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In an urban shuttle system, shuttle buses need to pick up passengers waiting at predetermined stops according to their planned
schedules (routes and timetables). However, in practice, passenger demand is unstable and has �uctuations, which means that
passenger demand at a speci�c stop is likely to increase or decrease, causing low service quality, long passenger waiting times, and
imbalanced utilization of bus capacity. �erefore, we introduce the shuttle bus rerouting and rescheduling strategy, based on
which the operator can change the visited stops and arrival times of the shuttle buses and can operate backup buses to handle the
passenger demand �uctuations. A three-dimensional space-time-state network is formulated to depict shuttle routes, timetables,
and passenger-loading states, and the proposed problem can be formulated as a multicommodity network-�ow optimization
problem. To solve the model e�ciently, we adopt the alternating direction method of multipliers (ADMM) decomposition
method to decompose the original problem into several single shuttle routing subproblems. We test the model and algorithm in
the 9-node network with three stops, and a larger scale Chicago sketch network is also adopted to demonstrate the e�ectiveness
and e�ciency of the proposed model and algorithm.�e rerouting and rescheduling results for the Chicago case represent a 5.7%
improvement relative to the results with the planned schedules.

1. Introduction

1.1. Motivation. With the development of the economy and
cities, tra�c congestion has become a serious phenomenon,
and increasing attention is being paid to environmental
tra�c [1], so shuttle buses, which are also called buses in this
paper, have become a major mode of commuting and travel
mode for some citizens [2], for example, sta� going to and
from work, students going to and from school, and pas-
sengers going to and from airports. Many studies, such as
Wang et al. [3]; Babaei and Rajabi-Bahaabadi [4]; Kim et al.
[5] and Tong et al. [6], scheduled buses considering di�erent
situations, including tra�c congestion, single destination,
multiple destination, and customized bus service design, to
generate well-designed bus routes and timetables and to
improve service quality. To ensure security and comply with

the tra�c rules, the number of passengers must have an
upper limit, which is called bus capacity. In addition, the bus
capacity may decrease due to a speci�c time. For instance,
during the epidemic caused by 2019-nCoV, government
regulations limited the number of passengers a bus can carry
to avoid contagion. In this context, shuttle bus rerouting and
rescheduling must be implemented to reduce passenger
density.

In practice, public transportation systems are unstable
and changeable due to unforeseen passenger �ow. During
the planning process, the operators determine the bus routes
and shuttle bus timetable based on the average and estimated
passenger �ow to guarantee service. While the rerouting and
rescheduling operation encounters oversaturated conditions
because of the self-bus capacity limits and the capacity limits
under speci�c policies, a temporary increase or decrease in
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passenger demand also affects bus schedules; in this case, if
the bus follows the original routes, there must be some
passengers that cannot board and some buses that have
vacant seats leading to lower service quality and waste of
capacity, respectively. +erefore, adjusting the original plan
and generating rerouting and rescheduling strategies are
important for addressing passenger demand fluctuation
conditions when considering limited bus capacity. Figure 1
shows the flowchart of the shuttle bus rerouting and
rescheduling problem.

1.2. Literature Review. +e bus/vehicle routing and time-
table problem is based on the average demand of passengers
or goods. +e operators schedule the buses/vehicles to pick
up the passengers or goods within or not within the time
window, which is studied as vehicle routing problem with
time window (VRPTW) or vehicle routing problem (VRP),
respectively. Yu et al. [7] solved the VRP by an improved ant
colony optimization which was a combination of the ant-
weight strategy and a mutation operation. Ellegood et al. [8]
proposed the continuous approximation models to evaluate
the benefit of the mixed load school bus routes, and a
semirural Missouri school district was adopted to test the
model. Yao et al. [9] considered the VRPTW with time-
dependent travel times. A space-time-state network-flow
model is formulated to minimize the vehicle total costs, and
the ADMM decomposition method was introduced to break
the model symmetry and increase the quality of both primal
and dual solution. Yan and Tang [10] proposed that previous
studies scheduled buses with projected (or average) market
share and demand, but passenger choice behaviors and
uncertain market demands were used in this paper. +en, a
nonlinear integer program and a solution algorithm were
proposed and tested in Taiwan intercity operation. Ghilas
et al. [11] studied the VRPTW to satisfy the demands. In

order to solve the problem efficiently, an adaptive large
neighborhood search heuristic algorithm was designed.

However, in reality, the demand is not fixed, and the
demand of some stops may increase or decrease unex-
pectedly. To provide high-quality service for users or op-
erators when demand fluctuates, strategies such as the
vehicle/bus rerouting and rescheduling are used. Moreover,
traffic disruption can also have a significant influence on
daily transportation, and the proposed strategies were also
adopted in some studies. Cao and Ceder [2] proposed an
approach to optimize the shuttle vehicle timetable and
scheduling by using a skip-stop strategy considering real-
time passenger demand in the single-depot bidirectional
circle autonomous shuttle bus service route, which aimed to
decrease the passenger total travel time and the number of
shuttle buses in use. Liu et al. [12] proposed a model with
three objectives that minimizes the total wait time, total in-
vehicle time, and total operating time to generate an optimal
stop-skipping plan or a deadhead plan. +en, a genetic al-
gorithm incorporation Monte Carlo simulation was pro-
posed to solve the model efficiently. Wang et al. [3]
developed a bus rescheduling approach when traffic con-
gestion occurred. +e proposed approach generated vehicle
timetables and rescheduled dynamically. Li and Ferguson
[13] solved the vehicle rescheduling problem in disrupted
transport network by augmenting the within-day replanning
simulation model which means that the agents can adjust
their day plans during a single day rather at the end of the
day. Li et al. [14] proposed a vehicle rescheduling problem to
minimize the operation delay for obtaining the optimal
vehicle assignment and reassignment considering a single
depot, and backup buses were used in this paper. Nikolić and
Teodorović [15] found that one or more planned vehicle
routes were not feasible when high demand emerged un-
expectedly in some nodes.+en, a mathematical formulation
of this problem was presented to reschedule vehicle routes
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Figure 1: Flowchart of the shuttle bus rerouting and rescheduling problem.
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by generating a new set of vehicle routes. In addition, Yin
et al. [16], Bettinelli et al. [17], Espinosa-Aranda and Garćıa-
Ródenas [18], Gao et al. [19], Altazin et al. [20], Niu et al.
[21], and Zhu and Goverde [22] solved the problem of
demand fluctuation or traffic disruption in the railway
system, which can also provide suggestions for this paper.

