U − NEGl

P Cl
≽
t  − POSl

P Cl
≽
t . (23)

2.1.3. Attribute Reduction and Decision Rule Extraction in
VPRS. Attribute reduction for the analysis of important
attributes and decision rule extraction for the approximation
of the decision attribute by means of the condition attribute
are major topics in RST.

(1) Attribute dependency and approximation quality.
For a given information system S � (U, A, V, f), let
x, y ∈ U, P⊆C, B ∈ D, C∪D � A, and the equivalent
classes [x]P � X1, X2, · · · , Xm  and [y]B � Y1,

Y2, · · · , Yn} are assumed to be known. (en, for a
given confidence level μ, the dependency of B on P is
measured by

0≤ c
μ
P(B) � 

n

i�1
card RP

μ
Yi(  /card(U)≤ 1. (24)

If c
μ
P(B) � 1, the partition [y]B is completely de-

pendent on P; If 0 < c
μ
P(B)< 1, [y]B is partly de-

pendent on P; If c
μ
P(B) � 0, [y]B is completely

independent on P.
(2) Relative importance of attribute.

According to the definition given by (28), the relative
importance of an attribute p ∈ P can be measured by

RI(p, B) � c
μ
P(B) − c

μ
P− p{ }

(B). (25)

(e bigger the RI(p, B) is, the more important is the
attribute. If RI(p, B) � 0, the attribute p is regarded
as a redundant attribute.

(3) μ-attribute reduct.
For a given confidence level μ, an μ-attribute reduct
is the minimal subset REDμ(P, B) of condition at-
tributes in P preserving the dependency level with
the decision attribute B, REDμ(P, B) satisfies the
following two criteria.

(a) c
μ
P(B) � c

μ
REDμ(P,B)(B);

(b) No attributes can be further eliminated from
REDμ(P, B) without affecting the requirement (a).
(ere are usually more than one rough set reduct
REDμ(P, B). (e common part of available rough set
reduct is called the core of rough set, i.e.,

Core(P, B) � ∩ REDμ
(P, B) . (26)

(4) Decision rule extraction.

(e approximation relation between condition attributes
in P and the decision attribute B could be translated into a
decision rule in the form of

∧(p, v)⟶ μ∨(B, w),

where p ∈ P⊆C, B ∈ D, v ∈ Vp, w ∈ VB.
(27)

2.2. Stochastic Multi-Objective Acceptability Analysis.
Stochastic multi-objective acceptability analysis (SMAA) is a
multi-criteria decision support technique for decision-
making problems with uncertainty [45, 46]. In SMAA, in-
accurate or uncertain input data are represented in the form
of probability distribution. It is usually assumed that all
feasible combinations of criteria weights and criteria mea-
surements are equally likely to be selected. In SMAA, al-
ternatives are evaluated according to statistically descriptive
measurements which are calculated by inverse analysis of
uncertainty space.

It is supposed that a set of m alternatives with n attributes
are under evaluation. (e value of attribute j for alterative i

is represented by gij. (e weight of attribute j is represented
by wj. (e function in (32) is usually used to calculate the
utility value of an alternative, and it is expressed by a convex
combination of the attribute weight vector w � (w1, · · · , wn)

and the attribute value vector gi � (gi1, · · · , gim) in feasible
weight space (W � w ∈ Rn: wj ≥ 0∧ wj � 1 ). Here,
attribute values are mapped into the range [0, 1] by a partial
utility function u∗(b).

ui gi,w(  � 
n

j�1
wju∗ gij ,w ∈W. (28)

If attribute weights are available, a multi-attribute de-
cision-making problem can be addressed by calculating
utility values and choosing the alternative with the largest
overall utility. However, for various reasons, it is often
difficult to obtain precise measurements for some attributes.
(us, in SMAA, gi is replaced with a stochastic variable ci.
(e joint probability density functions for attribute values
and attribute weights are represented by fc(ξ) and fW(w),
respectively. When attribute weights and values are un-
certain, utility value distributions of alternatives can be
obtained by computing all possible combinations of un-
certain parameters, and it is usually realized through Monte
Carlo simulation technique in SMAA.

(e core idea of SMAA is to classify alternatives to those
which should be taken into consideration and to those which
should be eliminated. (e standard SMAA method only
considers the information about the alternative with the first
rank lacking holistic evaluation on all alternatives. SMAA-2
extends the discussion on all ranking results and gives
several descriptive measures: rank acceptability index and
three best rank-type measures.

2.2.1. Rank Acceptability Index. In SMAA-2, the ranking
result for alternative i could be calculated by

rank(i, ξ,w) � 1 + 
k≠ i

ρ ui ξi,w( ≥ uk ξk,w( ( , (29)

where rank(i, ξ,w) ∈ 1, · · · , m{ }, ρ(true) � 1, and
ρ(false) � 0. For a given order r, its favorable ranking
weights Wr

i is defined by

Wr
i (ξ) � w ∈W: rank(i, ξ,w) � r{ }. (30)
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Ranking acceptability index br
i describes the share of

combinations of uncertain parameter which could make
alternative i be ranked rth. It is computed as a multidi-
mensional integral over criteria measurements and favorable
weight space as

b
r
i � 

ξ∈γ
fγ(ξ)

w∈Wr
i
(ξ)

fW(w)dw dξ. (31)

Rank acceptability index ranges from zero to one. Al-
ternatives with zero-value ranking acceptability index are
never ranked at the certain order, and alternatives with one-
value ranking acceptability index could obtain the certain
rank with any feasible weights combinations.

2.2.2. K-Best Rank Indices. K-best rank indices in SMAA-2
include k-best rank (k-br) acceptability K bk

i , k-br central
weight vector wk

i , and k-br confidence factor pk
i , which are

defined as

K b
k
i � 

k

r�1
b

r
i ,

wk
i � 

ξ∈γ
fγ(ξ) 

k

r�1

w∈Wi(ξ)

fW(w)w dw dξ,

p
k
i � 

ξ∈γ: rank(i,ξ,w)≤ k
fγ(ξ)dξ.

(32)

K-best rank indices extended the meaning of the de-
scriptive measures in standard SMAA method by taking
more alternatives into consideration. (e k-br acceptability
K bk

i is used as a performance indicator of the alternatives
ranked in top k. It can help aggregate some alternatives with
a good performance into a small group and to eliminate
others. (e k-br weight vector describes preference infor-
mation of the k-best alternatives. And the k-br confidence
factor gives the credibility for the alternatives to be judged
into the k-best ones with k-br central weight vector.

