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Object datasets used in the construction of object detectors are typically annotated with horizontal or oriented bounding
rectangles for IoT-based.�e optimality of an annotation is obtained by ful�lling two conditions: (i) the rectangle covers the whole
object and (ii) the area of the rectangle is minimal. Building a large-scale object dataset requires annotators with equal manual
dexterity to carry out this tedious work. When an object is horizontal for IoT-based, it is easy for the annotator to reach the
optimal bounding box within a reasonable time. However, if the object is oriented, the annotator needs additional time to decide
whether the object will be annotated with a horizontal rectangle or an oriented rectangle for IoT-based. Moreover, in both cases,
the �nal decision is not based on any objective argument, and the annotation is generally not optimal. In this study, we propose a
new method of annotation by rectangles for IoT-based, called robust semi-automatic annotation, which combines speed and
robustness. Our method has two phases. �e �rst phase consists in inviting the annotator to click on the most relevant points
located on the contour of the object. �e outputs of the �rst phase are used by an algorithm to determine a rectangle enclosing
these points. To carry out the second phase, we develop an algorithm called RANGE-MBR, which determines, from the selected
points on the contour of the object, a rectangle enclosing these points in a linear time. �e rectangle returned by RANGE-MBR
always satis�es optimality condition (i). We prove that the optimality condition (ii) is always satis�ed for objects with isotropic
shapes. For objects with anisotropic shapes, we study the optimality condition (ii) by simulations. We show that the rectangle
returned by RANGE-MBR is quasi-optimal for the condition (ii) and that its performance increases with dilated objects, which is
the case for most of the objects appearing on images collected by aerial photography.

1. Introduction

�e construction of an object detector generally goes
through a learning phase, followed by a testing phase, and
ends with a tuning phase. Each phase requires an inde-
pendent annotated object dataset. Annotating an image IoT-
based signal and image processing applications consists of
locating all the objects present in this image and determining
their categories. �e way to locate an object varies from
detector to detector. For example, mask R-CNN detector
uses segmentation mask to locate objects [1], CoKe detector
uses key points and landmarks to locate objects [2], and
poly-YOLO detector represents objects using polygons [3].
However, the rectangle is considered to be the simplest and
most used polygonal shape for locating or representing an

object in many computer vision applications for IoT-based
[4]. Locating an object using a rectangle consists of drawing
a rectangle surrounding this object. �e annotation of an
object dataset is performed using free or commercial soft-
ware designed for a particular annotation choice.

�ere are two types of annotations with rectangles
depending on the orientations of the objects in the images
for IoT-based. To locate objects, the �rst type uses horizontal
bounding rectangles (HBR), while the second type uses
oriented bounding rectangles (OBR). Annotation with
horizontal rectangles is suitable for natural scenes, where the
photographer is usually in front of the object and adjusts
their camera so that the objects appear aligned with the
horizontal edges of the image. By contrast, for aerial pho-
tography, where images are captured by Earth observation
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satellites or other flying devices, objects often appear in the
image with arbitrary orientations.

(e optimality of an annotation results in the satisfaction
of two conditions: (i) the bounding rectangle must cover the
whole of the object and (ii) the area of the bounding
rectangle must be minimal. For a horizontal object, it is easy
to reach the optimal HBR that satisfies conditions (i) and (ii)
mentioned above. On the other hand, for an oriented object,
it is difficult to reach the optimal OBR if the annotation
method does not render account of optimality conditions (i)
and (ii).

In the literature, we distinguish two types of object
detectors. (e first type includes horizontal object detectors,
which detect objects using HBR. (e second type includes
oriented object detectors, which detect objects using OBR.
Any detector of the first class is trained, tested, and tuned on
horizontal object datasets (HOD). On the other hand, some
oriented object detectors are trained and tuned on HOD,
such as OAOD [5] and BBAVectors [6], but others are
trained tuned on to oriented object datasets (OOD), such as
RoI transformer [7], R-RoI [8], RRPN [9], R2CNN++ [10],
DMPNet [11], FOTS [12], RPN [13], and DDR [14].
However, all of these oriented object detectors must be
tested on OOD.

A large-scale HOD (OOD, respectively) is a set made up
of a large number of images annotated with HBR (OBR,
respectively). Each image contains objects of a wide variety
of scales, orientations, and shapes. (ese objects are divided
into classes (or categories) that vary from one dataset to
another.

Table 1 (Table 2, respectively) presents the number of
classes, instances, images, and year of creation of the most
cited HOD (OOD, respectively) in the literature. To our
knowledge, DOTA is the largest public Earth vision object
detection dataset [27]. It contains objects exhibiting a wide
variety of scales, orientations, and shapes. Moreover, images
of DOTA are manually annotated by experts in aerial image
interpretation.

2. State of the Art

In order to generate a dataset for object identification, we
need to gather a large number of photographs, all of which
must be annotated using the same technique and organized
in accordance with a set of categories that have been pre-
determined. (e dataset has to include many photographs
that match to various instances of each object class. (ese
images must be included for each object class. (e currently
available annotation techniques are amenable to being split
up into two primary categories. In the first class, all methods
of manual annotation are grouped together, and in the
second class, all techniques of semi-automatic annotation
are categorized together [28].

2.1. Manual Annotation. (ere are two main methods of
manually annotating objects with bounding boxes, which are
used in the construction of most large-scale object datasets.
(e first one is called the consensus method, and the second

one is called the sequential tasks method. For each instance
of an object in an image, the first method asks several an-
notators to draw a rectangle around the object and then
defines the position of the object by the rectangle elected by
the majority of annotators. To annotate an object by the
second method, we need at least three annotators. (e first
one is asked to draw a rectangle around a single instance of
the object. (e task of the second annotator is to validate the
drawn rectangle. (e third person investigates whether
additional object class instances require annotation. De-
termining a precise bounding rectangle takes more time and
resources than validating the annotation, and thus, the
consensus technique is more efficient. Annotation quality
affects the development of accurate object detectors. (e
determination of a large-scale object dataset requires expert
annotators, significant working time, and remuneration in
line with the desired accuracy. As examples of common use
datasets, annotated with the manual methods, we cite
PASCAL VOC [18], MS COCO [17], ImageNet [19], DOTA
[20], etc.

Although studies on the description of OOD are
abundant, very few of them explain how to draw a rectangle
enclosing an oriented object. (e only annotation method
explicitly described in the literature appears in the article
[27] by Ding et al. (is method consists in drawing a HBR
around the object of interest and then adjusting the angle
manually by rotating the rectangle with the mouse.