Table 1 shows the comparison of the studies and this
paper on vehicle/bus rerouting and rescheduling problem,
including the objective of the model, the situation of the
problem, and the solution algorithm. According to the
previous studies, most of them considered the demand
fluctuation from the aspect of the increasing demand, such
as Nikolić and Teodorović [15], but this paper considers both
the increasing and decreasing fluctuation demand, which is
more realistic. Cao and Ceder [2], Liu et al. [12], Wang et al.
[3], and Li et al. [14] solved the vehicle/bus rerouting and
rescheduling problem without considering demand fluctu-
ation. Besides, this paper introduces the state dimension in
the space-time-state network to depict the number of real-
time carrying passengers of the vehicle/bus, and this ap-
proach to demand is different from Cao and Ceder [2], Liu
et al. [12], and Nikolić and Teodorović [15]. Furthermore, we
design the ADMM-based decomposition method to im-
prove the algorithm efficiency significantly, which was rarely
used in the vehicle/bus rerouting and rescheduling problem.

1.3. Work and Structure of 1is Paper. In this paper, we aim
to optimize the shuttle bus rerouting and rescheduling
problem considering passenger demand fluctuation.

+e research works of this paper are as follows:

(1) In shuttle bus systems, considering passenger de-
mand fluctuation, implementing original bus routes
and timetables generated by average passenger de-
mand may prevent passengers from boarding and
leave some buses with vacant seats. +erefore, we
propose the bus rerouting and rescheduling to adjust
the bus routes and timetables and operate backup
buses for increasing service quality and decreasing
waste of capacity. +e passengers waiting at their
corresponding stops are rearranged optimally within
the specific passenger boarding time window and
arrive at the destination before the time limit.

(2) To solve the proposed model, we construct a three-
dimensional space-time-state network based on the
service network, where the space-time dimension

depicts bus routes and timetables and the state di-
mension presents the number of passengers in real
time.+en, the bus travel arcs, pick-up arcs, inbound
arcs, outbound arcs, and drop-off arcs are built to
describe bus operation, and the passenger pick-up
time window and drop-off time window are also
considered in the arcs. Based on this, we propose a
time discretized multicommodity network-flow
optimization model with side constraints for the
shuttle bus rerouting and rescheduling problem. +e
passengers (as the users) waiting at each stopmust be
distributed to a specific bus (as the resource) and
arrive at their destination optimally, and the buses
must select a series of arcs with minimum cost.

(3) +e proposedmodel is difficult to solve when applied to
large-scale cases. +erefore, the alternating direction
method of multipliers (ADMM) decomposition
methods is adopted to relax the hard constraints (de-
mand satisfaction constraint) into objectives. Because
this technology introduces a quadratic term and leads to
a nonlinear model, linearization technology is also used
to linearize the quadratic term, and the original model
can be decomposed into several space-time-state
shortest-path-finding subproblems that can be solved
by the designed dynamic programming algorithms.
Finally, the proposed model and algorithm are applied
to several cases to test their effectiveness and efficiency.

+e remainder of this paper is organized as follows.
Section 2 introduces the problem statement and the
rerouting and rescheduling strategy based on the con-
struction of the service network. Section 3 formulates the
three-dimensional space-time-state network. A multi-
commodity flow optimization model for the shuttle bus
rerouting and rescheduling problem is also built. Section 4
presents the alternating direction method of multipliers
(ADMM) decomposition methods to solve the model effi-
ciently. Section 5 optimizes a simple case with 15 nodes and a
large-scale case based on a Chicago sketch road network
using the proposed method. Section 6 concludes this paper.

2. Problem Description

2.1. Service Network Construction for Shuttle Bus Rerouting
and Rescheduling. In this section, we design a physical
network (N, L) for the urban shuttle bus system, where N is

Table 1: Comparison of the previous studies and this paper on vehicle/bus rerouting and rescheduling.

Study Objective Situation Algorithm
Cao and Ceder [2] Minimize the total travel time and vehicle in use Real-time rescheduling Genetic algorithm

Liu et al. [12] Minimizes the total wait time, total in-vehicle
time, and total operating time Traffic disruption Genetic algorithm

Wang et al. [3] Minimize the operation cost Traffic congestion Genetic algorithm

Li et al. [14] Minimize the operation delay Traffic disruption Auction-based
algorithm

Nikolić and
Teodorović [15] Minimize the transportation cost Demand fluctuation

Bee colony
optimization
algorithm

+is paper Minimize the total bus travel cost and the passenger delay Demand fluctuation ADMM
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the node set and L is the link set. Each link can be defined as a
direct link (i, j) ∈ L, which means that the bus can travel
from node i ∈ N to node j ∈ N. To illustrate the network
clearly, we take the example shown in Figure 2(a), which
includes one bus depot node (node 7), one bus destination
node (node 8), one backup bus depot node (node 9), six
normal nodes (node 1–6), and three stops (stop 1–3) showed
with triangles, and the passengers will wait for the shuttle
buses at the stops. Considering that the physical network
shown in Figure 2(a) only presents the structure of the
network, the service process, such as picking up the pas-
sengers, cannot be depicted; therefore, we expand the
physical network into the service network (N, L), as shown
in Figure 2(b). We transformed the stop in Figure 2(a) (stop
1) into a platform that includes the inbound link (i, j) ∈ Lin,
pick-up link (i, j) ∈ Lp, outbound link (i, j) ∈ Lout, and
drop-off link (i, j) ∈ Ld distinguished from the trans-
portation link (i, j) ∈ Ltra, as shown in Figure 2(b), and an
extra passenger pick-up time is introduced in the pick-up
link, which means the travel time of the inbound link, pick-
up link, and outbound link is larger than the travel time of
corresponding transportation link. If there is some pas-
senger demand between two normal nodes and the bus has
vacant seats, then the bus will choose the platform (node 1 to
node 12 to node 13 to node 3) to pick up the passengers. If
there is some passenger demand between two normal nodes
and the bus has no vacant seats, the bus will choose the
transportation link (node 1 to node 3), and in addition, if
there is no passenger demand, the bus will also choose the
transportation link. For example, we set two buses to pick up
the passengers at stop 1, stop 2, and stop 3, as shown in
Figure 2(b). +e node sequence of bus 1 is (7-2-10-11-5-1-12-
13-3-8), and the node sequence of bus 2 is (7-2-4-14-15-3-8).
+e carrying state of the buses is also shown in Figure 2(b).

2.2. Rerouting and Rescheduling Strategy to Deal with Daily
Passenger Demand Fluctuations. Considering the passenger
demand fluctuation, the average passenger demand may

increase or decrease in a specific time, so some buses cannot
carry any other passengers because of the saturated carrying
capacity, and some buses may have more vacant seats
compared to the planned scheme. +en, some stops may not
need to be visited, and some stops may need other buses or
extra buses to visit. +erefore, the rerouting and resched-
uling strategy is presented to optimize the shuttle bus routes
and timetable for higher service quality. Based on this, we
present some examples to illustrate the advantages of the
proposed methods.