3. A Rule-Based Decision Support Method for
Multi-Attribute Decision-Making

In the majority of extant MADM methods, the problem
solving process often contains two separate sub-processes:
the process of eliciting preference information from DMs
and the process of decision-making. Generally, the process
of decision-making cannot start if the process of eliciting
preference information is not complete. In addition, during
the process of eliciting preference information, DMs usually
cannot receive feedback of the consequence of their choices.
(is affects the efficiency and reliability of decision-making.
In this paper, a rule-based decision support method is
proposed to help optimize the problem solving process in
MADM, which is referred to as R-MADM. (e proposed
method overcomes the defects mentioned above, in which
the process of eliciting preference information and the
process of decision-making are synchronized (see Figure 1).
Once the decision result is reliable, the process of eliciting
preference information and the decision-making process

could be terminated promptly. In R-MADM, a MADM
problem is solved through two stages, namely, decision rule
extraction and decision rule application.

3.1. Decision Rule Extraction. As shown in Figure 1, the aim
of the decision rule extraction stage is to provide rules for
subsequent decision-making process. (e decision rule
extraction stage is implemented through two steps. (e first
step is to construct a preference information system (IS)
which can reflect the relationship between the preference
structure of DM and the corresponding alternative ranking
result. (e second step is to extract decision rules from the
constructed IS using variable precision rough set (VPRS)
approach.

3.1.1. Construct Preference Information. In this paper, the
preference structure of decision maker (DM) is roughly
represented by a combination of pairwise comparison re-
lations on attributes called preference combination. If there
are l kinds of pairwise comparison relations between two
attributes, then for a given MADM problem consisting of m
alternatives and n attributes, there will be a total of ln(n− 1)/2

possible combinations. Let PWij represent the pairwise
comparison relation of attribute i and attribute j, then each
preference combination can be represented by a tuple as
∪ PWij  satisfying card(∪ PWij ) � n(n − 1)/2. Here,
three kinds of pairwise comparison relations are defined as
follows:

(a) If PWij � 1, it means that attribute i is at least as
important as attribute j, i.e., wi ≥wj, i, j ∈ 1, 2, · · · ,{

n}, i≠ j

(b) If PWij � −1, it means that attribute i is at most as
important as attribute j, i.e, wi ≤wj, i, j ∈ 1, 2, · · · ,{

n}, i≠ j

(c) If PWij � 0, it means that the pairwise comparison
relation on attribute i and attribute j is not clear,
which is expressed as wi · wj.

In addition, the defined relations should satisfy the
following properties.

∀i, j ∈ 1, 2, · · · , n{ }, i≠ j, such thatPWij � PWji. (33)

(2) (e defined pairwise comparison relations are re-
flexive and transitive, i.e.,

∀i, j, k ∈ 1, 2, · · · , n{ }, i≠ j≠ k,

PWij � 1, PWjk � 1, PWik � 1.
(34)

Consequently, for a given MADM problem consisting
of m alternatives and n attributes, there are at most
3n(n− 1)/2 preference combinations. Take n � 3 as an
example, in R-MADM, all preference combinations
could be depicted by a multi-level decision tree (see
Figure 2). Each branch is a possible preference combi-
nation consisting of pairwise comparison relations on
attributes. Each preference combination is represented
by Xi, i ∈ 1, 2, · · · 3n(n− 1)/2  at the end of the branch.
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Nevertheless, not all combinations are rational in practice.
Some preference combinations contain implicit prefer-
ence information in which one pairwise comparison

relations on attributes can be derived from others
according to property (2). �is kind of preference com-
bination is marked with a green box in Figure 2. Some

MADM problem
consisting of m alternatives and n attributes

Decision Rule Extraction Decision Rule Application

Generate 3n(n-1)/2 groups of preference
combinations

Verify the rationality of all preference
combinations

Translate all feasible preference
combinations into inequality constrains

Calculate rank acceptability indices for m
alternative under constrains using SMAA

Construct an IS based on the calculated rank
acceptability indices and corresponding

preference combinations

Extract weak rules from the constructed IS
using VPRS and assess their relative

importance based on approximation accuracy

Extract strong rules from the constructed IS
using DB-VPRS Terminate decision-making process and

preference eliciting process

N

Y

NDecision result
is robust ?

Update decision result based on the weak
rule accepted by all DMs

Update decision result based on the strong
rule accepted by all DMs

Y

N
Reach consensus?

Elicit preference information from DMs
according to strong rule set

Reach consensus?

Elicit preference information from DMs
according to weak rule set

MADM problem
consisting of m alternatives and n attributes

N

Y

Weak
Rule Set

Strong
Rule Set

Update
decision rules

Figure 1: �e rule-based decision-making process proposed by this paper.

w1 w1 ≥ w2

w1 ≥ w3

w2 ≥ w3

w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3

w2 ≥ w3 w2 ≥ w3 w2 ≥ w3 w2 ≥ w3 w2 ≥ w3w2 ≥ w3 w2 ≥ w3 w2 ≥ w3

w1 ≥ w3 w1 ≥ w3

w1 ≤ w2

w1 ≤ w3 w1 ≤ w3 w1 ≤ w3

w2.

w2 w3. w2 w3. w2 w3. w2 w3. w2 w3. w2 w3. w2 w3. w2 w3. w2 w3.

w1 w3. w1 w3.w1 w3

X1

X2

X3

X4 X7 X10 X13 X16 X19 X22 X25

X26X23X20X17X14X11X8X5

X6 X9 X12 X15 X18 X21 X24 X27

.

Pairwise Comparison Relations on Atrributes

Implicit Preference Information

Inconsistent Preference Information

Figure 2: Preference combinations in the form of a decision tree (the number of attributes is three).
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preference combinations contain inconsistent preference
information in which pairwise comparison relations on
attributes conflict with each other, and they are marked
with red boxes in Figure 2. (e preference combinations
containing conflict preference information should be
filtered.

In fact, each preference combination gives a group of no-
conflicting inequality constrains of attribute weights. Under
different constrain combinations, ranking results of alternatives
can be obtained using stochastic multi-objective acceptability
analysis (SMAA). Based on SMAA analysis results and cor-
responding preference combinations, an information system
(IS) containing preference information is constructed, which is
represented in the form of a decision table (see Table 1). In
Table 1, pairwise comparison relations contained in preference
combinations are condition attributes, while ranking results
reflected by SMAA indices are decision attributes.