2.2. Semi-Automatic Annotation. (e traditional semi-au-
tomatic approach of annotating objects with rectangles
consists of four phases.

First phase: in this phase, the images of the object
dataset are divided into two subsets of unequal sizes.
(e smallest subset is annotated with rectangles by the
manual method.
Second phase: the second phase consists of choosing an
object detector and training this detector with the
images from the dataset already annotated.

Table 1: Examples of large-scale horizontal object datasets.

Name Classes Instances Images Year
DIOR [15] 20 190288 23463 2019
TUT indoor [16] 7 4595 22137 2018
MS COCO [17] 80 886266 123287 2014
PASCAL VOC [18] 17 1793658 11268 2012
ImageNet [19] 200 478807 456567 2009

Table 2: Examples of large-scale oriented object datasets.

Name Classes Instances Images Year
DOTA-v2.0 [20] 17 1793658 11268 2021
FGSD [21] 1 5634 2612 2020
HRSC2016 [22] 1 2976 1061 2016
UCAS-AOD [23] 2 14596 1510 2015
DLR 3k [24] 2 14235 20 2015
VEDAI [25] 3 2950 1268 2015
SZTAKI-INRIA [26] 1 665 9 2012
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(ird phase: once the detector is ready, it will be used to
annotate the images of the second object dataset with
the prediction rectangles.
Fourth phase: during this phase, the annotator validates
the correctly annotated objects during the third phase
and manually draws the bounding rectangles of the
poorly annotated objects.

As this study is limited to locating objects by bounding
boxes, we cite the Faster Bounding Box (FBB) as an example
of semi-automatic annotationmethod [16].(is method was
used to generate the Tampere University of Technology
(TUT) Indoor dataset. (e largest subset is annotated with
prediction rectangles, generated by the Faster R-CNN object
detector [29], trained on the smallest annotated subset.

2.3. Performance Measure of Detectors Using Rectangles.
(e evaluation of the effectiveness of the object detector is
then performed on the second subset of the annotated
dataset. Since we are only dealing here with annotations
using bounding boxes, the most used criterion to compare
two rectangles is the Jaccard’s similarity index, also known as
the Intersection over Union (IoU). For each image of the
testing dataset, the IoU measures the percentage of overlap
between the prediction bounding rectangle A generated by
the detector, and the ground truth bounding box A, as
follows:

IoU( A,A) �
Area( A∩A)

Area( A∪A)
. (1)

We note that the IoU score lies in the interval [0, 1]. (e
closer this index gets to 1, the better the detection of the
object. We say that an object is well detected (or true
positive) if the IoU score is greater than or equal to a
threshold discussed by experts. In most studies, the
threshold value is set at 0.5 [30]. (e IoU score causes a
problem when its value is zero. (is value is embarrassing
since it does not explain how far is the prediction bounding
rectangle from the ground truth bounding box. To work
around this problem, Rezatofighi et al. [30] suggest replacing
the IoU with the Generalized Intersection over Union
(GIoU) index. (e GIoU between two rectangles A andA is
defined as follows:

GIoU( A,A) � IoU( A,A) −
Area(C\( A∪A))

Area(C)
, (2)

where C is the smallest convex set enclosing both A and A.
(e exact IoU computation between two HBR is simple.

Much software integrates functions to calculate this index.
On the other hand, the exact IoU computation between two
OBR is not as simple as that between two HBR. Liu et al.
(Yao et al., respectively) proposed in Ref. [31] (in [32])
heuristic to estimate the IoU between two OBR. Recently,
Zaidi has shown in Ref. [28] that these heuristics give reliable
results only when the centers of the rectangles are very close
and the angle between the rectangles is small. Moreover, he
has developed in Ref. [28] an algorithm that calculates the

exact IoU value between two OBR, as well as an (ε, α) es-
timator of the IoU.

(e annotation method has a direct bearing on the
performance measurement of an object detector. (e OOD
reserved for the test phase must be carefully annotated so
that the IoU computation between the ground truth and
prediction rectangles is not biased.

3. Motivation for the Study

(e manual or semi-automatic annotation methods de-
scribed in Section 2 have made it possible to build many
large-scale object datasets. (ese datasets have given rise to
very powerful object detectors. However, we cannot ignore
the following concerns:

(1) According to paragraph A, accurate manual anno-
tation is expensive, time-consuming, and requires
annotation experts.

(2) In many situations, the annotator can be in front of
an object with an ambiguous orientation as shown in
Figure 1. In this case, he will take a considerable time
to decide whether the object will be annotated with a
horizontal rectangle or an oriented rectangle.
Moreover, in both cases, the final decision is not
based on any objective argument and depends solely
on the dexterity of the annotator.

(3) (e semi-automatic annotation defined in paragraph
B does not guarantee the optimality of the annota-
tion rectangle, in the sense that it must have a
minimum area and cover the whole of the object.

(4) According to paragraph C, the use of any approxi-
mation methods of IoU(A,B), whether to measure
the accuracy of an oriented object detector or to
compare the performance of two oriented object
detectors, could lead to biased results. Indeed, the
function g(x) � x/a + b − x is strictly increasing
over the interval [0, a + b[, where a and b denote the
areas of A and B, respectively. (erefore, a large or a
small ground truth bounding rectangle directly in-
duces a bias in the computation of the IoU.

(e contribution of this study is the scarcity of anno-
tation methods motivated us to develop a robust semi-au-
tomatic annotation method of OOD. Our method is semi-
automatic because it consists of a manual step followed by a
computer-assisted step. In addition, this method is robust
because the bounding rectangle generated by our algorithm
is insensitive to the dexterity of the annotator. More pre-
cisely, the steps are as follows:

(i) We develop an algorithm called RANGE-MBR,
which determines from a set Mn of the n most
relevant (in the sense given by Definition 1) points
picked on the object outline, a rectangle enclosing
Mn and having a quasi-minimal area, in O(n) time.

(ii) We propose a new approach to simultaneously
build HOD and OOD from a large-scale image

Mathematical Problems in Engineering 3



bank, based on both the RANGE-MBR algorithm
and threshold angles.

(iii) We conduct a large experimental study to quantify
the performance of the RANGE-MBR algorithm.

(iv) We compare the performance of RANGE-MBR to
that of the benchmark algorithm, RC-MBR, which
determines the minimum rectangle enclosingMn in
O(n ln(n)) time.

(is study seems essential to us because it responds to a
real need in the development of oriented object detectors. In
addition, it allows researchers to build their own oriented
object datasets in a rigorous manner.