Figure 3(a) shows the bus routes without any strategy
and presents the stop plan and carrying state.+en, we set up
two buses, and each bus carries at most three passengers.
Buses 1 and 2 depart from the bus depot node and finally
arrive at the bus destination node. During the entire travel
process, the average passenger demand is satisfied through
the planned schedule. However, passenger demand always
fluctuates; if this happens, some passengers cannot be car-
ried because of the limited capacity of each bus, leading to
the worst service quality. For example, the passenger de-
mand transforms from 1 to 2 at stop 1, from 2 to 1 at stop 2,
and from 2 to 5 at stop 3. If the buses operate as scheduled,
the satisfaction of passenger demand is shown in Figure 3(a);
that is, four passengers at stop 3 cannot be carried and bus 2
has two vacant seats.

In this paper, the operator can reroute the physical
route of each bus to change their visited stops. In detail,
when a bus reaches or will reach a full state (all seats are
occupied) according to the planned schedule and pas-
senger demand fluctuation, the bus can skip some stops
and run to the following node, while the passengers
waiting at the skipped stops can be picked up by the other
unsaturated buses. As shown in Figure 3(b), bus 1 can run
directly from node 2 to node 1 instead of running from
node 2 to node 5 to node 1, and then bus 1 picks up three
passengers at stop 3 to finish the route. To pick up the
passenger waiting at stop 1, which was skipped by bus 1,
the operator should change the alternative route for bus 2
to visit stop 1.
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Figure 2: +e structure of the (a) physical network and (b) service network.
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Considering that a large amount of passenger fluctuation
may occur, the operator can reschedule the backup buses to
satisfy the passenger demand. Backup buses are additional
buses in the backup bus depot, and many studies, like
Nikolić and Teodorović [15] and Li et al. [14], have adopted
this method when demand fluctuations or unexpected
disruptions occur at a specific time. In our study, the op-
erator could directly reschedule additional backup buses
with the operating cost from the backup bus depot node to
pick up the temporarily increased passengers at the corre-
sponding stops. As shown in Figure 3(b), bus 1 picks up
three passengers at stop 3, but two passengers are left be-
cause of the limited capacity at stop 3. +en, an additional
backup bus from the backup depot node can be scheduled to
pick up the passenger waiting at stop 3.

Table 2 shows the result comparisons under no strategy
and the proposed strategy. We set the travel time of each
link, as shown in Table 3,, and the capacity of each bus is 3.
+en, the bus travel cost can be calculated based on the node
sequence, as shown in Figure 3. Moreover, we find that four
passengers cannot be carried because of the limited capacity,
leading to lower service quality, then two backup buses must
be used to pick-up these passengers to satisfy the demand,
and the added backup buses have an operating cost, which is
set as 6. Based on this, the total cost without any strategy is
42, which is higher than the total cost of adopting the
rerouting and rescheduling strategy.

2.3. Problem Statement. In order to mitigate the effect of the
demand fluctuation, the rerouting and rescheduling strategy
are proposed and corresponding to the adjustment of the bus
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Figure 3: +e bus routes (a) without any strategy considering demand fluctuation and (b) with the rerouting and rescheduling strategy
considering demand fluctuation.

Table 2: Comparison between approaches with and without the strategy when considering fluctuating passenger demand.

Situation Travel cost Operating cost of backup buses Total cost
Planned schedules 30 12 42
Rerouting and rescheduling solution 27 6 33

Table 3: +e bus travel time of each link in the service network.

Link Travel time
(1, 2) 3
(1, 5) 1
(2, 1) 3
(2, 5) 3
(3, 1) 3
(3, 6) 1
(4, 2) 3
(4, 6) 1
(5, 1) 1
(5, 6) 1
(6, 3) 1
(7, 2) 1
(10, 11) 2
(12, 13) 2
(14, 15) 2
(1, 3) 3
(1, 12) 1
(2, 4) 3
(2, 10) 1
(3, 4) 3
(3, 8) 1
(4, 3) 3
(4, 14) 1
(5, 2) 3
(6, 5) 1
(6, 4) 1
(9, 1) 1
(11, 5) 1
(13, 3) 1
(15, 3) 1

Mathematical Problems in Engineering 5



routes and the operation of the backup buses, respectively.
+e proposed service network (N, L) is the basis of the
rerouting and rescheduling problem. Each shuttle bus v ∈ V
departs from the depot node or backup bus depot node
ov ∈ N, then picks up the passengers at a stop, and finally
arrives at the destination node dv ∈ N. +erefore, we con-
sider the shuttle bus rerouting and rescheduling problem as
a single destination problem, for example, a company
commuting bus, school bus, and airport shuttle bus. We set
the average passenger demand of the pick-up link (i, j) ∈ Lp

as n(i,j) and the fluctuation in passenger demand as Δn(i,j). If
Δn(i,j) > 0, the passenger demand increases; if Δn(i,j) � 0, the
passenger demand does not change; and if Δn(i,j) < 0, the
passenger demand decreases. +erefore, the passenger de-
mand is n(i,j) + Δn(i,j) when fluctuation occurs. +e pas-
senger demand of each pick-up link must be met by the
shuttle buses at the bus arrival time s(i,j) as determined by
the planned timetable, and actually s(i,j) presents the earliest
arrival time of shuttle bus and the latest arrival time of
passenger at pick-up link. Finally, the passengers will be
dropped off before the time limit, such as the class bell time.
However, because of the demand fluctuation, the passengers
cannot be picked up punctually according to the adjusted
timetable, and there must be a latest pick-up time e(i,j) for
shuttle buses. +en, the pick-up time window [s(i,j), e(i,j)] is
determined, which indicates that the passengers must be
picked up within the pick-up time window [s(i,j), e(i,j)].
Moreover, the passengers will be preferentially assigned to
the unsaturated bus which arrives earlier and within the
pick-up time window [s(i,j), e(i,j)]. Considering that the
carrying capacity of each bus is limited because of security
and traffic rules, we assume that the number of maximum
passengers is capv for each bus v, which denotes that the
number of passengers in the bus cannot exceed capv.
+erefore, we propose that the shuttle bus rerouting and
rescheduling strategy can be adopted to improve service
quality and minimize operating costs and passenger delay
within a limited bus capacity. Figure 4 presents an example
to describe the relationship between buses and passengers.

To summarize, the inputs of this paper are (1) the
physical network, (2) the planned shuttle bus routes and
timetable, (3) the fluctuation in passenger demand at each
stop, (4) the OD of passenger demand, (5) the earliest arrival
time of shuttle bus and the latest arrival time of passenger at
pick-up link and the arrival time limit of each passenger, and
(6) the planning horizon and several basic parameters, such
as the cost of each arc and backup bus. +e outputs of this
paper are (1) the bus routes and (2) the bus timetable.