3.1.2. Extract Decision Rules from the Constructed Infor-
mation System. Due to the stochastic nature of SMAA in-
dices, the information system represented by Table 1
contains a great number of incomplete information. In
this method, the variable precision rough set (VPRS) ap-
proach is used to extract decision rules from such incom-
plete information system.

Considering that, in MADM problem, both attribute
weights and values are usually uncertain. For a givenMADM
problem consisting of m alternatives and n attributes, let U

be the set of possible combinations of attribute weights and
values, each combination can be represented by a tuple AWi,
and it expressed as

AWi �

A1 c
i
11, c

i
12, · · · , c

i
1n , · · · ,

Am c
i
m1, c

i
m2, · · · , c

i
mn ,

W w
i
1, w

i
2, · · · , w

i
n 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (35)

Here, Aj(ci
j1, ci

j2, · · · , ci
jn) is a possible combination of n

attribute values for alternative j, j ∈ 1, 2, · · · , m{ }, W(wi
1,

wi
2, · · · , wi

n) is a possible combination of n attribute weights
satisfying 

n
j�1 wi

j � 1. Each combination corresponds to a
ranking result ofm alternatives. Without loss of generality, the
simple additive weighting method is used for reasoning the
ranking result in this paper. In the proposed method, the
ranking result is obtained by evaluating the overall utility
values of alternatives. And, the overall utility value Uj for
alternative j is a convex combination of Aj(ci

j1, ci
j2, · · · , ci

jn)

and W(wi
1, wi

2, · · · , wi
n), and it is expressed as

Uj � 
n

l�1
w

i
l · c

i
jl. (36)

(1) Weak Rule Extraction Based on the Combination of VPRS
and SMAA. Let all possible combinations of attribute values
and weights be the universe U, pairwise comparison rela-
tions contained in preference combinations be the condition
attribute set C, and ranking results reflected by SMAA in-
dices be the decision attribute set D. (e indiscernibility

relation with respect to condition attribute set P⊆C is de-
fined by

RP �

AWx, AWy  ∈ U × U:

PWij AWx(  � PWij AWy ,

∀PWij ∈ P⊆C

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (37)

(e objects in U satisfying same pairwise comparison
relations are indiscernible and can form an equivalent class
with respect to P⊆C as

U/RP � [AW]P: AW ∈ U . (38)

In this method, for a MADM problem consisting of m
alternatives, there are m decision attributes defined. Each
decision attribute Dl ∈ D, l ∈ 1, 2, · · · , m{ } describes whether
alternative l could be ranked in top k according to the at-
tribute values and weights given by AW ∈ U. Consequently,
the indiscernibility relation with respect to a decision at-
tribute Dl ∈ D is defined as

RDl
�

AWx,AWy  ∈U × U:



m

l′�1,l′ ≠ l

B 
n

i�1
w

x
i · c

x
l′i − 

n

i�1
w

x
i · c

x
li>0⎛⎝ ⎞⎠⎛⎝ ⎞⎠

<k∧ 
m

l′�1,l′ ≠m

B 
n

i�1
w

y

i · c
y

l′i − 
n

i�1
v>0⎛⎝ ⎞⎠⎛⎝ ⎞⎠<k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(39)

whereB(·) is a Boolean variable, if the bracketed expression
is true then B(·) � 1, otherwise B(·) � 0.

Let X⊆U/RPand Y⊆U/RDl
, based on the majority rela-

tion in VPRS, the classification error of classifying objects in
X into Y is measured by c(X, Y) � 1 − card(X∩Y)/
car d(X). Here, card(X) is the number of objects in U

satisfying same pairwise comparison relations defined by X.
It can be calculated by

card(X) � 
B

b�1


n

j�1,i≠j


n

i�1,i≠j
B PWij AWb(  � pij(X)  ⎛⎝ ⎞⎠,

(40)

where B � card(U), pij ∈ −1, 0, 1{ } is the value of pairwise
comparison relation between attribute i and attribute j

given by X.

Table 1: An example of the decision table constructed based on
SMAA analysis results and preference combinations (the number
of attributes is three).

Preference combinations
Pairwise comparison

relations
K-br

acceptability
PW12 PW13 PW23 K bk

1 K bk
2 · · ·

X1 0 0 0 · · · · · · · · ·

X2 0 0 1 · · · · · · · · ·

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
X26 · · · · · · · · · · · · · · · · · ·

X27 · · · · · · · · · · · · · · · · · ·
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Similarly, card(X∩Y) is the number of objects in U

which simultaneously satisfy two conditions: (1) (ey satisfy
same pairwise comparison relations defined by X; (2)

Alternative l could be ranked in top k according to the
attribute values and weights given by AW ∈ X. It can be
calculated by

card(X∩Y) � 
B

b�1



n

j�1,i≠j


n

i�1,i≠ j

B PWij AWb(  � pij(X)  ⎛⎝ ⎞⎠

·B 
m

l′�1,l′ ≠ l

B 
n

i�1
w

b
i · c

b
l′i − 

n

i�1
w

b
i · c

b
li > 0⎛⎝ ⎞⎠⎛⎝ ⎞⎠< k⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

(e expression card(X∩Y)/card(X) has the same
meaning with the k-best rank (k-br) acceptability K bk

i in
SMAA, i.e., c(X, Y) � 1 − bk

l . Consequently, for a given
admissible classification error (0≤ β≤ 0.5), the majority
inclusion relation in VPRS can also be expressed as

Y⊇βX if and only if 1 − b
k
l ≤ β. (42)

In this way, the β-lower and β-upper approximation of
the equivalent class Y⊆U/RDl

with respect to P⊆C can be
expressed as

RP

β
(Y) � ∪ X: 1 − b

k
l ≤ β , (43)

RP

β
(Y) � ∪ X: 1 − b

k
l ≥ 1 − β  (44)

According to (29), the relative importance of the pair-
wise relation for a decision attribute Dl can be measured by

RI PWij, Dl  � b
k
l (P) − b

k
l P − PWij 



, (45)

where bk
l (P) is the k-best rank acceptability under the

constrain provided by P, bk
m( P − PWij) is the k-best rank

acceptability under the constrain provided by P − PWij.
(en, the effect of pairwise comparison relations on ranking
result is measured by

E PWij  � 
m

l�1
b

k
l (φ) · RI PWij, Dl , (46)

where bk
l (φ) is the k-best rank acceptability under no

constrain.
Considering that bk

l is usually obtained through the
Monte Carlo simulation method, it often contains a com-
putational error. (erefore, for a given threshold δ, the
pairwise comparison relation PWij is regarded to be re-
dundant if RI(PWij, Dl)< δ.

