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Porous materials have become increasingly common in people’s daily lives as the industry has advanced. Porous materials have
numerous applications in the petroleum and chemical industries, as well as in everyday life. The study of diffusion, thermal
conductivity, and percolation properties of porous materials has an important engineering application background and scientific
value. The microstructure of materials affects their properties and attributes, so the description and visualization of the mi-
crostructure of porous materials is of great importance in the study of materials science. Due to the specificity of the internal
structure of porous materials, many scenarios require 3-dimensional reconstruction of porous materials in practical engineering.
In order to improve the effect of 3-dimensional reconstruction of porous materials, a 3D reconstruction method based on the
improved generative adversarial neural network (GAN) is proposed in this paper for SEM images of porous materials. First,
scanning electron microscope (SEM) images of porous materials are acquired, and then the acquired SEM images are pre-
processed, including denoising and determining the boundary. Second, an improved GAN-based image super-resolution re-
construction model (ISRGAN) is used, and then the preprocessed images are fed into the ISRGAN model for training. Thus,
multiple intermediate layer images are generated. Third, the 3D reconstruction of the intermediate layer images is performed
using the slice combination method. The relationship between the unit cell pixels and the porosity is analyzed in the experiments
to verify the effectiveness of the 3D reconstruction method used in this paper, and it is concluded that the porosity tends to be
stable when the unit cell pixels converge to 110 and converge to the porosity of the real sample. The experimental results validate
the feasibility and effectiveness of the method presented in this paper in the 3D reconstruction process.

1. Introduction

Porous materials are commonly found all around us, and the
material plays a significant role in structure, cushioning,
vibration damping, insulation, sound dissipation, and fil-
tration. High porosity solids have low rigidity and high
density, so naturally porous solids are often used as struc-
tural bodies, such as wood and bone. Humans have also
developed many functional uses for porous material use. The
study of porous materials began with zeolites. Zeolite is an
ore that was first discovered in 1756. Cronstedt, a Swedish
mineralogist, discovered a class of natural silica-aluminate
ores that boil when burned. Molecular sieves have a ho-
mogeneous microporous structure and have a preferential
adsorption capacity for polar and saturated molecules. As a

result, molecules with different degrees of polarity, satura-
tion, molecular size, and boiling point can be separated. The
relative pore content of porous materials is variable.
According to the pore size, below 2nm is called micropo-
rous, 2 nm-50 nm is mesoporous, and above 50 nm is called
macroporous. It can also be divided into porous metal,
porous ceramic, porous plastic, etc. based on the material.
Also, based on the size of porosity, it can be divided into low
and medium porosity materials and high porosity materials.
The former is mostly closed type, and the latter will present
three types, which are honeycomb material, open cell foam
material, and closed cell foam material. Porous material is a
composite composed of solid phase, and pores are formed
through the solid phase, and the most distinctive feature that
distinguishes it from ordinary dense solid materials is the


mailto:2018100891@niit.edu.cn
https://orcid.org/0000-0001-9194-9884
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2904178

presence of useful pores. The most basic parameters of
porous materials are the indicators that directly characterize
their pore properties, such as porosity, pore size, and specific
surface area. In addition, the properties of porous materials
also depend heavily on the pore morphology, pore size, and
its distribution.

The microstructure of porous materials is very important
for engineering analysis as well as practical engineering
applications, and traditional two-dimensional images can-
not meet the engineering needs. Therefore, 3D recon-
struction techniques based on porous materials are widely
studied. Three-dimensional reconstruction is the process of
recovering three-dimensional space from a two-dimensional
image using a primitive map, that is, studying the rela-
tionship between the three-dimensional coordinates of
points, lines, and surfaces in three-dimensional space and
the two-dimensional coordinates of corresponding points,
lines, and surfaces in two-dimensional image in order to
achieve quantitative analysis of the object’s size and the fold
mutual position relation. Currently, the main imaging
techniques are computed tomography (CT) technology
[1, 2], SEM [3, 4], focused ion beam-scanning electron
microscopy (FIB-SEM) [5, 6], and nuclear magnetic imaging
(MRI) [7, 8]. Compared to the images produced by other
imaging techniques, SEM images have several advantages:
first, it has high resolution. The resolution of the SEM
secondary electron image can reach 3 nm, the resolution of
the ultrahigh resolution SEM secondary electron image is up
to 1 nm, which is two orders of magnitude higher than the
limiting resolution of optical microscopy of 200 nm. Second,
the depth of field is large. At a magnification of 100x, the
depth of field of an optical microscope is 1 ym, while a SEM
can reach 1 mm. But even when the magnification reaches
40,000 times, the scanning electron microscope can still have
a depth of field of about 1 ym. Third, the magnification is
continuously adjustable in a wide range, and the image has
sufficient signal brightness at high magnification. Fourth, the
sample is relatively easy to produce. Fifth, dynamic obser-
vation is possible. SEM techniques are widely used for
microscopic morphology and structure of solid samples,
microregional elemental composition, line distribution, and
surface distribution of samples, which are widely used in
nanotechnology, materials, physics, chemistry, and envi-
ronmental science [9, 10].