3. Space-Time-State Network Representation
and the Optimization Model

3.1. Space-Time-State Network Representation. To express
and solve the problem easily, a three-dimensional space-
time-state network introduced in Shang et al. [23] and
Mahmoudi and Zhou [24] is formulated to depict the bus
routes, timetable and carrying states. Based on the service
network presented in Section 2, we introduce the time di-
mension and the node i that can be expanded into vertex
(i, t), where t ∈ 1, 2, . . . , T′, the travel link (i, j) can be
expanded into arc (i, j, t, s) denoting a bus traveling from
node i at time t to node j at time s, and travel time is s − t.
+en, the state dimension is also introduced to depict the bus
carrying state, and vertex (i, t) can be expanded into vertex
(i, t, w), where w depicts the number of carrying passengers
in the bus at node i at time t. It should be noted that the value
of w in the depot node and destination node is 0; we call
these states the initial state wo and the final state wd, and the
value of w cannot exceed the bus capacity. Accordingly, arc
(i, j, t, s) can be expanded into (i, j, t, s.w, w′) ∈ A, denoting
that the bus travels from node i at time t withw passengers to
node j at time s with w′ passengers. Figure 5(a) shows the
space-time-state network of bus 1 with the planned schedule
presented in Section 2.1. +en, the rerouting strategy is
adopted, and the adjusted space-time-state network of bus 1
is shown in Figure 5(b). We find that stop 1 is skipped by bus
1. In order to depict the bus routes precisely and clearly, we
constructed six kinds of arcs:

Bus 1 departs from the depot at 7:00am

Bus 1 arrives at the stop 1 at 7:05am 5 passengers wait at stop 1, time window [7:00,7:20]

Bus 1 pick 3 passengers at the stop 1 at 7:05am 2 passengers wait at stop 1, time window [7:00,7:20]

Bus 2 departs from the depot at 7:05am

Bus 2 arrives at the stop 1 at 7:10am

Bus 2 pick 2 passengers at the stop 1 at 7:10am

2 passengers wait at stop 1, time window [7:00,7:20]

2 passengers wait at stop 1, time window [7:00,7:20]

5 passengers wait at stop 1, time window [7:00,7:20]

0 passengers wait at stop 1

……… ………

�e operation of buses �e status of passengers

Figure 4: +e description of the relationship between buses and passengers.
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Figure 5: +e space-time-state network of bus 1: (a) planned schedule and (b) rerouting and rescheduling solution.
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(1) Transportation arcs (i, j, t, s, w, w) ∈ Atra: For arcs
without passenger demand, the passenger carrying
state in (i, t) is equal to the passenger carrying state
in (j, s)

(2) Inbound arcs (i, j, t, s, w, w) ∈ Ain: Arcs entering the
pick-up arcs

(3) Pick-up arcs (i, j, t, s, w, w′) ∈ Ap: Arcs with pas-
senger demand, buses will carry w′ − w passengers in
pick-up arcs, and an extra pick-up time is included in
the pick-up arcs travel time s − t

(4) Outbound arcs (i, j, t, s, w, w) ∈ Aout: Arcs departing
from the pick-up arcs

(5) Bus waiting arcs (i, j, t, t + 1, w, w) ∈ Ain: Arcs for
bus waiting at the bus depot and destination

(6) Drop-off arcs (i, j, t, s, w, wd) ∈ Ad: Arcs connecting
to the destination node for buses dropping off the
passengers, and the carrying state decreases from w

to 0

Table 4 shows the indices, sets, parameters, and variables
used in this paper.

3.2. Details in the Space-Time-State Network Construction

3.2.1. Passenger Pick-Up Activities and Time Windows.
In the shuttle bus system, the passengers should be picked up
at the scheduled time s(i,j). However, because of the demand
fluctuation and considering traffic delays, the bus may not
arrive at the stop on time. +en, we set the latest picking up

Table 4: Notations used in this paper.

Notations Definition
Indices
i, j Index of nodes in the service network, i, j ∈ N

(i, j) Index of links in the service network, (i, j) ∈ L

t, s, t′, s′ Index of time intervals, t, s, t′, s′ ∈ T

w, w′ Index of passenger carrying state, w, w′∈W

(i, t, w) Index of vertices in space-time-state network
v Index of buses, v ∈ V

a, (i, j, t, s, w, w′) Index of arcs in the space-time-state network, a, (i, j, t, s, w, w′) ∈ A

Sets
N Set of nodes in the service network
L Set of links in the service network
T Set of time intervals in the study time horizon
V Set of buses
Vn Set of normal buses
Vb Set of backup buses
A Set of arcs in the space-time-state network
W Set of states in the space-time-state network

Lin , Lp, Lout, Ltra, Ld

Set of inbound links, pick-up links, outbound links, transportation links, and drop-off links in the physical network,
Lin , Lp, Lout, Ltra, Ld ⊂ L, respectively.

Ain , Ap, Aout, Atra, Ad

Set of inbound arcs, pick-up arcs, outbound arcs, transportation arcs, and drop-off arcs in the space-time-state
network, Ain , Ap, Aout, Atra, Ad ⊂ A, respectively.

Parameters
n(i,j) +e average passenger demand at pick-up link l
Δn(i,j) +e passenger demand fluctuation at pick-up link l

ov +e origin of shuttle bus v

dv +e destination of shuttle bus v

DEPv +e departure time of shuttle bus v at the depot node
ARRv +e arrival time of shuttle bus v at the destination node
wo +e initial state of a shuttle bus
wd +e final state of a shuttle bus
T′ +e time horizon of the space-time-state network
TTe +e latest bus arrival time at destination
TTa +e earliest bus arrival time at destination
[s(i,j), e(i,j)] +e pick-up time window in the pick-up link (i, j) ∈ Lp

capv +e capacity of bus v

ci,j,t,s,w,w′ Cost of arc (i, j, t, s, w, w′)
cv

i,j,t,s,w,w′ Cost of bus v in arc (i, j, t, s, w, w′)
π +e operating cost of backup buses
π′ +e cost of the unused backup buses
Variables
xv

i,j,t,s,w,w′
If arc (i, j, t, s, w, w′) is selected by bus v � 1; otherwise, v � 0
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time e(i,j) denoting that the passengers must be picked up
before e(i,j). In detail, if there is passenger demand n(i,j) +

Δn(i,j) at the pick-up links, the passengers must be picked up
within the time window [s(i,j), e(i,j)], which implies that the
start time of the pick-up arc (i, j, t, s, w, w′) ∈ Ap must be
within the time window [s(i,j), e(i,j)] or s(i,j) ≤ t≤ e(i,j). +e
number of carried passengers increases, reflected by w′ >w.
For example, in Figure 5(b), the demand time window at
stop 3 is [6, 8], so bus 1 selects the pick-up arc
(12, 13, 7, 8, 0, 3).

3.2.2. Passenger Drop-Off Activities and Time Windows.
In this paper, we solve a single destination problem by the
rerouting and rescheduling strategy in a shuttle bus system.
Passengers should arrive at the same destination before the
arrival time limit TTe, such as the class bell time and clock-in
time in the network. In addition, considering passenger
feelings and the actual situation, the passenger should not
arrive at the destination too early, so an earliest arrival time
TTa at the destination is also set. In detail, the bus should
finish travel within the time window [TTa, TTe], which
implies that the end time s of the drop-off arc
(i, j, t, s, w, wd) ∈ Ad is within the time window [TTa, TTe],
which is TTe ≤ s≤TTa. In addition, passengers are dropped
off in the drop-off arc; accordingly, the value of the end
carrying state w′ transforms to wd � 0. For instance, in
Figure 5(b), we set the earliest arrival time TTa, � 10 and the
time limit TTe � 12, and then the drop-off arc
(3, 8, 10, 11, 3, 0) is selected.