In this method, whether or not an alternative could be
ranked in top k is considered as a decision attribute.
(erefore, for a decision class Y⊆U/RDl

, there are two objects
in it, i.e., Y � Yl

Y, Yl
N , Yl

Y is the union of objects in U that
could make alternative l to be ranked in top k; Yl

N is the
union of objects in U that could not make alternative l to be
ranked in top k. According to the definition of positive
region in VPRS given in section 2.1, preference combina-
tions in the positive region of Yl

Y are referred to as positive

preference combinations. For a given confidence level
c � 1 − β, the positive preference combinations satisfy

Xj⟶ b
k
l > c∀Xj ∈ POSβP Y

l
Y . (47)

And preference combinations in the negative region of
Yl

Y are referred to as negative preference combinations
which satisfy

Xj⟶ b
k
l < 1 − c∀Xj ∈ NEG

β
P Y

l
Y . (48)

In the proposed method, the intersection of positive
preference combinations is referred to as a positive rule,
which is expressed as

Rulepositive Dl(  � Xj, Xj ∈ POSβP Y
l
Y . (49)

And the intersection of negative preference combina-
tions is referred to as a negative rule, which is expressed as

Rulenegative Dl(  � Xj, Xj ∈ NEG
β
P Y

l
Y . (50)

(e positive rule Rulepositive(Dl) reflects the common
characteristic of the preference structure which could ensure
alternative l being ranked in top k. Similarly, the negative
rule Rulenegative(Dl) gives the common characteristic of the
preference structure which prevents alternative l from being
ranked in top k. (e ultimate rule is the aggregation of the
positive rule Rulepositive(Dl) and the negative rule
Rulenegative(Dl), which is expressed as

Ruleweak Dl(  � Rulepositve Dl( ∪Rulenegative Dl( , (51)

Ruleweak(Dl)is referred to as a weak rule of the decision
attribute Dl. All weak rules for m decision attributes in D

constitute the weak rule set in Figure 1, which can be
represented as ∪ Ruleweak(Dl) , l ∈ 1, 2, · · · , m{ }. (e ad-
vantages of eliciting preference information based on
weak rules lie in the following two aspects: (1) With the
concept of attribute reduction in VPRS, the process of
eliciting preference information based on weak rules
could avoid the evaluation on redundant attributes, thus
reducing the burden of DMs. (2) (e relative priority of
preference information is given by weak rules. In this way,
the preference information, which is sensitive to ranking
result, could be obtained preferentially to ensure its
reliability.
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(2) Strong Rule Extraction Based on the Combination of DB-
VPRS and SMAA. (e rules extracted based on the above
preference information system are weak rules in which
pairwise comparison relations on attributes are roughly
defined from a logical and qualitative point of view. In
practice, the pairwise comparison relation on attributes can
be further refined based on its significance level. (e sig-
nificance level reflects DMs’ confidence in their evaluation of
pairwise comparison relations on attributes.(e significance
level of pairwise comparison relations is essentially a kind of
dominance relation. In the proposedmethod, to improve the
reliability of the rule-based decision-making process, the
extracted weak rules are refined using the combination of
DB-VPRS and SMAA, which are defined as strong rules.

Similarly, let pairwise comparison relations considering
dominance relation be condition attribute set C. (e dif-
ference of attribute weights represented by D(PWij) is
defined as the subtraction of two attribute weight values, i.e.,
D(PWij) � |wi − wj|. Based on the value of the difference of
attribute weights, three kinds of significance levels are given
as follows:

(a) If D(PWij) ∈ [0, 0.05], then the significance level of
the pairwise comparison relation SIG(PWij) be-
tween attribute i and attribute j is defined as low;

(b) If D(PWij) ∈ (0.05, 0.15], then the significance level
of the pairwise comparison relation SIG(PWij) be-
tween attribute i and attribute j is defined as middle;

(c) If D(PWij) ∈ (0.15, 1], then the significance level of
the pairwise comparison relation SIG(PWij) be-
tween attribute i and attribute j is defined as high.

It is assumed that, for any condition attribute p ∈ P⊆C,
low ≺p middle ≺p high. Consequently, for two given
objects AWx ∈ U and AWy ∈ U, SIG(PWij(AWx))≺p
SIG(PWij(AWy))means that the pairwise comparison re-
lation on attribute i and attribute j reflected by AWy is more
significant than AWx. If ∀p ∈ P⊆C, SIG(PWij(AWx))≺p
SIG(PWij(AWy)) is true, AWx is said to be dominated by
AWy with respect to P, i.e.,

AWyDPAWx SIG PWij AWx(  

≺pSIG PWij AWy   for all p ∈ P⊆C.
(52)

Consequently, the dominance and dominated union of
AWx with respect to P are represented by

D
+
P AWx(  � AWy ∈ U: AWyDPAWx , (53)

D
−
P AWx(  � AWy ∈ U: AWxDPAWy . (54)

By follow the definition in Section 2.1.2, let the ranking
results of alternatives be decision attributes which is rep-
resented by D≻. Let Cllt, t � 1, 2, · · · , m be decision classes
with respect to a decision attribute D≻l ∈ D≻, l � 1, 2, · · · , m.
(e object in Cllt could make the alternative l to be ranked in
top k according to its attribute values and weights. (e
upward union of decision classes Cll≽t � Us≤t Clls means that
the alternative l could be ranked at least in top t. Similarly,

the downward union of decision class Cll≼t � Us≥t Clls means
that the alternative l could be ranked at most in top t.

As discussed above, the approximation accuracy could
be replaced by k-best rank (k-br) acceptability K bk

i in
SMAA. (erefore, according to equations (18)–(21), the
β-lower approximation and the β-upper approximation of
Cll≽t and Cll≼t are represented by

R
β
P Cl

l≽
t  � AW ∈ Cl

l≽
t :

D
+
P AWx( ∩Cl

l≽
t





D
+
P AWx( 



≥ β

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (55)

R
β
P Cl

l≼
t  � AW ∈ Cl

l≽
t :

D
+
P AWx( ∩Cl

l≽
t





D
+
P AWx( 



≥ β

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (56)

R
β
p Cl

l≽
t  � Cl

l≽
t

· AW ∈ Cl
l≼
t :

D
+
P AWx( ∩Cl

l≽
t





D
+
P AWx( 



> 1 − β

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(57)

R
β
P Cl

l≼
t  � Cl

l≼
t

· AW ∈ Cl
l≽
t :

D
+
P AWx( ∩Cl

l≽
t





D
+
P AWx( 



> 1 − β

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(58)

In this way, the strong rules can be extracted from a
preference information system containing dominance re-
lation using a dominance-based variable precision rough set
(DB-VPRS) approach, which are usually represented in the
form of a series of if-then decision rules, and they are usually
expressed as

if∧SIG PWij ≻plow, then b
t
l ≥ β. (59)

3.2. Decision Rule Application. In the decision rule appli-
cation stage, as shown in Figure 3, the process of eliciting
preference information and the process of decision-making
are guided by rules and carried out step by step.