At present, three-dimensional reconstruction technol-
ogy has been very mature. The current methods of 3D re-
construction modeling are mainly the following three: (1)
direct model construction using traditional geometric
modeling techniques, that is, the use of modeling software to
construct 3D models [11, 12]; (2) dynamic reconstruction
using 3D scanning equipment to scan real objects to directly
get the information of object space points, and then re-
construct the model [13, 14]; (3) static reconstruction, based
on digital pictures of 3D reconstruction, using images to
recover the geometric shape of the object, that is, recon-
structing the model using two or more images of the real
object taken by cameras and digital cameras from various
viewpoints [15, 16]. Reference [17] developed a system for
picture-based 3D reconstruction. Reference [18] developed
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an enhanced 3D modeling system using algorithms such as
an uncalibrated structure from motion and camera self-
calibration. Reference [19] proposed a 3D reconstruction
system for buildings. Reference [20] created a human-
—computer interactive reconstruction system that employs a
series of panoramic views of an object, that is, n pictures of
the object from all angles, and then processes these images to
reconstruct its 3D solid. Reference [21] used a self-cali-
bration method of the camera to reconstruct the building’s
morphology. From these studies, it can be seen that 3D
reconstruction techniques have been maturely applied in
various industries. For 3D reconstruction of porous mate-
rials, reference [22] proposed an improved convolutional
neural network for 3D reconstruction of porous materials
for 3D reconstruction of porous materials. Reference [23]
compares the performance of several algorithms for 3-di-
mensional reconstruction of porous materials, including the
genetic algorithm, particle swarm optimization, differential
evolution, firefly algorithm, artificial bee colony, and grav-
itational search algorithm. The experimental structure shows
that the genetic algorithm gives the best results. Reference
[24] proposed the ST-CGAN network based on the GAN
network to extract effective information from 2D images to
construct 3D effects. Reference [25] proposed a 3D recon-
struction of CT images of rocks using GAN networks with
good results. Since the SEM images of porous materials have
the advantages of high resolution and the magnification of
the images are continuously adjustable in a wide range, this
paper focuses on the SEM images of porous materials and
uses an improved GAN network for 3D reconstruction of
porous materials. Similar techniques are widely used [26].

2. Related Knowledge

2.1. Introduction to Porous Materials. There are many porous
materials, such as porous metals and porous ceramics.
Compared with dense metal materials, porous metals have a
lot of good characteristics, such as low thermal conductivity,
high heat transfer and heat dissipation capacity, sound
absorption and good sound insulation, excellent wave
transmission, good electromagnetic wave absorption, fire
resistance, and thermal shock resistance. Commonly used
porous metal materials are bronze, nickel, titanium, alu-
minum, stainless steel, and other metals and alloys. Porous
ceramic is a new type of ceramic material, and the manu-
facture of its use began in the late 1950s. Initially, it was used
only as a bacterial filter material. Porous ceramic materials
have good permeability, low density, high hardness, large
surface area, and small thermal conductivity, so they are
widely used in metallurgy, chemical industry, environmental
protection, energy, biology, food, medicine, and other fields.
The most widely used porous ceramic preparation process is
organic foam immersion slurry replication technology,
which produces a mesh ceramic which is a porous material
consisting of ceramic network surrounded by connected
voids.