3.2.3. Shuttle Bus Capacity. Bus capacity is an important
element in transportation optimization. Some studies, such
as Szeto and Jiang [25], consider the bus capacity as a soft
constraint, which means that passengers can stand when all
seats are occupied. Some studies, such as Mahmoudi and
Zhou [24], consider the bus capacity as a hard constraint,
which means that passengers cannot enter the bus when all
seats are occupied. In this paper, considering security and
service quality, we hold the latter constraint. +e capacity of
each bus v is capv, and the carrying state w, w′ can never be
larger than capv, or w, w′ ≤ capv. For example, in Figure 5(b),
bus 1 can carry three passengers at most, so the remaining
passengers at stop 3 are carried by backup bus 1 instead of
bus 1.

3.2.4. Backup Bus Scheduling Cost and Penalty of Unsatisfied
Demand. In the shuttle bus system, the average passenger
demand may fluctuate, and some passengers may fail to
enter the bus because of the limited capacity. +erefore, in
order to satisfy all the passenger demand, the backup buses
should be used to pick up the remaining passengers.
Considering that scheduling new backup buses will add
operating costs, we set π to denote the operating cost for
each backup bus. Corresponding to the backup bus cost in
the space-time-state network, we set the arc cost that
connects the backup bus depot as π, as shown in equation
(1a). Once arc (ov, j,DEPv, s, wo, wd) is selected, the backup
bus attaches an operation cost π. To provide feasible
rerouting and rescheduling results, we build a dummy arc
(ov, dv,DEPv, ARRv, wo, wd) for each shuttle backup bus
v ∈ Vb, which means that the backup bus v ∈ Vb is not
operated when the dummy arc is selected, and the value of
the cov,dv,DEPv,ARRv,wo,wd

denotes the cost of the backup bus
which is not used shown in equation (1b).

cov,j,DEPv,s,wo,wd
� π v ∈ Vb. (1a)

cov,dv,DEPv,ARRv,wo,wd
� π′v ∈ Vb. (1b)

Moreover, to ensure the passenger service quality, a
penalty is applied for passengers who cannot enter the bus.
In this paper, for practicality, we assume that all passengers
require service. When the existing buses have no vacant seats
and there are also a certain number of passengers remaining
at their stops, a backup bus will operate to pick up the
remaining passengers regardless of the number of remaining
passengers at each stop, so the penalty of unsatisfied demand
is unified with the backup bus operating cost.

3.2.5. Deviation from the Planned Schedules. In the shuttle
bus rerouting and rescheduling problem, the shuttle bus may
be late when the travel route is changed. +erefore, in this
paper, we introduce the deviation between the rescheduled
and planned timetable into the objective to minimize the
passenger waiting time.+e arc cost is ci,j,t,s,w,w′ when the arc
is not the pick-up arc, and the arc cost is ci,j,t,s,w,w′ with the
deviation t − sl when the selected arc is the pick-up arc
which is

c
v
i,j,t,s,w,w′ �

ci,j,t,s,w,w′ i, j, t, s, w, w′( 􏼁 ∉ Aporx
v
i,j,t,s,w,w′ � 0,

ci,j,t,s,w,w′ + t − s(i,j) i, j, t, s, w, w′( 􏼁 ∈ Ap(i, j) ∈ Lp, x
v
i,j,t,s,w,w′ � 1.

⎧⎪⎨

⎪⎩
(2)

3.3. Model Formulation. According to the space-time-state
network, the bus routes, bus timetable, and bus carrying
state can be presented. To increase the bus service quality
and decrease the passenger travel time, we formulate a
multicommodity network-flow programming model in the
shuttle bus rerouting and rescheduling problem.

3.3.1. Objective Function. +e objective of the proposed
model is to minimize the total bus travel cost and the
passenger delay, as shown in equation (3).+e bus departure
time xv

i,j,t,s,w,w′ × t is always after the scheduled time s(i,j)

when pick-up arc (i, j, t, s, w, w′) ∈ Ap is selected because
the bus cannot pick-up the passengers at pick-up link (i, j)
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when the bus departs before s(i,j). +erefore, the passenger
delay term xv

i,j,t,s,w,w′(t − s(i,j)) is always larger than 0:

minO � 􏽘
v∈V

􏽘

i,j,t,s,w,w′( )∈A

x
v
i,j,t,s,w,w′ × c

v
i,j,t,s,w,w′ . (3)

3.3.2. Bus Flow Balance Constraint. +e shuttle bus should
be generated from its origin (ov, DEPv, wo)in the space-
time-state network which can be presented as

􏽘
(i,j,t,s,w,w′)∈A

x
v
i,j,t,s,w,w′ � 1 i � ov, t � DEPv, w � wo, w′ ∈W∀v ∈ V.

(4)

+e shuttle bus should end the trip at its destination
(dv, ARRv, wd), in the space-time-state network which can
be presented as

􏽘

i,j,t,s, w,w′( )∈A

x
v
i,j,t,s,w,w′ � 1 j � dv, s � ARRv, w ∈W, w′ � wd ∀v ∈ V.

(5)

+e bus flow should be balanced at the intermediate
vertex (i, t, w), which means that the number of entering
buses is equal to the number of departing buses at (i, t, w)

shown in equation (6). +erefore, equations (4)–(6) show
the bus flow balance constraint, which is also introduced in
the studies of Shang et al. [26] and Wang et al. [27] as

􏽘

j,s,w′( )

x
v
i,j,t,s,w,w’ − 􏽘

j′,s′,w
’
′􏼐 􏼑

x
v

j′ ,i,s′ ,t,w
’
′ ,w

� 0 (i, t, w) ∉ ov, DEPv, wo( 􏼁, dv, ARRv, wd( 􏼁􏼈 􏼉, ∀v ∈ V.
(6)

3.3.3. Demand Satisfaction Constraint. +e passenger de-
mand n(i,j) + Δn(i,j) must be met in the pick-up arc
(i, j, t, s, w, w′) ∈ Ap by a specific bus, which can be shown
as equation (7), in the space-time-state network. It should be

noted that the pick-up arcs (i, j, t, s, w, w′) are only built
when s(i,j) ≤ t≤ e(i,j), which guarantees the passengers can
only be carried within the pick-up time window as

􏽘
v∈V

􏽘

i,j,t,s,w,w′( )∈Ap

x
v
i,j,t,s,w,w′ × w′ − w( 􏼁 � n(i,j) + Δn(i,j) ∀(i, j) ∈ Lp.