Definition 1. (relevant point of an object) Any point located
on the contour of the object is said to be relevant if it is a local
maximum, a local minimum, the most right point, the most
left point, a cusp of the first type, a cusp of the second type,
an inflection point, and so on.

(e remainder of this manuscript is structured as fol-
lows. Section 4 deals with the parametrization of rectangles.
Section 5 is devoted to the development of the RANGE-MBR
algorithm. We explain in Section 6 how to use the RANGE-
MBR (or RC-MBR) algorithm to simultaneously generate
horizontal and oriented datasets from a large-scale image
bank. In Section 7, we perform various numerical experi-
ments to evaluate the performance of the RANGE-MBR
algorithm.

4. Parametrization of Bounding Rectangles

First, we give an overview of the different types of param-
eterization encountered in the literature. (en, we justify the
choice of the parameterization associated with the anno-
tation method that we propose in this study. Our choice of
parameterization was discussed in a previous study on the
accurate computation of the IoU [28]. However, it seems
useful to us to recall this choice to facilitate the reading of the
manuscript.

4.1. Parameterization of Horizontal Rectangles. (e mini-
mum parameterization of a horizontal rectangle
A � A1, A2, A3, A4} requires four parameters. (e object
dataset PASCAL VOC [18] annotates the rectangle A with
(x4, y4, x2, y2), where (xi, yi) are the coordinates of the
vertex Ai, i � 1, . . . , 4 (cf. Figure 2). (e object dataset Ms
COCO [17] annotates the rectangle A with (x4, y4, w, h),
where w and h denote the lengths of the line segments
[A1, A2] and [A1, A4], respectively, and (x4, y4) are the
coordinates of the vertex A4 (cf. Figure 2). (e object dataset
ImageNet [19] annotates the rectangle A with (x0, y0, w, h),
where w and h denote the lengths of the line segments
[A1, A2] and [A1, A4], respectively, and (x0, y0) are the
coordinates of the center A0 of A (cf. Figure 2).

4.2. Parameterization of Oriented Rectangles. Five parame-
ters—b1, b2, w, h, and θ—are necessary for the minimal
parameterization of an orientated rectangle denoted by the
formula B � B1, B2, B3, B4 ; these are the only parameters
that are required. (e coordinates for the center B0 of B are
(b1, b2), which correspond to the coupling b1 and b2. (e
lengths of the line segments [B1, B2] and [B1, B4] are in-
dicated by the parametersw and h, respectively (cf. Figure 2).
(e parameter θ ∈ [0, π/2] is used to determine the acute
angle that exists between the lines Δ and (B1, B2), where Δ
denotes the horizontal line that goes through B1. (ese two
object datasets, HRSC2016 [22] and UCAS-AOD [23], are
annotated with the help of this parametrization.

(e above θ-based parametrization is not suitable for
annotating satellite image datasets. (ese OOD have the
particularity of containing a large number of instances per
image, at different scales, and whose parts overlap [20]. A
simple solution that overcomes the drawbacks of the θ-based
annotation consists in defining a rectangle B � B1, B2,

B3, B4} using the coordinates (xi, yi)1≤ 4 of the vertices
B1, . . . , B4, respectively. To solve the indeterminacy problem
linked to the permutations of the vertices, we can sort the
vertices clockwise and fix the first point according to the
following rules [27]:

M1 M2

M3

M4

M5

M6

(a)

M1

M2

M3

M4

M5

M6

A1

A2

A3

A4

B1

B2 B3

B4

(b)

Figure 1: (b) Intuitively, it seems that the horizontal rectangle B � [B1, . . . , B4] is best suited to annotate the colored object in blue (Figure
(a)). (emethod we propose takes as input the setM6 � M1, . . . , M6  and returns the oriented rectangleA � [A1, . . . , A4]. SinceA covers
the whole object and Area(A)<Area(B), then it is natural to annotate the object by the rectangle A.
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(i) For objects with a distinguished head and a tail (e.g.,
vehicles and helicopters), the annotator carefully
selects B1 to indicate the left corner of the instance
head.

(ii) For other objects (e.g., tennis courts and bridges), B1
is the point at the top left of the instance.

(is type of parametrization was used for the annotation
of the DOTA object dataset [20].

4.3.OurChoice of Parametrization. We use the notationR �

[R1, R2, R3, R4] to denote an oriented rectangle whose ver-
tices are R1, R2, R3, and R4. We assume that these vertices are
sorted in counterclockwise order, such that R1 is the left
vertex with the smallest vertical coordinate.

To sort the vertices set B1, B2, B3, B4  of the rectangle B
as described above, we first consider the barycenter G of the
rectangle B. (en, we calculate the polar angle of each vertex
relative to the barycenter G [28]. We denote by
B(1), . . . , B(4), the sorted vertices in ascending order of their
polar angle. If B(3)(2)≤B(4)(2), then B � [B(3), B(4), B(1),

B(2)], else B � [B(4), B(1), B(2), B(3)] (cf. Figure 2). For more
details on the implementation of this sorting method, we
refer the reader to our article [28].

In this investigation, we describe a bounding rectangle B
by using the eight-tuple (x1, y1, . . . , x4, y4), where (xi, yi)

t

are the coordinates of the i-th vertex of the sorted rectangle
[B1, . . . , B4].

(is choice of parameterization is ideally suited to the
annotation approach that we suggest since it eliminates the
need for extra computations to draw rectangles or to locate
the images of rectangles by applying affine transformations.
(is is one of the reasons why the method is so efficient. In
addition, we demonstrate in Section B how to format the
outputs of the annotation technique that we propose in
accordance with the annotation rule of the DOTA dataset.
(is is done by referring to the annotation rule.

5. Determination of the Bounding Rectangle

It is natural to annotate the object with the minimum
rectangle enclosing the set of relevant points.(is problem is
formulated as follows:

Problem 1. Given a set of points Mn � Mi � (xi, yi)
t ∈

R2; i � 1, . . . , n}, we find a rectangle with the smallest area,
enclosing Mn. Such a rectangle is called a minimum
bounding rectangle of Mn and denoted by MBR (Mn).

(e solution of problem 5.1 is not unique as shown in
Figure 3. So, MBR (Mn) denotes any solution of Problem 1.