A porous material is a collection of units of solid matter
that are combined in some way. These units have pores
between them, and these pores allow the circulation of
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F1GURE 1: GAN training process.

substances such as gases and liquids. The most important
characteristic of porous materials is that they have many
pores compared to other materials with a tighter structure,
and the size and shape of the pores vary from one porous
material to another. The appearance of porous materials that
people see with the naked eye is actually the appearance of all
the units gathered together. Porous materials rely on solid
material units to maintain their shape and properties, so the
sum of interconnected units in porous materials is usually
called the solid skeleton. From the above analysis, it is clear
that porous material is a material form composed of solid
skeleton and pore space together. The space between the
units in a porous material is called the pore of the porous
material. The shape of the units is very irregular and thus the
pore shape is extremely complex; it is so complex that it is
difficult to describe the geometry precisely by mathematical
means. The pores are homogeneous at the macroscopic level
and randomly distributed in the porous material at the
microscopic level. Some pores are interconnected and they
play a major role in the permeability of the medium. Some
pores are isolated and closed by the solid skeleton and
become dead-pores, while some pores are partially isolated
and only one end is connected to other pores and are called
dead-end-pores, which can store fluids but contribute little
to the permeability of the medium. Some pores are located
between units and are called intergranular pores in geo-
science. Some pores are located inside the unit and are
referred to as intragrain pores in geoscience. The larger scale
pores in the medium are often in the form of fissures,
cuttings, cracks, or cavities. Regardless of the type, pores are
interwoven in porous materials to form a complex network,
and it is not meaningful to study individual pores in
isolation.

2.2. Generating Adversarial Neural Network (GAN). GAN
was proposed 8 years ago [27]. The principle of GAN is
similar to copying a painting in people’s daily life. When
copying more and more times, the more similar the painting
becomes at the end. At the highest level, the copied painting
is exactly the same as the copied painting. In the GAN
network, the operation of drawing is replaced by model
training. The GAN network is used to learn data distribution

patterns and generate data that are similar to the original
data distribution. The GAN network structure consists of
two parts, a generator and a discriminator, and the GAN
training process is depicted in Figure 1.

The GAN is trained alternately with the generator and
discriminator during the training process. The red dashed
line indicates the distribution of the real data, the blue solid
line indicates the generator output distribution, and the
purple solid line indicates the recognition curve of the
discriminator. The horizontal line is a uniformly sampled
region, the horizontal line x is a partial region of the real
data, and the upward-facing arrow represents the mapping
x = B(2). B shrinks in the high-density region and spreads in
the low-density region. To train the GAN network, the
discriminator is trained by first fixing the generator pa-
rameters. When the discriminator has been trained, adjust
the parameters and train the generator. After the generator is
trained, the discriminator is trained again. The generator
and discriminator are trained alternately and finally reach
the equilibrium state. The data distribution generated by the
generator is consistent with the real data distribution in the
equilibrium state. GAN’s mathematical expression is as
follows:

minmaxV (A, B) = Ey~O(y) [logA (y)]
B A )
+E, N llog(1l - A(B(2)))],

where E( ) is the expected value of the distribution
function, y is the true data, O(y) is the true sample dis-
tribution, z is the noise input to the G-network, B(z) is the
data generated by the G-network, N(z) is the noise dis-
tribution defined in the lower dimension, and A(y) is the
probability of whether the data is true, with closer to 1
indicating more realistic data. A(B(z)) is the likelihood of
the D-network determining whether the data generated by
the G-network is correct. The generating network wants to
generate a more realistic picture, that is, the larger the
A(B(z)), the better, when V(A,B) is smaller. For the dis-
criminative network, the stronger the discriminative
ability is, that is, the larger the A(y) is, the larger the
V(A,B) will be at this time. Fix B first and find the optimal
solution A:
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where K represents the Kullback-Leibler divergence and ]
represents the Jensen-Shannon divergence. maxV(B A)
denotes the difference between the two distributfons with a
minimum value of —2log2 and a maximum value of 0. B is
optimal when pg(y) = O(y).

J(alb) = %K(a

2.3.SRGAN Model. When the magnification of the image is
relatively low, the image super-resolution reconstruction
algorithm incorporating traditional deep learning con-
volutional neural networks is advantageous. When the
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magnification of the image is more than four times the size
of the image itself, the image processed by this technique
will be blurred or lack of image details. The reason for this is
that this algorithm mostly uses two techniques, interpo-
lation convolution or interpolation padding convolution.
On the other hand, since traditional neural networks
usually use mean squared difference MSE as the loss
function during model training, a high peak signal-to-noise
ratio can be achieved, but the disadvantage is that the
images generated using this technique tend to lose high-
frequency details, causing the images to become smooth,
thus affecting one’s visual experience. In view of this, an
image super-resolution reconstruction model based GAN
(SRGAN) based on generative adversarial networks is in-
troduced in the literature [28]. In the model training
process, the new method employs a perceptual loss func-
tion, and then achieves image super-resolution through
upsampling and convolution. The experimental results
show that the recovered image with the SRGAN model has
more high-frequency details, ensuring the image’s quality.
Figure 2 depicts the SRGAN model.