(7)

3.3.4. Binary Variable Definition. A binary variable is shown
in equation (8); if bus v selects arc (i, j, t, s, w, w′),
xv

i,j,t,s,w,w′ � 1; otherwise, xv
i,j,t,s,w,w′ � 0.

x
v
i,j,t,s,w,w′ ∈ 0, 1{ } ∀ i, j, t, s, w, w′( 􏼁 ∈ A, ∀v ∈ V. (8)

4. Solution Approach

In this section, the alternating direction method of multi-
pliers (ADMM) decomposition method is introduced to
solve the proposed model. To simplify the description in our
model, we use notation a instead of (i, j, t, s, w, w′) in the
space-time-state network. We introduce w(a) to show the
state transition on the space-time-state arc (i, j, t, s, w, w′),
where w(a) � w′ − w.

+e ADMM described in Yao et al. [9] and Zhang et al.
[28] is the combination of augmented Lagrangian relaxation
[29] and the block coordinate descent method. Augmented
Lagrangian relaxation introduces a quadratic penalty term
into the objective function based on Lagrangian relaxation
[26]. Compared to Lagrangian relaxation, augmented La-
grangian relaxation can improve the model robustness and
functional convexity. However, the quadratic penalty term
leads to the nonlinearity of the model, so it is difficult to
decompose the model into several independent subprob-
lems. +en, we introduce the block coordinate descent
method to update the variables sequentially in a block-by-
block manner and make the quadratic penalty term linear.
Furthermore, ADMM has the advantages of breaking the
symmetry and strong convexity, and readers can refer to Yao
et al. [9] for more details.
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Input: +e physical network and space-time-state network, the planned shuttle buses routes and timetable, the fluctuation in
passenger demand at each stop, the OD of passenger demand, the departure time window and the arrival time limit of each passenger,
the planning horizon, and several basic parameters such as the cost of each arc and backup bus.
Output: +e routing and timetable of each bus.
Step 1: Initialization
Set the current iteration number g � 0, Lagrangian multipliers λ(i,j), and penalty multipliers ρ, best lower bound LB∗ � −∞, best

upper bound UB∗ � +∞, the maximum iteration number M and initialize the lower bound and upper bound solution xlower
0􏼈 􏼉,

x
upper
0􏼈 􏼉.

Step 2: Solve the bus routes and timetable problems for each bus
For each bus v ∈ V do

Update arc cost c
∧v

a by equation (12)
Use Algorithm 2 to find the time-dependent least-cost paths for all the buses
Obtain the bus route and timetable results and the objective function value, and add the results into lower bound solution

xlower
g􏽮 􏽯

End for each bus v ∈ V

Step 3: Obtaining the best lower bound
+e lower bound LBg at iteration g is the sum of two objective function values, then the best lower bound can be calculated as
LB∗ � max LB∗, LBg{ }.
Step 4: Obtaining the best upper bound
Find feasible initial solution x

upper
0􏼈 􏼉.

Adopt the passenger-to-bus results in step 2:
For each pick-up link (i, j) do

If the passenger is picked up by more than one bus, one of the buses is selected to pick up the passengers in pick-up link (i, j).
If the passenger is not picked up by any bus, a backup bus is selected to pick up him/her.

End for each pick-up link (i, j)

+en, update the upper bound solution xupper
g􏽮 􏽯 and the best upper bound can be updated as UB∗ � min UB∗, UBg{ }

Step 5: Updating the Lagrangian multipliers
Update the Lagrangian multipliers by subgradient method: λg+1

(i,j) � max 0, λg

(i,j) + ρ(xv
a × w(a) − n(i,j) − Δn(i,j))􏼚 􏼛

+e values of quadratic penalty multipliers ρ are fixed in this paper
Step 6: Termination conditions
If current iteration g reaches the maximum iteration number presented before, terminate the algorithm; otherwise, go to Step 2.

ALGORITHM 1: ADMM-based decomposition method.

Input: +e space-time-state network, the arc cost in the space-time-state network, the passenger time window [s(i,j), e(i,j)], the bus
travel time in each link
Output: Bus routes and timetable
For each bus v

Step 1: Initialization
Set the label cost of the space-time-state vertex σ(i, t, w) � +∞ and the space-time-state vertex predecessor pred(i, t, w) �

(−1, −1, −1). +e label cost σ(ov, DEPv, 0) � 0.
Step 2: Label updating in forward dynamic programming
For each time t do

For each pick-up link (i, j) do
For state w do
Calculate downstream state w′ based on the possible state transition on link (i, j) at time t.
Calculate arrive time s � t + TT(i,j,t)

If σ(i, t, w) + 􏽢cv
a ≤ σ(j, s, w′),

σ(j, s, w′): � σ(i, t, w) + c
∧v

a

+en pred(j, s, w′) � (i, t, w)

End if
End for state w

End for each pick-up link (i, j)

End for each time t

Back tracing the shortest space-time-state path for bus v

End for each bus v

ALGORITHM 2: Time-dependent least-cost path algorithm in forward dynamic programming.
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+e hard constraint demand satisfaction constraint in
model O shown in Section 3 leads to inefficiency when
solving the large-scale case, so equation (9) shows the
augmented Lagrangian model Oρ, which is a transformed
model O by relaxing the demand satisfaction constraint
(equation (7)) into the original objective (equation (3)), the
Lagrangian multipliers λ(i,j) are introduced, and the qua-
dratic penalty multiplier ρ is also introduced to punish the
objective when the constraint is not complied with.+en, we

find that constraints (4)–(6) and (8) in model Oρ are in-
dependent of all buses, and the original bus routing problem
can be decomposed into several shortest-path searching
problems for each bus. However, a quadratic term
􏽐(i,j)∈Lp

(􏽐v∈V􏽐a∈Ap
xv

a × w(a) − n(i,j) − Δn(i,j))
2 can be

found in the new objective Oρ; then, to linearize the qua-
dratic term, we introduce cv

(i,j) � n(i,j) + Δn(i,j)−

􏽐v′∈V| v{ }􏽐a∈Ap
xv′

a × w(a) ∀(i, j) ∈ Lp to denote the number
of passengers serviced by buses other than bus v at pick-up
link (i, j) ∈ Lp. +e new model is shown in equation (10),
and the quadratic term (􏽐a∈Ap

xv
a × w(a) − cv

(i,j))
2 can be

reformulated, as shown in equation (11), because the cv
(i,j) is

constant and the binary variable xv
a is equal to 1 or 0, which

can easily calculate the square (xv
a)2 as equal to 1 or 0. +e

detailed procedure of the proposed ADMM-based decom-
position method is shown in Algorithm 1.