Freeman and Shapira proved in 1975 that one edge of
MBR (Mn) must be collinear with an edge of the convex hull
(CH (Mn)) of Mn. (ey proposed in Ref. [33] a natural
algorithm to find MBR (Mn) in O(n2) time, based on
sweeping all minimum rectangles, enclosingMn, and having
an edge collinear with an edge of CH (Mn). In 1978, Shamos
proposed in Ref. [34] the famous rotating calipers algorithm,
which return all pairs of antipodal vertices of a n-sided
convex polygon in O(n) time. In 1983, Toussaint used the
rotating calipers technique and developed the algorithm RC-
MBR to find MBR (Mn) in O(n ln(n)) time [35]. In 2006,
Dimitrov et al. proposed in Ref. [36, 37] the algorithm PCA-
MBR, to approximate MBR (Mn), in O(nln(n)) time, by the
minimum bounding rectangle, which is aligned with the
eigenvectors of the covariance matrix of CH (Mn). (ey also
proved that the relative error between PCA-MBR (Mn) and
MBR (Mn) is bounded from above by

����
8

�
2

√
− 1 ≈ 2.36.(e

main drawback of the algorithm PCA-MBR is that it admits
an infinite number of solutions if the covariance matrix of
CH (Mn) has a double eigenvalue. To overcome the problem
of nonuniqueness inherent in algorithms RC-MBR and
PCA-MBR, we propose the method RANGE-MBR to ap-
proximate MBR (Mn) in O(n) time.

5.1. 1e Range-MBR Algorithm. Let B � (O, i, j) be a Car-
tesian frame of the two-dimensional affine plane. All angles
we refer to here are measured counterclockwise from the
positive x-axis. Let Δ be the line passing through O and
making an angle θ with the axis (O, i). Let Δ⊥ be perpen-
dicular to Δ and passing through O. Let P1 and Q1 (P2 and
Q2, respectively) be the extreme points of the orthogonal
projection of Mn on Δ (Δ⊥, respectively). Let
A � [A1, A2, A3, A4] be the minimum bounding rectangle
having an edge collinear with Δ. (en, A1, . . . , A4 are the
intersection points of the two parallel lines to Δ⊥ and passing
through P1 and Q1, respectively, with the two parallel lines to
Δ and passing throughP2 andQ2 respectively.(e area ofA is
given by the product of lengths of the line segments [P1, Q1]

and [P2, Q2]. From now on, the MBR A enclosing Mn and
having an edge collinear with the direction making an angle θ
from the positive x-axis will be denoted by MBR(Mn, θ).

Let u � (cos(θ), sin(θ))t, and v � (− sin(θ), cos(θ))t )
be two unit direction vector of Δ and Δ⊥, respectively. (en,
B � (O, i, j) andB′ � (O, u, v) are two Cartesian frames of
the two-dimensional affine plane. For all i � 1, . . . , n, we
denote by (xi, yi)

t ((si, ti)
t, respectively) the coordinates of

Mi with respect to the frameB (B′, respectively). Let Rθ be
the rotation matrix of angle θ, and then (xi, yi)

t � Rθ(si, ti)
t,

where ut is the transpose of u.
Let X be a random variable with mean μ and standard

deviation σ. Let x1: n � (x1, . . . , xn) be n observations on the

A0

B0

b1

b2

A1 A2

A3A4

B1

B2

B3

B4

y

x
w

h

w
h

θ
Δ

Figure 2: Parameterization of horizontal and oriented rectangles.
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variable X. Let x(1) ≤ . . . ≤x(n) be the order statistics of x1: n.
We define the range of x1: n by Range(x1: n) � x(n) − x(1).
(erefore, the lengths of [P1, Q1] and [P2, Q2] are given
by:

P1Q1 � Range s1, . . . , sn (  � s(n) − s(1),

P2Q2 � Range t1, . . . , tn (  � t(n) − t(1).
(3)

We denote by σn any estimation of σ obtained from x1: n.
On the basis of numerous works carried out on the esti-
mation of the standard deviation from the sample range
([38–43]), we can assume that there is a real constant α(X, n)

such that

σn �
Range x1: n( 

α(X, n)
. (4)

Besides, it is well known that

Var x1: n(  �
1
n



n

i�1
xi − x( , (5)

which is an estimate of σ2, where x � 1/n 
n
i�1 xi. It follows

that there is a real constant α(X, n) such that:

Range x1: n( 
2 ≈ α(X, n)

2Var x1: n( . (6)

We assume that the (x, y) coordinates of the set of
pointsMn are n observations of two random variables X and
Y. Since the Area(A) � P1Q1 · P2Q2, then combining
equations (6) and (3) gives an approximation A

2
n(θ) of

Area(A), satisfying the following relation:

A
2
n(θ) � α(S, n)

2α(T, n)
2Var s1: n( Var t1: n( , (7)

where (S, T)t � Rt
θ(X, Y)t. To alleviate notions, we will also

use Vx and Cx,y to designate Var(x1: n) and Cov(x1: n, y1: n).
Since (xi, yi)

t � Rθ(si, ti)
t, we obtain

V s � cos2(θ)Vx + sin2(θ)Vy + sin(2θ)Cx,y,

V t � sin2(θ)Vx + cos2(θ)Vy − sin(2θ)Cx,y.
(8)

Using (8) and some trigonometric identities, we prove
that

8V sV t � K − f(θ), (9)

where K � V2
x + V2

y + 6VxVy − 4C2
x,y and

f(θ) � V
2
x + V

2
y − 2VxVy − 4C2

x,y cos(4θ)

+ 4Cx,y Vx − Vy sin(4θ).
(10)

Combining equations (7), (9), and (10) gives

A
2
n(θ) �

α(S, n)
2α(T, n)

2

8
(K − f(θ)). (11)

(us, the area of MBR (Mn, θ) is approximately equal to

α(S, n)
2α(T, n)

2

8
(K − f(θ)). (12)

(erefore, we propose to approximate MBR (Mn) by MBR
(Mn, θ∗) such that:

θ∗ � argmin
θ∈[− (π/2),π/2]

A
2
n(θ) � argmax

θ∈[− (π/2),π/2]

f(θ). (13)

(e first derivative of f with respect to θ is given by:
_f(4θ) � − 4λ sin(4θ) + 4δ cos(4θ). (14)

where

λ � V
2
x − Vy 

2
− 4C2

x,y ,

δ � 4Cx,y Vx − Vy .
(15)

(e function f has a unique critical point θ∗ such that

tan 4θ∗(  �
δ
λ

�
4Cx,y Vx − Vy 

V
2
x − Vy 

2
− 4C2

x,y

. (16)

Lemma 1. 1e second derivative of f at the critical point θ∗
has the same sign as − λ.