As shown in the SRGAN model in Figure 2, the model
mainly consists of several core components, including the
generator, discriminator, VGG network, and loss function. It
has been shown that the amount of feature information
extracted by the network is closely related to the depth of the
network structure. In other words, a deeper network
structure has to be constructed in order to extract more
feature information. However, the cost of doing so is that the
problem of gradient dispersion or gradient explosion will
occur. The use of residual blocks, on the other hand, can
solve the problem and thus ensure the effective transfer of
gradient information. In view of this, first, we further de-
velop the optimization of the generator based on ResNet. It
has several residual blocks, and each residual block has two
3 x3 convolutional layers. Then, the batch normalization
(BN) layer is located behind the convolution layer, which
utilizes Relu as the activation function, while the two 2x
subpixel convolutional layer are used to expand the feature
information inch. Finally, the output 3-channel image is
generated by using a 3 x3 convolution layer. In this way,
with this model, super-resolution images can be obtained
even with the input low-resolution images. Second, the
discriminator contains eight convolutional layers, and any
one of them is connected with a batch normalization layer
BN. Along with the deeper and deeper layers of the network,
the number of features becomes more and more, and the size
of the features keeps getting smaller, so LeakyRelu is utilized
as the activation function. Finally, the batch normalization
layer BN is followed by two fully connected layers, with a
sigmoid activation function that is used to determine the
likelihood that the judgment is a natural image. The role of
the VGG network is that it outputs the super-resolution
image SR generated at the end of the generator to the already
trained network on ImageNet. The loss function of the
SRGAN model refers to the loss function D_Loss for training
the discriminator and the loss function G_Loss for training
the generator, respectively, where the latter includes content
loss and adversarial loss.
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FiGure 2: SRGAN model.

3. 3D Reconstruction Method for SEM Images of
Porous Materials

3.1. Execution Flow of the 3D Reconstruction Method. The
execution flow of this paper with the 3D reconstruction
method is shown in Figure 3. First, the SEM images of the
porous material are acquired. It is important to note that the
acquired SEM images show the entire porous material as
much as possible and are continuous. Second, the initial
SEM images are often noisy and have unclear boundaries.
Therefore, the initial SEM images need to be preprocessed.
The common means of preprocessing is binarization or
filtering techniques. Third, for 3D reconstruction, the in-
termediate layer images are very important. In this paper, an
improved SRGAN model (ISRGAN) is used to generate the
middle layer image. The middle layer image is characterized
by a high similarity to the actual acquired SEM image. It is
reflected by its void feature distribution which is the same as
the acquired SEM image. Fourth, 3D reconstruction is
performed using the generated intermediate layer images.
The reconstruction is done by using layer-by-layer extrac-
tion and stacking in this way.

3.2. ISRGAN Model. The SRGAN model is characterized by
a very large number of residual convolution layers. This
characteristic, although the final result obtained is better, is
very time-consuming to train and requires high perfor-
mance of the hardware. The authors of [29] proposed a
convolution-deconvolution network structure that can ef-
fectively approach the image super-resolution reconstruc-
tion problem. The convolution-deconvolution network
structure is shown in Figure 4.

The network structure shown in Figure 4 is completely
symmetric. The figure shows that the convolution layer is
followed by downsampling and the deconvolution layer is

SEM scanning of porous

materials
u_l surface images | [ Complete 3D reconstruction
median noise
filter filter stacked
draft in
M sequence

l-l_l Processed surface images l

v
[T =0

F1GURE 3: 3D reconstruction process.

=

Generated images

followed by upsampling. The convolution operation is
multiple inputs and one output. The deconvolution op-
eration is the opposite, with one input and multiple
outputs. The deconvolution is actually the process of
expansion, so the operation can get more comprehensive
information and thus obtain more detailed information of
the image. In this paper, the ISRGAN model is obtained by
introducing the convolution-deconvolution structure on
the basis of the SRGAN model. The structure of the model
is shown in Figure 5.

The generator of the ISRGAN model contains seven
convolutional and seven deconvolutional layers each. The
parameters of the generator are set as shown in Table 1.