Objective function is

minOρ � 􏽘
v∈V

􏽘
a∈A

c
v
ax

v
a + 􏽘

(i,j)∈Lp

λ(i,j) × 􏽘
v∈V

􏽘
a∈Ap

x
v
a × w(a) − n(i,j) − Δn(i,j)􏼐 􏼑 +

ρ
2

× 􏽘
(i,j)∈Lp

􏽘
v ∈ V

􏽘
a ∈ Ap

x
v
a × w(a) − n(i,j) − Δn(i,j)

⎛⎜⎝ ⎞⎟⎠

2

, (9)

Iteration k Iteration k+1

ę ę

v1 v2 v3 v4 vnę ę

v1 v2 v3 v4 vnę ę

v1 v2 v3 v4 vnę ę

v1 v2 v3 v4 vnę ę

ę ę

v1
v2 v3 v4 vnę ę

v1 v2 v3 v4 vnę ę

v1 v2 v3
v4 vnę ę

v1 v2 v3 v4 vnę ę

Temporarily fixed solution Current problem

Figure 6: +e rolling update scheme of ADMM.

Table 5: +e demand of different situations.

Situation
+e demand in each stop

Stop 1 Stop 2 Stop 3
Situation 1 1 2 2
Situation 2 2 2 2
Situation 3 2 5 1
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Figure 7:+e space-time-state networks of shuttle bus rerouting and rescheduling results in three situations. (a) Bus 1 in situation 1. (b) Bus
2 in situation 1. (c) Bus 1 in situation 2. (d) Bus 2 in situation 2. (e) Bus 1 in situation 3. (f ) Bus 2 in situation 3. (g) Backup bus in situation 3.
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Figure 9: +e structure of the Chicago road sketch network: (a) the planned shuttle bus lines and (b) the location of shuttle bus stops.
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Figure 8: (a)+e effect of ρ on the total carried passengers when backup bus cost is 10. (b) +e effect of backup bus cost on the total carried
passengers when ρ � 25.
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subject to constraints (3)–(5) and (7) reformulation

minOρ � 􏽘
v∈V

􏽘
a∈A

c
v
ax

v
a + 􏽘

(i,j)∈Lp

λ(i,j) × 􏽘
v∈V

􏽘
a∈Ap

x
v
a × w(a) − n(i,j) − Δn(i,j)􏼐 􏼑 +

ρ
2

× 􏽘
(i,j)∈Lp

􏽘
a ∈ Ap

x
v
a × w(a) − c

v
(i,j)

⎛⎜⎝ ⎞⎟⎠

2

, (10)

􏽘
a ∈ Ap

x
v
a × w(a) − c

v
(i,j)

⎛⎜⎝ ⎞⎟⎠

2

� 􏽘
a ∈ Ap

x
v
a × w(a)⎛⎜⎝ ⎞⎟⎠

2

− 2 × 􏽘
a∈Ap

x
v
a × w(a)⎛⎜⎝ ⎞⎟⎠ × c

v
(i,j) + c

v
(i,j)􏼐 􏼑

2

� 􏽘
a∈Ap

x
v
a ×(w(a))

2
− 2 × 􏽘

a∈Ap

x
v
a × w(a)⎛⎜⎝ ⎞⎟⎠ × c

v
(i,j) + c

v
(i,j)􏼐 􏼑

2

� 􏽘
a∈Ap

x
v
a × (w(a))

2
− 2w(a) × c

v
(i,j)􏼐 􏼑 + c

v
(i,j)􏼐 􏼑

2
,

(11)

subject to constraints (4)–(6) and (8).
According to the model proposed above, we use the

mathematical method to merge the similar items, and then
the final model is shown in equation (12), where Q is the
constant, and the calculation of the arc cost is also

introduced. Constraints (4)–(6) and (8) are independent of
all buses; therefore, model Ov

ρ is a standard shortest-path
searching problem for each bus v, which can be solved by the
dynamic programming shown in Algorithm 2.

minO
v
ρ � 􏽘

a∈A
c
∧v

ax
v
a + Q, 􏽢c

v
a �

c
v
a + λ(i,j) × w(a) +

ρ
2

×(w(a))
2

− ρ × w(a) × c
v
(i,j) +

ρ
2

× c
v
(i,j)􏼐 􏼑

2
∀(i, j) ∈ Lp,∀v ∈ V, ∀a ∈ Ap

c
v
a otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

subject to constraints (4)–(6) and (8).
In the model Oρ, cv

(i,j) � n(i,j) + Δn(i,j) −􏽐v′∈V| v{ }

􏽐a∈Ap
xv′

a × w(a)is introduced to present the number of pas-
sengers serviced by buses other than bus v at pick-up link (i, j).

+erefore, we design the rolling update scheme shown in Fig-
ure 6 to solve the shuttle bus routing and timetable problem.+e
buswithin the circlemeans the current optimizing bus v, and the
buses within the rectangle mean the fixed buses v′ ∈ V| v{ } .

Table 6: +e average passenger demand and fluctuated passenger demand.

Stop Average passenger demand Fluctuation in passenger demand
Stop 1 2 2
Stop 2 2 2
Stop 3 2 0
Stop 4 2 2
Stop 5 2 4
Stop 6 2 2
Stop 7 2 2
Stop 8 2 4
Stop 9 2 2
Stop 10 3 2
Stop 11 3 2
Stop 12 2 6
Stop 13 2 2
Stop 14 2 4
Stop 15 3 2
Stop 16 3 2
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5. Numerical Experiments

5.1. Simple Cases

5.1.1. Description. In this section, we design several simple
experiments based on the service network in Section 2.1 to
illustrate the proposed model and algorithm. Table 5
presents the different demands that lead to different strat-
egies. Situation 1 is the average demand as the baseline, and
passenger demand fluctuation occurs in situation 2 and
situation 3, and the difference between them is that planned
shuttle buses can satisfy all the passengers in situation 2 and
cannot satisfy all the passengers in situation 3. +e La-
grangian multipliers for the four situations are set as 0.01,
and the penalty multiplier ρ is set as 25. +e capacity of each
bus is set as 3, and at most three passengers can be carried in
each bus. +e bus travel time in each link is assumed to be
constant and is shown in Table 3.+e cost of each arc is equal
to the corresponding travel time, and the operating cost of
each backup bus is set as 10.

5.1.2.1e Rerouting and Rescheduling Results and Discussion.
According to the proposed model in Section 3.3 and the
proposed solution approach in Section 4, we can obtain the
objective upper bound within 10 iterations, and the space-
time-state networks of each bus in the three situations are
shown as follows:

(1) Figures 7(a) and 7(b) present the two buses’ space-
time-state networks with average demand as the
baseline.

(2) +e rerouting strategy is adopted when the demand
increases from 1 to 2 at stop 1, and bus 2 would
change the route to pick-up the passengers at stop 1,
as shown in Figure 7(d).

(3) +e rerouting and rescheduling strategy is adopted
when the demand increases from 1 to 2 at stop 1,
from 2 to 5 at stop 2 and decreases from 2 to 1 at stop
3. +en, bus 1 picks up two passengers at stop 2, as
directly shown in Figure 7(e), and bus 2 picks up two
passengers at stop 1 and then picks up passengers at

stop 3, as shown in Figure 7(f ). +e backup bus
operates to pick up the remaining two passengers at
stop 2, as shown in Figure 7(g).