First of all, for a given MADM problem, a weak rule set
(WRS) and a strong rule set (SRS) could be obtained based
on the attribute value of alternatives using the proposed
decision rule extraction method. (e rules in WRS could
eliminate redundant attributes and give the relative priority
of preference information. And the rules in SRS further
improve the confidence of decision-making process by in-
troducing the dominance relation. (en, in the first step,
according to the rules in WRS, investigation questionnaires
are designed in which DMs only need to evaluate the
pairwise comparison relation of partial attributes. In this
step, DMs are allowed to answer the questions in the
designed questionnaire in an intuitive and linguistic way. In
the second step, the designed questionnaires are sent to DMs
to collect their preference information. In this step, DMs
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could express their preference in a way like that “attribute A
is more important than attribute B,” and they are informed
the consequence of their choice. Moreover, even if DMsmay
not reach an agreement on the question, the following steps
could still continue. When DMs agree on a pairwise com-
parison relation of two attributes, the significant level of this
relation is further asked in the third step. According to rules
in SRS, DMs are also informed the consequence of their
choice in this step. In the fourth step, according to the
collected preference information, a preliminary decision
result can be obtained. Meanwhile, the reliability of the
decision result is obtained in this step. In this paper, the
reliability of the decision result is measured by the following
equation (63).

R DRl(  � 
l

j�1
K b

l
i(j) , (60)

where K bl
i(j) is the jth element of a sequence in which the

k-best rank (K-br) acceptability K bl
i is ordered from high to

low. For a given threshold value ε, if R(DRl)> 100%(l · ε),
the decision result is considered to be reliable. In this way,
the decision result can be explained from multiple per-
spectives by adjusting the value of l and ε to adapt to different
types of MADM problems.

If the decision result is reliable, the process of eliciting
preference information and the process of decision-making
could be terminated promptly. And if not, the rules in WRS
and SRS should be updated based on collected preference
information, and the steps above should be repeated again
and again until the decision result is reliable.

4. Illustrative Example

In this section, a MADM problem consisting of twenty
alternatives is used to illustrate the application of the pro-
posed method. In this example, each alternative is evaluated
based on three attributes. Attribute values are given in
Table 2 in the form of interval numbers. For simplicity,
attribute values are normalized to the range of zero to one. It
is supposed that all attributes are benefit indices and in-
dependent of each other.

It is necessary to carry out a preliminary screening on the
twenty alternatives to reduce the complexity of the problem.
According to equations (35) and (36), k-best rank (k-br)
acceptability results for the twenty alternatives under no
constrains are firstly obtained through Monte Carlo simu-
lation. In order to ensure the accuracy of analysis results and
reduce the computational complexity of the problem, de-
scriptive sampling technique is used in Monte Carlo sim-
ulation. Each simulation is carried out for ten times with up
to 50000 samples and less than 0.002 convergence tolerance.

A multi-attribute decision making problem
consisting of m alternatives and n attributes

Weak Rule Set

1 Design investigation questionnaire 2
Collect preference information from
DMs and explain the consequence of
their choice

A group of
decision makers

Investigation
Questionnaire

Eliminate redundant attributes
Give the relative priority of preference
information

4

Partial preference information is included
�e questionnaire could be down in an intuitivr
and linguistic way

�ere is no nedd to reach an agreement.
DMs are only nedded to assess the relative importance of
attributes from a quantitative and logical point of view.

• •
•

•
•

•
• •

•

Obtain decision result according to collected
preference information and evaluate its reliability

Decision Result

3 Assess the DMs’ confidence in their evaluation
and explian the consequence of their choice

Strong Rule Set

Further improve the reliability of the process
of decison-making

�ere is no need to reach an agreement.
DMs are only needed to assess the confidence in
their evaluation from a quantitative and logical
point of view.

6 Repeat the steps mentioned above until the
decision result is reliable5 Update decision rules based on collexted

preference information

Weak
Strong Rule Set

A group of
decision makers

Provide decision result to DMs timely.
Explain decision result and its reliability to DMs
from multiple perspectives.

Figure 3: (e decision rule application stage.

Table 2: (e normalized attribute values of twenty alternatives.

Alternative Attribute 1 Attribute 2 Attribute 3
1 [0.00, 0.15] [0.35, 0.46] [0.42, 0.55]

2 [0.11, 0.25] [0.15, 0.26] [0.87, 1.00]

3 [0.15, 0.26] [0.00, 0.15] [0.73, 0.85]

⋮ ⋮ ⋮ ⋮
18 [0.00, 0.18] [0.85, 1.00] [0.22, 0.35]

19 [0.00, 0.15] [0.14, 0.26] [0.85, 1.00]

20 [0.32, 0.45] [0.22, 0.35] [0.26, 0.45]
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�emean value and standard deviation of 1-br and 3-br rank
acceptability of the twenty alternatives in ten simulations are
given in Figures 3 and4, respectively. It can be observed that
thirteen alternatives including alternative 1, 3, 5, 6, 7, 8, 10,
11, 13, 16, 17, 19, and 20 have near-zero rank acceptability
which will be eliminated in further analysis. In this way, the
MADM problem consisting twenty alternatives is simpli�ed
to a problem with only seven alternatives.

4.1. Decision Rule Extraction. As discussed in Section 3.1, all
feasible preference combinations are potential decision
rules. In this example, 27 preference combinations are
depicted in Figure 5 in the form of a three level decision tree,
in which 24 combinations are feasible and each combination
is represented by Xi, i ∈ 1, 2, · · · , 27{ }. �e preference
combinations and their outcomes (ranking results) consti-
tute a decision table (see Table 3), in which pairwise (Fig-
ure 6) comparison relations contained in preference
combinations are condition attributes, while ranking results
re¦ected by SMAA indices are decision attributes.