In addition to the improved generator of the model, the
discriminator is also improved in this paper. The discrim-
inator is mainly used to determine the generated forged
image and the real image to calculate the minimum variance
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TABLE 1: Parameter details.
Conv layer Size of the kernel Number of kernels
Convl 3x3 256 | 3x3Cony12 |
Conv2 33 256 | 33xConv.64 | 3x3Convsi2 |
Conv3 3x3 256 — [—
Conv4 3%3 128 [ 3:3Conv4p12 | | 3x3Conv,512 |
Conv5 3x3 64 -
3x3Conv,128
Convé 3%3 32 | . . | | 3><3Conv,.’l>12,pl/2x |
Conv7 3x3 L | 3x3Conv,128.p/2 | | 3x3Conv,512 |
Deconvl 3x3 32 | - ;56 ! | {—
Deconv2 3x3 64 aaCony o | 3x3Conv512 |
Deconv3 3x3 128 | 3x3Conv,256 | —
Deconv4 3x3 256 B | 3X3C0nv’5,12 ; |
Deconv5 3x3 256 | 3x3Conv,256 | | 3x3Conv,512,p/2 |
Deconvé 3%3 256 L —
Deconv? 3x3 1 | 3x3Cony.256,p/2 | | fc|,409|6 |
| £c,4096 |
1 1
| fc,1000 |

of the pixel space between them. In order to recover better
image information, this paper assists in extracting image
features by training the VGG19 network, and its structure is
given in Figure 6.

The feature map of a layer is extracted from a previously
trained VGG19, and the generated fake image FEATURE
MAP is compared to the real image MAP to determine the
Euclidean distance between the generated image and the real
image feature representations. Ly, calculates the degree of

Ficure 6: VGGI19 network structure.

matching between pixels and the loss function and L, ex-
pression of the degree of matching of a certain feature layer
is as follows:
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Ly = L;D;; 5 & (Ai’j(M )x,y = 1,(Go, (M ))x)y> ,
(4)
where L;j, D;; is the feature map size, A, ; is the feature map

obtained by the jth convolution before the i-th maximum
pooling layer, and M" is the real image. Equation (5) shows
the discriminator’s loss function in the GAN:

sigmoid(C(y) -E, ~QC(yf)>, ify isreal,
D(y) =
sigmoid(C(y) -E, 5C (yr)>, if y is fake.

(5)

When y is real data, the result is the output of the real
data minus the average of the output of all the fake data, and
then the sigmoid is taken over the result. When y is fake data,
the result is the output of the fake data minus the average of
the output of all the real data, and then the sigmoid is taken
over the result.

The loss functions of the SRGAN discriminator and
generator are modified as shown in equations (6) and (7),
respectively:

Ly = ~E, [log(D(y,))] - E, [log(1 - D(5/))].  (6)

Lg = -E, [log(D(yy))] - E,, llog(1-D(y, )] (7)

Finally, the generator’s loss function is depicted as
follows:

LG = LV + ﬁLG’ (8)

where f is the balancing factor, whose role is to balance the
loss values of the loss function.

3.3. 3D Model Reconstruction. According to the 3D model
construction process given in this paper, once the ISRGAN
model generates all the intermediate layer images, then the
intermediate layer images are overlapped from the top to the
bottom according to the stacking method, as shown in Figure 7.

The 3D model reconstruction method used here is the
slice-combination method. The operation schematic of the
slice-combination method is shown in Figure 8.

It should be noted here that the boundaries of 3D models
constructed by overlapping multiple intermediate layer
images are usually rough and can be seen to overlap multiple
layers; therefore, smoothing is essential. Commonly used
smoothing techniques include weight smoothing, mean
filtering, median filtering, Gaussian filtering, and bilateral
filtering. Mean filtering is highly efficient and simple in
thought. Therefore, in this paper, the mean filter is chosen to
smooth the boundary.

4. Experimental Results and Analysis

Image size affects the performance of the training model. An
image that is too large will consume memory, while the one

FIGURE 7: Stacking method.
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0.5 1
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-0.5

0 -0.5

F1GURE 8: Schematic diagram of the slicing combination method.

that is too small will not be able to characterize the internal
information. To quantify the size of the dataset used in this
paper, the relationship between different image sizes and the
running time of the algorithm was experimentally com-
pared. The settings of each parameter of the model in this
paper are shown in Table 2.

In this paper, SEM scanned images of coal-based porous
carbon are selected as the input data for 3D reconstruction.
The 3D reconstruction algorithm’s performance is measured
by whether the porosity approximates the real porosity of the
sample. Different cell sizes have different effects on porosity.
Based on the Avizo software, the cell sizes on the whole 3D
model are extracted and the cell porosity is calculated.
Experiments were conducted on three samples with different
cell edge lengths, and the porosity comparison for each
sample was obtained by calculation as shown in Table 3 as
well as Figure 9.