From the three situations’ results, the proposed ap-
proaches can provide expected rerouting and rescheduling
programs with different types of passenger demand fluc-
tuations. +e operators can reroute the buses visiting stops
and flexibly operate the backup bus.

5.1.3. Parameter Analysis between Backup Bus Cost and
Penalty Multiplier. In this paper, we aim to reschedule the
shuttle bus to improve the service quality when passenger
demand fluctuation occurs, and the objective of the model is
to minimize the total cost and passenger delay. As the
number of passengers increases at a specific stop and the
total passenger demand exceeds the total shuttle bus ca-
pacity, a backup bus with a fixed operating cost should be
used to pick up the additional passengers. +en, we find that
the value of penalty multiplier ρ and the backup bus cost
have an effect on the total carried passengers. When the
penalty multiplier is not large enough, the backup bus would
not operate to pick up the increasing passengers and select
the dummy arc to arrive at the destination.When the backup
bus operation cost is too large, the backup bus would also not
operate to pick up the increasing passengers and select the
dummy to arrive at the destination. +erefore, we test the
effect of penalty multiplier ρ and the backup bus cost on the
total carried passengers shown in Figures 8(a) and 8(b),
respectively. We fix the backup bus cost as 10 first; it can be
found that two passengers are not carried when ρ< 25, and
all the passengers can be picked up when ρ≥ 25.When we fix
ρ � 25, all the passenger demand can be satisfied with
backup cost less than 11, and two passengers are not carried
when the backup cost is larger than 11.

5.2. A Large-Scale Case Based on the Chicago Sketch Road
Network. In this section, we test the proposed model and
algorithm in the Chicago sketch road network, which is
shown in Figure 9, including 545 nodes and 2,176 links. +e
link travel time is set as the real data, which is the quotient of
distance divided by the average speed.

We assume that there is a company in the center of the
city as presented in Figure 9(a). +e six planned lines shown
in Figure 9(a) are scheduled to pick up the passengers at 16
stops, as shown in Figure 9(b). +e clock-in time of the staff
is 9:00, so the passengers waiting at each stop must arrive at
the company before 9:00, and the earliest arrival time is set as
8:00. Considering that the maximum travel time from the
depot to the destination is 81minutes, the study period is set
as 7:00–9:00, for a time horizon of 120minutes, and we set
the time interval to 1minute. +e bus capacity is 6, and the
average passenger demand and fluctuation in passenger
demand are shown in Table 6.

According to the input introduced, we run the experi-
ment on a PC (CPU: i7-7700HQ 2.80 GHZ with eight
threads, 16GB RAM). To present the advantages of the
proposed approaches, we calculate the objective value
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Figure 11:+e rerouting and rescheduling results in the Chicago road sketch network: (a) line 1 and line 3, (b) line 2 and line 4, (c) line 5 and
line 6, and (d) line 7 (the backup bus line).
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without the proposed strategy first as the baseline objective
value when passenger demand fluctuates. +e baseline ob-
jective results are shown in Figure 10, and the penalty of each
unsatisfied demand is set as 15. +en, we adopt the shuttle
bus rerouting and rescheduling strategy by the proposed
model and algorithm to calculate the upper bound objective
value. +e operating cost of the backup bus is set as 20, the
Lagrangian multiplier is initially set as 0.01, and the qua-
dratic penalty multiplier is set as 30. +e upper bound
objective results of 15 iterations obtained within 753 s are
also shown in Figure 10, and the best solution is obtained at
iteration 10. As shown in Figure 10, there is a 5.7% im-
provement when the proposed approaches are adopted.

+e rerouting and rescheduling results are shown in
Figure 11. As the figure shows, the rerouting strategy is
adopted in Line 1 and Line 3, Line 2 and Line 4, and Line 5
and Line 6 because some lines are too far, such as Line 3 and
Line 5, which creates a large cost to pick up the remaining
passengers from Line 3 to Line 5. In detail, bus 1 skips stop 3
shown in Figure 11(a), bus 2 skips stop 6 shown in
Figure 11(b) and bus 5 skips stop 13 and 14 shown in
Figure 11(c). Furthermore, the total passengers at stop 12,
stop 13, and stop 14 is 12, which is far more than the bus
capacity, so a backup bus (running on Line 7) from the
backup bus depot must be used to pick up the remaining
passengers on Line 5, as shown in Figure 11(d). In con-
clusion, based on the proposed strategy, model, and algo-
rithm, the bus rerouting and rescheduling results can be
obtained in a short time, and all the passengers can be picked
up within their time window.

6. Conclusions

In this paper, we study the shuttle bus rerouting and
rescheduling problem. +e operators schedule the shuttle
bus based on the average passenger demand in the first
stage. However, because the passenger demand fluctuates,
passenger demand may increase at some stops and decrease
at some stops, and the planned bus schedule cannot satisfy
all the passengers, leading to unsatisfied passenger demand
and vacant seats. To improve the service quality and de-
crease the capacity waste, we introduce the rerouting and
rescheduling strategy to generate better routes and time-
table. +en, we adopt the three-dimensional space-time-
state network and an integer programming model to depict
and optimize the proposed problem. +e state dimension
denotes the number of passengers carried by the bus in a
specific time and node. Considering that the demand
satisfaction constraint is a complex constraint, the ADMM-
based decompositionmethod is adopted to break the model
symmetry and improve efficiency. To test the effectiveness
and efficiency of the proposed model and algorithm, a
simple case network with 15 nodes is used, and the sen-
sitivity analysis of backup bus cost and penalty multiplier is
also measured. Finally, we test the proposed method in a
large-scale case based on the Chicago sketch road network.
Based on the input of the planned six lines, the rerouting
and rescheduling results with passenger demand fluctua-
tion can be generated within 783 s.

In future studies, new strategies such as passenger
transfer strategies can be integrated with the strategy in this
paper, andmultidestination problems can also be considered
to expand the scope of application of the method. A more
efficient least-cost path algorithm in forward dynamic
programming will also be designed and adopted. [14].
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[15] M. Nikolić and D. Teodorović, “Vehicle rerouting in the case
of unexpectedly high demand in distribution systems,”
Transportation Research Part C: Emerging Technologies,
vol. 55, pp. 535–545, 2015.

[16] J. Yin, T. Tang, L. Yang, Z. Gao, and B. Ran, “Energy-efficient
metro train rescheduling with uncertain time-variant pas-
senger demands: an approximate dynamic programming
approach,” Transportation Research Part B: Methodological,
vol. 91, pp. 178–210, 2016.

[17] A. Bettinelli, A. Santini, and D. Vigo, “A real-time conflict
solution algorithm for the train rescheduling problem,”
Transportation Research Part B: Methodological, vol. 106,
pp. 237–265, 2017.

[18] J. L. Espinosa-Aranda and R. Garćıa-Ródenas, “A demand-
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