4.1.1. Weak Rule Extraction. According to equations (40)
and (41), the universe U is partitioned by feasible preference
combinations X1−15, X18−21, X23−27{ } into 23 equivalent
classes, i.e.,

U/C � [AW]Xi, Xi ∈ X1−15, X18−21, X23−27{ }{ }. (61)

And each decision attribute Dl, l ∈ 2, 4, 9, 12, 14, 15, 18{ }
divides the universe U into two decision classes, i.e.,

U/Dl � YlY, Y
l
N{ }, l ∈ 2, 4, 9, 12, 14, 15, 18,{ } (62)

Let the con�dence level β � 0.8. �en, the β-lower and
β-upper approximations of the decision attribute Dl can be
given by equations (46) and (47). Taking l � 2 as an example,
it can be obtained that

Y2
Y⊇

β[AW]X9
;Y2

Y⊇
β[AW]X18

;

Y2
Y⊇

β[AW]X21
;Y2

Y⊇
β[AW]X27

,

RP
β
Y2
Y( ) � [AW]X9

, [AW]X18
, [AW]X21

, [AW]X27
{ },

R
β
X Y2

Y( ) �
[AW]X1

, [AW]X3
, [AW]X6−10

, [AW]X12
,

[AW]X15
, [AW]X18

, [AW]X21
, [AW]X25−27





.

(63)

According to the de�nition in Section 2.1.1, it can be
obtained that

POSβX Y2
Y( ) � [AW]X9

, [AW]X18
, [AW]X21

, [AW]X27
{ },

NEGβ
X Y2

Y( ) �
[AW]X2

, [AW]X4
, [AW]X5

, [AW]X11
,

[AW]X13,14
, [AW]X20

, [AW]X23,24





,

BNβ
X Y2

Y( ) �
[AW]X1

, [AW]X3
, [AW]X6−8

, [AW]X10
,

[AW]X12
, [AW]X15

, [AW]X25
, [AW]X26





.

(64)

�en, decision rules for the decision attributes D2 are
obtained by equations (52)–(54) as
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Figure 4: 1-br rank acceptability results of the twenty alternatives.
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Figure 5: 3-br rank acceptability results of the twenty alternatives.

Table 3: A decision table consisting of SMAA analysis results and preference combinations for the proposed MADM problem.

Preference combinations
Pairwise comparison relations K-br acceptability

PW12 PW13 PW23 b32 · · · b319

X1 0 0 0 39.60 · · · 22.24
X2 0 0 1 8.32 · · · 2.84
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
X26 −1 −1 1 25.15 · · · 8.19
X27 −1 −1 1 91.20 · · · 22.79

w1 w1 ≥ w2

w1 ≥ w3

w2 ≥ w3

w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3 w2 ≤ w3

w2 ≥ w3 w2 ≥ w3 w2 ≥ w3 w2 ≥ w3 w2 ≥ w3w2 ≥ w3 w2 ≥ w3 w2 ≥ w3

w1 ≥ w3 w1 ≥ w3

w1 ≤ w2

w1 ≤ w3 w1 ≤ w3 w1 ≤ w3

w2.

w2 w3. w2 w3. w2 w3. w2 w3. w2 w3. w2 w3. w2 w3. w2 w3. w2 w3.

w1 w3. w1 w3.w1 w3

X1

X2

X3

X4 X7 X10 X13 X16 X19 X22 X25

X26X23X20X17X14X11X8X5

X6 X9 X12 X15 X18 X21 X24 X27

.

Pairwise Comparison Relations on Atrributes

Implicit Preference Information

Inconsistent Preference Information

Figure 6: Preference combinations in the proposed example represented in the form of a decision tree.
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Rulepositive D2(  � [AW]X9
∩ [AW]X18

∩ [AW]X21
∩ [AW]X27

⇒PW13 � −1, PW23 � −11,

Rulenegative D2(  � [AW]X2
∩ [AW]X4

∩ [AW]X5
∩ [AW]X11

∩ [AW]X13
∩ [AW]X14

∩ [AW]X20
∩ [AW]X23

∩ [AW]X24

⇒PW13 � 1,

Ruleweak D2(  � Rulepositve D2( ∪Rulenegative D2( ⇒PW13 � −1, PW23 � −11.

(65)

Similarly, decision rules for other decision attributes can
also be extracted from the information system like Table 3.
All rules and their approximation accuracy are listed in
Table 4.

(e relative importance of pairwise comparison relations
on attributes in weak rules are obtained by (48) and listed in
Table 5. Let the threshold δ � 5%, it can be observed that the
pairwise comparison on attribute 1 and attribute 2 is re-
dundant for the rule X14, which could be eliminated from
the rule X14. Based on (49), the comprehensive effects of
pairwise comparison relations on ranking result are listed in
the last row of Table 5. It can be observed that the pairwise
comparison relation on attribute 1 and attribute 3 is more
important than others. Based on the analysis result, when
eliciting preference information from DMs, the priority of
pairwise comparison relations is PW13≻PW12≻PW23.

4.1.2. Strong Rule Extraction. (e decision rules extracted
based on the information provided by the decision table like
Table 3 are weak rules, in which pairwise comparison re-
lations on attributes are roughly defined. As discussed in the
previous section, the weak rules could be refined by in-
troducing dominance relations.(e approximation accuracy
of seven weak rules listed in Table 4 under different com-
binations of dominance relations are listed in Tables 6–11.

Take the weak rule X2 as an example, as shown in Table 6,
under different combinations of dominance relations, there
are obvious differences on the k-br acceptability K bk

i of
alternative 2.

Let the confidence level β � 0.8, based on equation (58),
it can be obtained that
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(66)

(e obtained strong rules for different upward unions of
decision classes are illustrated in Figure 7, in which different

filled regions correspond to the strong rules for different
upward unions of decision classes. When DMs’ confidence
in their evaluation of pairwise comparison relations on
attributes fall within the filled region, the reliability of de-
cision-making will be improved significantly. In addition,
Table 6 could provide more decision support information to
DMs. For example, even if DMs’ confidence in their eval-
uation of pairwise comparison relations on attributes are
both low, the alternative 2 still could be ranked in top 5 with
at least 82.24% confidence level. Meanwhile, even if DMs’
Tables 8–10confidence in their evaluation of pairwise
comparison relations on attributes are both high, the
probability of ranking alternative 2 in top 1 is at most
24.43%.

Similarly, based on the information provided in
Tables 7–11, the refined strong rules for different weak rules
are depicted in Figures 7–11 separately.