Proof. (e second derivative of f with respect to θ is given
by:

€f (θ) � − 16(λ cos(4θ) + δ sin(4θ)). (17)

Multiplying both sides of the relation (17) by cos(4θ)

yields

cos(4θ) €f (θ) � − 16 λ cos2(4θ) + δ sin(4θ)cos(4θ) , (18)

Multiplying both sides of the relation (14) by sin(4θ) yields

sin(4θ) _f(θ) � − 4λ sin2(4θ) + 4δ sin(4θ)cos(4θ). (19)

Using relations (19) and (18) with θ � θ∗ (i.e.,
_f(θ∗) � 0), we obtain:

4δ cos 4θ∗( sin 4θ∗(  � 4λsin2 4θ∗( ,

cos 4θ∗(  €f θ∗(  � − 16λ.
(20)

(erefore, €f(θ∗) has the same sign as − λ cos(4θ∗). Since
4θ∗ � arctan(δ/λ) ∈ ] − (π/2), π/2[, then cos(4θ∗)> 0 what
ever the setMn may be.(us, €f(θ∗) has the same sign as − λ.

M2

M3

M5

M1

M4

Figure 3: M5 � M1, . . . , M5 . (e green and red rectangles are
two distinct solutions of Problem 1.
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(erefore, the determination of θ∗ goes through six
cases:

Case 1: if λ> 0, then θ∗ � 1/4arctan(δ/λ).
Case 2: if λ< 0 and Vx ≠Vy, then θ∗ is determined
through the eigen decomposition of the empirical
covariance matrix of Mn. (is case is discussed below.
Case 3: if λ< 0 and Vx � Vy, then θ∗ � π/4.
Case 4: if λ � 0 and Cx(Vx − Vy)> 0, then θ∗ � π/8.
Case 5: if λ � 0 and Cx(Vx − Vy)> 0, then θ∗ � π/8.
Case 6: if λ � 0 and Cx(Vx − Vy)> 0, then it is equiv-
alent to Vx � Vy and Cx � 0. (is case is discussed
below. □

5.1.1. Illustrative Example of Case 6. It is difficult to illustrate
all the scenarios, which fall into Case 6. (e special case of
regular polygons is the one that the annotator may en-
counter when annotating regular objects such as road signs,
buildings, and human faces. Moreover, we have pointed out
this case to warn the user to pay attention to regularly shaped
objects when using our annotation method.

Proposition 1. If the elements of Mn are the vertices of a
regular n-sided polygon, then Vx � Vy and Cx,y � 0.

Proof. In the general case, the vertices of a regular polygon
are uniformly distributed over a circle with radius r and
center G equal to the barycenter ofMn. (us, without loss of
generality, we can assume that r � 1, G � (0, 0)t, and the kth

vertex of Mn is

Mk � cos
2π(k − 1)

n
 , sin

2π(k − 1)

n
  

t

. (21)

Consider the complex sequence (zk)0≤ k≤ n− 1, where z �

exp(2π/ni) and i is the imaginary unit. (en,



n− 1

k�0
z

k
� n(x + yi). (22)

Since 
n− 1
k�0z

k � (1 − zn/1 − z) � 0, then x � y � 0, and

Cx,y �
1
n



n

k�1
xkyk,

Vx �
1
n



n

k�1
x
2
k,

Vy �
1
n



n

k�1
y
2
k.

(23)

Since cos(2x) � 2 cos2(x) − 1 � 1 − 2 sin2(x), then

Vx �
1
2

+
1
2n



n− 1

k�0
cos

4πk

n
 ,

Vy �
1
2

−
1
2n



n− 1

k�0
cos

4πk

n
 .

(24)

Besides, 
n− 1
k�0cos(4πk/n) is the real part of



n− 1

k�0
z
2

 
k

�
1 − z

2n

1 − z
2 � 0. (25)

(us, Vx � Vy � 1/2. Moreover, using 2 cos(x)sin(x) �

sin(2x), we deduce that

Cx,y �
1
2n



n− 1

k�0
sin

4πk

n
 . (26)

Since 
n− 1
k�0sin(4πk/n) is the imaginary part of



n− 1

k�0
z
2

 
k

�
1 − z

2n

1 − z
2 � 0, (27)

then Cx,y � 0.
Note that in the case where the elements of Mn are the

vertices of a regular n-sided polygon, problem 5.1 has exactly
n different solutions MBRi(Mn), i � 1, . . . , n. For all
i � 1, . . . , n − 1, MBRi(Mn) is the image of MBR0(Mn) by
the rotation of angle θi � (2i/n)π. □

5.1.2. Handling of the Exceptional Cases 2 and 6. Cases 2 and
6 are indeterminate cases for which the minimum of the
objective function f(θ) does not exist. (is is why we have
thought of a trick to get out of the indeterminacy of each
case, by returning to the initial definition of the solution.

(i) For Case 2, the application of an affine isometry to
the set of points (Mn) makes it possible to migrate to
another case for which the angle θ is well deter-
mined. We then obtain the solution of the initial
problem by applying the inverse isometry to the
solution of the transformed problem, since isometry
preserves the areas.

(ii) For Case 6, the use of an extra point Mn+1 belonging
to the convex hull of the setMn, allows to migrate to
another case for which the angle θ is well deter-
mined. Another alternative consists in asking the
user to click on a point of the object’s outline until we
get out this state.

Case 2: λ � (Vx − Vy)
2 − 4C2

x,y is negative because of
C2

x,y . To get rid of C2
x,y , we have just to follow the same

reasoning on a set of points

Mn
′ � Mi
′ � xi
′, yi
′( 

t ∈ R2
; i � 1, . . . , n , (28)

whose coordinates x1: n
′ � (x1, . . . , xn

′) and y1: n
′ � (y1, . . . ,

yn
′) are uncorrelated. Let
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Γ �
1
n



n

i�1
Mi − M(  Mi − M( 

t
, (29)

be the covariance matrix of the elements of Mn, where
M � (x, y)t. Let Γ � UΔUt be an eigen decomposition of Γ,
where U ∈ O2(R) (the set of 2-orthogonal matrices), and
Δ � diag(δ1, δ2). For all i � 1, . . . , n, set Mi

′ � UtMi and
Mn
′ � (Mi
′)1≤ n≤ n. (en,t

Γ′ �
1
n



n

i�1
Mi
′ − M′  Mi

′ − M′ 
t

� Δ, (30)

where M′ � UtM. Since U ∈ O2(R), then the linear map
defined by L(M) � UtM preserves the norm and the dot
product. (us, Area(MBR(Mn)) � Area(MBR(Mn

′)) and
MBR (Mn) is the image of MBR (Mn

′) under the map L.