In the porosity variation curves of the three samples
shown in Figure 9, all three samples have a large variation in
porosity until the cell size is 100. Samples 1 and 3 have a
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TABLE 2: Parameter settings.
Parameters Value
Epoch 16
Learning rate 0.0002
Number of iterations 2000

TaBLE 3: Porosity of each sample at different unit body sizes.

Unit length (pixels) Sample 1 Sample 2 Sample 3
12 0.95971 0.72774 0.42106
24 0.94117 0.63002 0.35040
36 0.84414 0.52746 0.32491
48 0.73488 0.45411 0.31143
60 0.52119 0.38342 0.22431
72 0.44802 0.34614 0.22388
84 0.40205 0.31535 0.23450
96 0.37209 0.30007 0.23158
108 0.35407 0.29256 0.21633
120 0.34615 0.28357 0.20914
132 0.34600 0.27362 0.20133
144 0.34305 0.26655 0.19302
156 0.34154 0.25846 0.18960
168 0.34154 0.25846 0.18923
180 0.33715 0.25487 0.18197
1 -
09
0.8 -
0.7
2061
8
S o5t
04
03
021
0.1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Unit length (pixels)

—=— samplel
—e— sample2
—a— sample3

FI1GURE 9: Porosity of each sample at different unit body sizes.

stable porosity region at a unit size of 100, and sample 2 has a
stable porosity region at a unit size of 110. This indicates that
the optimal unit cell size is different for different coal-based
porous carbon samples. In this paper, a 180 x 180 x 180 pixel
unit cell was finally used as the study object. The experi-
mental results show that the 3D reconstruction model used
in this paper is capable of obtaining the closest porosity to
the real object. The reason for the good results of 3-di-
mensional reconstruction based on SEM images of porous
materials in this paper is the perfect simulation generation of
the intermediate layer images of the 3D model using the
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ISRGAN model. The experimental results show that the
generation of the middle layer image is effective, and the
information of the void part in the middle layer image can be
generated as much as possible and close to the real image.
The experimental results show that the ISRGAN model used
in this paper is very effective and superior. The method can
also be applied to other porous materials for 3D recon-
struction in the future.

5. Conclusion

The pore structure of porous materials is very complex,
and its representation has been a difficult problem in this
research area. Adequate analysis is needed before mod-
eling to derive a suitable stochastic model expression;
otherwise, the reconstructed model will not truly reflect
the geometric characteristics of porous materials. In this
paper, we have conducted an in-depth study on the se-
lection of scanning images, preprocessing, 3D mathe-
matical modeling, and model validation in the modeling
process and also implemented the corresponding algo-
rithms mainly in the following aspects. First, by analyzing
and comparing the advantages and disadvantages of
various scanning images, we finally determined that using
SEM images is the most beneficial for 3D reconstruction.
The reason is that SEM images have higher resolution,
large depth of field, continuously adjustable magnification
in a wide range, relatively easy specimen preparation, and
dynamic observation. The SEM images of porous materials
were acquired, and the acquired SEM images are pre-
processed, including noise removal and determination of
boundaries. Second, for the generation process of the
intermediate layer images, an improved deep learning
model for image super-resolution reconstruction is used in
this paper. This model is an improvement of the SRGAN
model, which has 16 layers of residual convolution in the
generator, and although the deeper network can extract
more details of the characteristics, the large network
structure is not conducive to training, the requirements for
hardware and other experimental environments are rel-
atively high, and the stability of the training process is
difficult to be guaranteed. The ISRGAN model, on the
other hand, circumvents these problems. The preprocessed
images are fed into the ISRGAN model for training. Thus,
multiple intermediate layer images are generated. Third,
the 3D reconstruction of the middle layer images is per-
formed using the slice combination method. In order to
validate the efficacy of the 3D reconstruction method used
in this paper, the experiments examine the relationship
between unit cell pixels and porosity. It is concluded that
the porosity tends to be stable when the unit cell pixels is
over 110, and it is converged to the real porosity of the
sample. The experimental results validate the feasibility
and efficacy of the method presented in this paper in the
process of 3D reconstruction. However, the samples
reconstructed in 3D based on image processing techniques
will have information loss and addition, and how to extract
the desired information features without loss is the di-
rection of our next stage of research.
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