4.2. Decision Rule Extraction. In this section, a case is
provided to illustrate Table 12 the process of decision-
making based on the proposed method. It is assumed that
the top three alternatives are of concern in this case.

First of all, according to the relative importance of
pairwise comparison relations in weak rules given by Table 5,
DMs are asked to evaluate the relative importance of at-
tribute 1 and attribute 3, and they are informed of much
decision support information. For example, the provided
decision support information may consist of the following:

(i) In the absence of preference information, alterna-
tive 2, alternative 9, and alternative 12 are the most
likely to be ranked in top three, and their possibility
are 39.60%, 54.78%, and 50.17% separately.

(ii) If attribute 1 is more important than attribute 3,
then the possibilities of eight alternatives being
ranked in top three are at most 61.26%, 82.78%,
57.09%, 97.80%, 98.56%, 83.72%, 89.04%, and
27.33% according to Table 3.

(iii) If attribute 1 is less important than attribute 3, then
the probabilities of eight alternatives being ranked
in top three are at most 93.25%, 1.35%, 99.87%,
63.45%, 56.53%, 12.68%, 96.86%, and 62.48%
according to Table 3.

It is assumed that DMs reach an agreement that attribute
1 is more important than attribute 3. (en, they are asked to
give the confidence of their evaluation. And, it is assumed
that the significant level of the pairwise comparison relation
on attribute 1 and attribute 3 is high. (en according to
strong rules in Figures 7–13, DMs are informed the fol-
lowing decision support information.
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(i) Based on their preference information, the alternative
2 could be ranked in top three with at least a
probability of 73.49%, the alternative 4 could be
ranked in top three with at least a probability of

62.73%, the alternative 9 could be ranked in top three
with at least a probability of 74.57%, the alternative 12
could be ranked in top three with at least a probability
of 36.31%, the alternative 14 could be ranked in top

Table 5: (e relative importance of pairwise comparison relations in weak rules.

Dl RI(PW12, D1) RI(PW13, D1) RI(PW23, D1)
D2 × 21.31% 22.71%
D4 24.61% 26.40% ×

D9 × 39.08% ×

D12 × 9.62% 18.71%
D14 0.01% 20.82% 22.32%
D15 28.15% 51.05% ×

D15 39.23% × ×

E(PWij) 30.11% 65.55% 26.66%

Table 4: Decision rules and their confidence of decision classes.

Decision attribute
Decision rules (β � 80%)

Approximation accuracyRulepositive Rulenegative Ruleweak

PW12 PW13 PW23 PW12 PW13 PW23 PW12 PW13 PW23

D2 × −1 −1 × 1 × × −1 -1 91.20
D4 1 1 × × × × 1 1 × 78.63
D9 × −1 × × 1 × × 1 × 90.23
D12 × 1 × −1 × −1 × 1 1 93.05
D14 1 1 −1 −1 × × 1 1 -1 98.55
D15 −1 1 × × −1 × −1 1 × 83.65
D18 −1 × × 1 × × −1 × × 80.09

Table 6: Approximation accuracy of the weak rule considering dominance relation.

Rule
Significant level K-br acceptability (%)

SIG(PW13) SIG(PW23) K b12 K b22 K b32 K b42 K b52

S21 Low Low 6.54 28.97 42.99 63.55 82.24
S22 Low Middle 8.33 36.18 63.82 82.72 92.28
S23 Low High 8.71 57.09 87.24 96.07 98.42
S24 Middle Low 2.33 36.65 62.29 77.97 90.04
S25 Middle Middle 11.00 55.23 81.56 88.02 94.44
S26 Middle High 18.63 66.47 91.94 98.64 99.75
S27 High Low 0.99 30.94 73.49 96.24 98.89
S28 High Middle 2.11 57.80 85.65 98.06 99.17
S29 High High 24.43 76.38 98.29 99.88 99.97

Table 7: Approximation accuracy of the weak rule considering dominance relation.

Rule
Significant level K-br acceptability

SIG(PW12) SIG(PW13) b14 b24 b34 b44 b54

S41 Low Low 0.85 4.27 9.40 17.09 28.21
S42 Low Middle 2.67 8.44 19.78 35.33 51.56
S43 Low High 2.75 24.44 62.73 82.27 93.47
S44 Middle Low 0 6.43 14.41 29.93 47.23
S45 Middle Middle 8.41 22.60 36.03 52.07 68.12
S46 Middle High 13.42 44.06 74.71 89.30 95.91
S47 High Low 0.05 7.77 30.85 63.65 82.58
S48 High Middle 2.06 41.25 66.63 82.63 92.40
S49 High High 45.18 86.47 95.12 98.84 99.75
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three with at least a probability of 98.46%, and the
alternative 15 could be ranked in top three with at
least a probability of 63.43%.

According to (63), the reliability of decision result based
on extant collected preference information is calculated as

R DR3(  � 98.46% + 74.57% + 73.49% � 246.52%. (67)

Let the threshold value ε � 0.8, then it can be obtained
that

R DR3(  � 246.52%> 100% × 3 × ε � 240%. (68)

Table 9: Approximation accuracy of the weak rule considering dominance relation.

Rule
Significant level K-br acceptability

SIG(PW13) SIG(PW23) b112 b212 b312 b412 b512

S121 Low Low 31.49 56.17 74.04 85.53 92.34
S122 Low Middle 34.55 64.44 82.63 92.12 96.57
S123 Low High 16.19 89.54 97.05 99.33 99.89
S124 Middle Low 33.54 53.09 70.37 86.36 92.39
S125 Middle Middle 42.81 72.05 85.00 92.67 97.39
S126 Middle High 44.32 92.52 97.93 99.55 99.89
S127 High Low 8.66 18.71 36.31 87.74 98.06
S128 High Middle 20.23 36.80 85.59 97.57 99.04
S129 High High 61.25 85.43 98.01 98.10 99.91

Table 8: Approximation accuracy of the weak rule considering dominance relation.

Rule Significant level K-br acceptability
SIG(PW13) b19 b29 b39 b49 b59

S91 Low 23.56 43.97 74.57 95.68 99.38
S92 Middle 36.74 60.40 88.46 99.04 99.90
S93 High 66.09 89.34 98.05 99.99 100.00

Table 10: Approximation accuracy of the weak rule considering dominance relation.