Proposition 2. If the vectors x1: n and y1: n are uncorrelated
(Cx,y � 0) and have different variances (Vx ≠Vy), then A

2
n(θ)

has a unique minimum at the angle θ � 0.

Proof. Since x1: n and y1: n are uncorrelated, then Cx,y � 0,
and λ � (Vx − Vy)

2 and δ � 0. According to equation (16),
the function f has a unique critical point θ∗ � 0. Using
Lemma 1, f(θ) is the maximum of f(θ).

Case 6. To get out of the indeterminacy of Case 6, we
propose to add to the set Mn an artificial point Mn+1
located in the convex hull of Mn so that the empirical
covariance matrix of the new setMn+1 � Mn ∪Mn+1 is
different from a scalar matrix. We assume that
(xn+1, yn+1)

t are the Cartesian coordinates of Mn+1 with
respect to BG � (G, i, j), where G � (x, y)t is the
barycenter of Mn. Without any loss of generality, we
assume that x1: n+1 (y1: n+1, respectively) is the vector of
the x-coordinates (y-coordinates, respectively) of the
points of Mn+1 with respect to BG � (G, i, j). We
denote by Vx � Var(x1: n+1) and Vy � Var(y1: n+1).
Lemma 2 gives the relation between Vx,Vy,Cx,y and
Vx,

Vy,
Cx,y , respectively. □

Lemma 2. If Vx � Vy and x � y � Cx,y � 0, then

Vx �
n

n + 1
Vx +

n

(n + 1)
2x

2
n+1,

Vy �
n

n + 1
Vy +

n

(n + 1)
2y

2
n+1,

Cx,y �
n

(n + 1)
2xn+1yn+1.

(31)

Proof. We set x � (1/n + 1)
n+1
i�1 xi and x � (1/n + 1)


n+1
i�1 yi. Since x � y � 0, then x � xn+1/n + 1 and

y � yn+1/n + 1. On the one hand, since x � 0, we have



n+1

i�1
xi − x( 

2
� 

n

i�1
x
2
i + x

2
n+1 − (n + 1)x

2

� nVx +
n

n + 1
x
2
n+1.

(32)

On the other hand, since 
n+1
i�1 xiyi � 0, we have:



n+1

i�1
xi − x(  yi − y(  � 

n+1

i�1
xiyi − (n + 1)xy

�
n

n + 1
 xn+1yn+1.

(33)

Let f(θ) be the function defined fromMn+1 in the same
way that f(θ) was defined from Mn in (10). (en,

f(θ) � λ cos(θ) + δ sin(θ), (34)

where

λ � V
2
x + V

2
y − 2Vx

Vy − 4C
2
x,y ,

δ � 4Cx,y
Vx − Vy sin(4θ).

(35)

Using the identities (31), we have

λ �
n
2

(n + 1)
4 x

4
n+1 + x

4
n+1 − 6x

2
n+1y

2
n+1 , (36)

It follows that

(1) λ≠ 0 i.f.f Mn+1 ∉ D1 ∪D2 ∪D3 ∪D4, where
D1, . . . , D4 are the lines whose Cartesian equations
are given by

D1: x � (1 +
�
2

√
)yD2: x � (1 −

�
2

√
)y,

D3: x � (
�
2

√
− 1)yD4: x � (− 1 −

�
2

√
)y.

(37)

(2) δ ≠ 0 i.f.f Mn+1 ∉ D5 ∪D6, where D5: x � y and
D6: x � − y.

In summary, any point Mn+1 � (x + xn+1, y + yn+1)
t

defined as a convex combination of M1, . . . , Mn, such that
xn+1yn+1 ≠ 0 overcomes the indeterminacy problem posed by
Case 6. However, the resulting RANGE-MBR (Mn) depends
on the values of xn+1 and yn+1. We tested this technique on a
set Mn composed of vertices of a regular n-sided polygon,
and we observed that the choice

Mn+1 �
1
2

Mj + Mnod(j+1,4)+1 . (38)

We allow our algorithm to reach MBR (Mn) whatever
the value of n and j � 1, . . . , n. (e generalization of the
technique applied to the vertices of a regular polygon re-
quires the calculation of CH (Mn), and the determination of
the midpoint, Mn+1, of any two consecutive vertices of CH
(Mn), such that the product of the coordinates of Mn+1 with
respect to BG � (G, i, j), is different from 0. □
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5.2.Annotate theDOTADatasetUsingRange-MBR. To adapt
our annotation method to the output format required by the
DOTA dataset, it suffices to ask the annotator that the first
click points to the object’s head, and to add a binary variable
T equals to 1 if we can differentiate the head of the object
from its tail, and zero otherwise. When we pass the setMn to
the RANGE-MBR algorithm, we save the coordinates of the
first point M1. Next, we determine the rectangle
R � [R1, R2, R3, R4] � RANGE − MBR(Mn).

(1) If the binary variable T equals one, then we deter-
mine the vertex Rj of R that is closest to M1, and we
permute the vertices of R clockwise so that Rj oc-
cupies the first position in this permutation.

(2) If the binary variable T equals zero, then we de-
termine the top left vertex Rj of R, and we permute
the vertices of R clockwise so that Rj occupies the
first position in this permutation.

6. Robust Semi-Automatic Annotation

In this section, we provide a new approach for building
object detection datasets based on both MBR algorithm and
threshold angles. (is method is semi-automatic because it
consists of a manual step followed by a computer-assisted
step. In addition, this method is robust because the
bounding rectangle generated by our algorithm is insensitive
to the dexterity of the annotator.

(i) (e problem of MBR was dealt with in Section 5. If
the user needs an optimal annotation in the sense
given by Definition 2, then he calls the RC-MBR
algorithm. Otherwise, he calls the RANGE-MBR
algorithm for quasi-optimal annotation. However,
optimality and complexity are inversely
proportional.

(ii) By default, the threshold angle is equal to zero. It can
also be adjusted by experts in object detection, or it
can be defined experimentally as the largest angle
between the ground truth bounding box and the
positive x-axis that gives no significant difference
between the performance of horizontal and oriented
detectors when tested on oriented objects. (e ex-
perimental determination of the threshold angle
requires horizontal and oriented object detectors, as
well as the already existing oriented object datasets.