Rule
Significant level K-br acceptability

SIG(PW13) SIG(PW23) b114 b214 b314 b414 b514

S141 Low Low 37.34 57.94 77.25 88.84 94.42
S142 Low Middle 53.74 78.91 90.93 97.28 99.49
S143 Low High 87.18 96.97 99.37 99.77 99.94
S144 Middle Low 47.40 76.41 87.66 94.16 97.84
S145 Middle Middle 71.89 88.33 94.86 97.11 99.00
S146 Middle High 93.67 98.78 99.69 99.90 99.97
S147 High Low 47.57 88.01 98.46 99.70 99.88
S148 High Middle 72.79 96.15 99.24 99.82 99.93
S149 High High 94.38 99.78 99.99 100.00 100.00

Table 11: Approximation accuracy of the weak rule considering dominance relation.

Rule
Significant level K-br acceptability

SIG(PW13) SIG(PW23) b115 b215 b315 b415 b515

S151 Low Low 7.63 24.10 50.60 70.28 85.14
S152 Low Middle 11.69 42.02 67.19 84.72 93.26
S153 Low High 11.85 65.11 84.66 95.86 98.60
S154 Middle Low 5.63 20.05 49.77 80.18 91.67
S155 Middle Middle 8.81 30.14 69.99 87.87 97.70
S156 Middle High 9.20 55.88 87.83 97.99 99.45
S157 High Low 0.85 5.26 63.43 97.29 99.66
S158 High Middle 1.01 6.00 80.99 98.56 99.64
S159 High High 1.91 17.18 96.83 99.79 99.98
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Figure 7: �e strong rules of di�erent upward unions of decision
classes for alternative 2.
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Figure 8: �e strong rules of di�erent upward unions of decision
classes for alternative 4.
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Figure 9: �e strong rules of di�erent upward unions of decision
classes for alternative 9.
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Figure 10: �e strong rules of di�erent upward unions of decision
classes for alternative 12.
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It means that, with an 80% con�dence level, the decision
result is reliable. And then, the process of eliciting preference
information and the process of decision-making is termi-
nated. �e decision result is that alternative 2, alternative 9,
and alternative 14 are most likely to be selected.

�e aim of the proposed method is to provide timely,
various, and concise decision support information for DMs.
According to the requirements of DMs, a unique and more
robust decision result can be obtained by adjusting the
con�dence level and the number of alternatives considered
in (63). In addition, to obtain a unique and more robust
decision result, more subjective factors (e.g., the risk
awareness of DMs) should7 be considered.

4.3. Comparative Experiments. In order to verify the ex-
cellent performance of the proposed algorithm, comparative
experiments are implemented with AHP [47], ANP [48],
D-TOSPIS [49], ELECTRE-II [50], and PROMETHEE [51].
Under the condition that the index evaluation information
is inaccurate and the decision maker’s preference infor-
mation is incomplete, 20 potential design schemes including

performance evaluation indexes of three products are an-
alyzed and evaluated, which can be seen in Figure 14. Be-
sides, the index accuracy is applied to describe the deviation
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Figure 11: �e strong rules of di�erent upward unions of decision
classes for alternative 14.

Table 12: Approximation accuracy of the weak rule considering
dominance relation.

Rule Signi�cant level K-br acceptability
SIG(PW12) b115 b215 b315 b415 b515

S181 Low 3.15 13.92 30.51 49.88 81.39
S182 Middle 7.68 28.97 51.34 71.87 93.91
S183 High 41.46 71.94 81.28 97.90 99.72
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Figure 12: �e strong rules of di�erent upward unions of decision
classes for alternative 15.
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Figure 13: �e strong rules of di�erent upward unions of decision
classes for alternative 18.
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between the relative importance of the extracted preference
information and the relative importance of the real pref-
erence information. �e accuracy results are shown in
Figure 15, which indicates that the performance of the
proposed algorithm is prior to the comparative algorithms.

Accuracy results of the comparative algorithms in real
cases of three products are shown in Table 13 minutely. It is
obvious that the accuracy of the proposed algorithm is
higher than the other �ve comparative algorithms in the
three real cases. Interestingly, along with the complexity of
the cases increases, the accuracy of the six algorithms is
decreased to a greater or lesser extent. However, the

performance of the proposed algorithm is especially ex-
cellent in the complex case (e.g., product no.3).

5. Conclusion

In order to optimize the process of eliciting preference
information from decision makers, a rule-based decision
support method for multi-attribute decision-making is
proposed in this paper. Based on the proposed method, it is
unnecessary to ask decision makers to provide complete
preference information. In this way, the decision burden of
decision makers is reduced, and the e�ciency of the multi-

(a) (b) (c)

Figure 14: Real cases of three products. (a) Product no. 1. (b) Product no. 2. (c) Product no. 3.
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Figure 15: Accuracy results of the comparative algorithms.

Table 13: Accuracy results of the comparative algorithms in real cases of three products.

Product
Algorithm

AHP ANP D-TOSPIS ELECTRE-II PROMETHEE Ours
No.1 89.78 91.53 93.52 94.15 95.22 98.55
No.2 83.65 90.16 91.28 93.78 94.95 97.96
No.3 80.09 88.15 90.52 92.77 93.01 97.83
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attribute decision-making is improved. (e comparative
experiments indicate that the performance of the proposed
method is prior to the common methods (i.e., AHP, ANP,
and TOSPIS). (e significance of this paper is summarized
as follows:

(1) (e core of this method is extracting rules based on
attribute values of alternatives and available pref-
erence information provided by decision makers
through the combination of stochastic multi-ob-
jective acceptability analysis and a variable precision
rough set approach. With the concept of attribute
reduction and approximation accuracy, the extracted
rules could eliminate redundant attributes and give
the relative priority of preference information.
According to the pre-extracted rules, the preference
information that is sensitive to decision result will be
collected preferentially.

(2) Based on the proposed method, the process of deci-
sion-making could be carried out step by step, and
DMs are informed of much decision support infor-
mation to help them make a choice. Moreover, the
measurement of reliability of the decision result based
on the k-best rank acceptability is given in this paper. In
this way, according to the measurement, once the
decision result is reliable enough, the preference elic-
iting and decision-making process can be terminated.

(e limitation of this paper is that only the pairwise
comparison relation on attributes is considered in the
proposed method. (erefore, more types of relations be-
tween attributes will be studied in the future research.
Moreover, considering that digital feedback information is
often difficult to be understood for DMs, it is necessary to
translate digital feedback information into semantic infor-
mation, which is easier to be understood. (e study on the
transformation from digital feedback information to se-
mantic information is also one of future research topics.
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