6.1. Properties of the Robust Semi-Automatic Annotation
Method. By construction, the robust semi-automatic an-
notation method ensures the following properties:

(1) (e bounding rectangle generated by our approach is
quasi-optimal in the sense that it covers the whole
object, and its area is close to the area of the MBR
enclosing the object.

(2) (e angle of the rectangle is determined by an al-
gorithm based on some relevant points collected on
the contour of the object.

(3) (e bounding rectangle is insensitive to annotators
provided all relevant points on the object have been
selected.

(4) (e determination of the bounding rectangle re-
quires O(n) elementary operations, where n is the
number of relevant points.

(5) It allows the user to build simultaneously, from an
image bank, two databases: one for horizontal ob-
jects and another for oriented objects.

In summary, the robust semi-automatic annotation
provides a simple solution to all the drawbacks mentioned in
paragraph III, which are inherent in the old annotation
methods.

Let:

(i) θ0 be a threshold angle fixed by the user (by default,
θ0 � 0),

(ii) Mn be the set of relevant points selected on the
contour of the object,

(iii) H-MBR (Mn) be the horizontal minimum
bounding rectangle enclosing Mn,

(iv) O-MBR (Mn) be the minimum bounding rectangle
enclosing Mn,

(v) θ be the angle of O-MBR (Mn),

then, the Algorithm 1, and the flowchart shown in
Figure4 summarize the stages of construction of horizontal
and oriented datasets, from a large-scale image bank.

7. Experimental Study

(is experimental study was carried out exclusively with the
Matlab R2007b software. We implemented the RC-MBR,
PCA-MBR, and RANGE-MBR algorithms in MATLAB
language, and we wrote a script (see the Appendix), which

(1) reads the image then displays it
(2) ask the annotator to click on the most relevant points

of the object (Mn is a 2 × n matrix)
(3) determine the rectangle A corresponding to RC-

MBR (Mn)

(4) determine the rectangle B corresponding to
RANGE-MBR (Mn)

(5) draw the two rectangles with the colors red and
green, respectively

(e images used in experiments B,. . .,D are free of rights
and collected on the net. Moreover, the optimality criterion
of an annotation is given in Definition 2.

Definition 2. (optimal annotation) A rectangle A �

[A1, . . . , A4] enclosing an object is said to be optimal, if it
fulfills the conditions (i) and (ii):

(i) the rectangle A covers the whole object,
(ii) the area of A is minimal.
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7.1. Experiment 1. (is experiment consists of studying
the optimality condition (ii) of the RANGE-MBR al-
gorithm. Equation (28) describes how to generate the
coordinates of the vertices Mn � (xk, yk); k � 1, . . . , n  of
a random n-sided polygon where each rand is call of a
generator of uniform random numbers on the interval
[0, 1]. (e parameter vy, called the factor of dilation,
controls the aspect ratio of the polygon as shown in
Figure 6. (e more vy is greater than 1, the more the
polygon is dilated in the direction of the y-axis. Note that
such a polygon is not necessarily convex as shown
in Figure 7. (is is also the case for any polygon

whose vertices are defined by the relevant points of an
object.

Since

(1) the optimal annotation criterion that we have chosen
results in a rectangle which has a minimum area and
which covers the maximum of visible parts of the
object,

(2) RC-MBR is the fastest algorithm that determines the
smallest rectangle enclosing a set of points,

it seems natural to consider this algorithm as a reference
in the comparative study that we carried out.

Click on the most relevant points
located on the contour of the object

Mn

Compute θ
from Mn

Determine
O-MBR (Mn)

Determine
H-MBR (Mn)

add O-MBR (Mn)
to OOD

add H-MBR (Mn)
to HOD

θ ≤ θ0 θ > θ0

Figure 4: Our approach consists in choosing between O-MBR (Mn) and H-MBR (Mn)). If the angle of O-MBR (Mn) is less than or equal
to a threshold angle, then we annotate the object using H-MBR (Mn) instead of O-MBR (Mn).

Input: An image; threshold angle; HOD and OOD datasets
Output: Annotated image assigned to HOD or OOD

(1) for (each object in the image) do
(2) Determine the class of the object
(3) Ask the annotator to click on the most relevant points (Mn) of the object as defined in Definition 1
(4) Determine the RANGE-MBR A � [A1, A2, A3, A4] enclosing Mn as described in Section A
(5) Set α the angle between the positive x-axis and A1A2

�����→

(6) if (α> threshold angle) then
(7) Assign (image, object, A, class) to the OOD dataset
(8) else
(9) Determine the horizontal MBR A � [A1, A2, A3, A4] enclosing the relevant points, as shown in Figure 5, by setting θ � 0
(10) Assign (image, object, A, class) to the HOD dataset
(11) end if
(12) end for

ALGORITHM 1: Robust semi-automatic annotation
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xk � (1 + rand)cos
2πk

n
+
2π
n
rand ,

yk � 1 + vyrand sin
2πk

n
+
2π
n
rand .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(39)

For each value of the pair (n, vy), we generate r � 10000
random n-sided polygons. For each polygon M(i)

n ,
i � 1, . . . , r, we determine the relative error ei, between the
areas of RANGE-MBR (M(i)

n ) and RC-MBR (M(i)
n ), as well

as the CPU times ti and ti, used by the algorithms RANGE-
MBR and RC-MBR to compute RANGE-MBR (M(i)

n ) and
RC-MBR (M(i)

n ), respectively. Finally, we denote by e, t, t,
and Std(e), the means and the standard deviation of the
sequences (ei)1≤ i≤ r, (ti)1≤ i≤ r, (ti)1≤ i≤ r, and (ei)1≤ i≤ r

respectively.
Figure 8 and 9 represent e and Std(e) versus n and vy for

n ∈ 4, . . . , 20{ } and vy ∈ 1, . . . , 4{ }. We have retained the
ranges of values [4, 20] for n and [1, 4] for vy, because in our
estimation, they are those which correspond most to reality.

In practice, rare are objects that have more than 20 relevant
points or less than 4 relevant points.

We deduce from Figures 8 and 9 that:

(1) (e more the polygon is dilated in one direction, the
more the algorithm RANGE-MBR is accurate and
precise

(2) (e more vertices the polygon has, the more the
algorithm RANGE-MBR is accurate and precise

Δ

Δ y

xP1

P2

Q1

Q2

θ

Figure 5: When θ is fixed, the minimum bounding rectangle
enclosing the blue polygon (object) is the rectangle A whose vertices
A1, . . . , A4 are the intersection points of the two parallel lines to Δ⊥
and passing through P1 and Q1, respectively, with the two parallel
lines to Δ and passing through P2 and Q2, respectively. A is the
rectangle whose edges pass through the red dotted segments.

-5

-6 -4 -2 0 2 4 6

-4
-3
-2
-1
0
1
2
3
4
5

vy = 1
vy = 2

vy = 3
vy = 4

Figure 6: (e original object is the regular blue colored heptagon.
(e black, red, and green polygons correspond to the dilation of the
blue polygon by a factor vy � 2, 3, 4, respectively, in the vertical
direction.

P1
P2

Figure 7: P1 and P2 are two random heptagons, generated
according to Equation (28) with vy � 4. P1 is concave, while P2 is
convex.
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Figure 8: Mean of (ei)1≤ i≤ r versus n and vy.
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Figure 9: Standard deviation of (ei)1≤ i≤ r versus n and vy.
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We ran other simulations with larger values of n and vy,
and we got the same previous conclusion. (e parameter vy

controls the dilation of the polygon in the vertical direction.
In fact, we could choose any other direction, since the
RANGE-MBR algorithm is not sensitive to the direction of
expansion. On the other hand, it is sensitive to the number of
vertices of the polygon and to its dilation.

Out of the 680000 generated polygons, we do not en-
counter any case for which Vx � Vy and Cx,y � 0. In addi-
tion, the algorithm RANGE-MBR is 9 times faster than
algorithm RC-MBR. (e mean CPU times of RANGE-MBR
and CR-MBR are both independent of n and vy. It is about
1.38 × 10− 4 seconds for the algorithm RANGE-MBR, and
1.20 × 10− 3 seconds for the algorithm RC-MBR. Since the
complexity of the algorithm RANGE-MBR is O(n), and that
of the algorithm RC-MBR is O(n ln(n)), then the difference
in CPU time, for each algorithm, is only observed if n is large
enough. Based on the response time per click given in [44]
and considering the mean CPU time of the RANGE-MBR
algorithm, we can state that determining a bounding rectangle
requires 2.5 + 1.5(n − 1) seconds, where n is the number of
relevant points collected on the contour of the image.

7.2. Experiment 2. We made a comparison between
RANGE-MBR and PCA-MBR based on sets of vertices of
regular n-sided polygons, with n � 4, . . . , 20. We observe
that the relative error of the algorithm RANGE-MBR is
always equal to 0, while that of the algorithm PCA-MBR is
different from 0 for the values of n reported in Table 3.
Although Case 6 does not contain only regular polygons, this
experiment shows that the RANGE-MBR method achieves
optimality on regular polygons, but for the other shapes
(which go in Case 6), it offers a better solution than that
obtained by PCA-MBR.

7.3. Experiment 3. (is experiment consists in studying the
effect of the dilation factor on the performance of the
RANGE-MBR algorithm. Figure 10 represents a basic ex-
periment. (e relevant pointsMn are colored in yellow. We
observe that RANG-MBR (Mn) is close to RC-MBR (Mn).
Although the bird on the left is smaller than the bird on the
right, the relative error e equals 0.65% for the bird on the
right, and 3.12% for the bird on the left. (ese scores are
expected, since the bird on the right has a more elongated
shape than the bird on the left, and RANGE-MBR is more
effective on dilated objects.

7.4. Experiment 4. (is experiment consists in confirming
the conclusion obtained in the experiment D. Figure 11
contains two mangoes. (e one on the left is almost circular,
while the one on the right is clearly elongated. (e relevant
points Mn are colored in yellow. (e red rectangle corre-
sponds to RANG-MBR (Mn), while the green rectangle
corresponds to RC-MBR (Mn). (e relative error e equals
6.93% for the left mango and 1.86% for the right mango.(is
real example agrees with the simulation results shown in
Figure 8. (e mango on the right is more dilated than the

one on the left that is why the relative error for the circular
mango is greater than relative error for the oval mango.

7.5. Experiment 5. In order to verify the robustness of our
annotation method with respect to the annotator, we asked a
colleague to click on the relevant points of the two mangoes.
Figure 12 illustrates the result of this experiment. (e rel-
ative error e equals 8.92% for the left mango, and 2.32% for
the right mango.(e relative errors reported in Figure 12 are
larger than those reported in Figure 11. We explain this
difference by the number of points used in each experiment:
the more points we use, the more the RANGE-MBR algo-
rithm reduces the relative error. (is real example agrees
with the simulation results shown in Figure 8.

7.6. Experiment 6. (is experiment consists in comparing
our annotation method to the FBB method introduced in
Section B. For this, we have chosen a random image from the

Table 3: Relative error e of PCA-MBR on regular n-sided polygon.

n 4 6 8 9 12 14 15 16 20
100e 100 6.6 17.2 0.8 0.7 1.3 0.3 4.0 2.5

RC-MBR
RANGE-MBR

Figure 10: Illustration of the semi-automatic annotation using RC-
MBR and RANGE-MBR algorithms.

Figure 11: (e relevant points Mn are colored in yellow. (e red
rectangle corresponds to RANG-MBR (Mn), while the green
rectangle corresponds to RC-MBR (Mn).

12 Mathematical Problems in Engineering



TUT indoor dataset, and we have annotated the objects it
contains with FBB, RC-MBR, and RANGE-MBR. Note that
the FBB annotation uses blue rectangles, RC-MBR anno-
tation uses green rectangles, RANGE-MBR annotation uses
red rectangles, and the relevant points are marked in yellow.

Based on Figure 13 and Table 4, it can be seen that the
annotation by the FBB method is not optimal. Indeed,

(i) For the upper extinguisher and the exit sign, con-
dition (i) is violated

(ii) For the lower extinguisher, condition (ii) is violated

In addition, the annotation by the RANGE-MBR
method satisfies condition (i) and the relative error between
the area of RANGE-MBR and RC-MBR is 12% for the exit
sign, 3% for the upper extinguisher, and 0.3% for the lower
extinguisher. We can conclude that condition (ii) is almost
satisfied by the RANGE-MBR method.

(i) (e values of the relative error are in agreement with
the simulation results presented in Figure 8. Indeed,
in terms of dilation, the lower extinguisher is the
most dilated, followed by the upper extinguisher,
then the exit sign.

(ii) (e exit sign and the upper extinguisher have regular
shapes, while the lower extinguisher has an irregular
shape. We have already underlined in Section 1 and
that the RANGE-MBRmethod is sensitive to regular
forms. (is example then illustrates the situation of
Case 6.

For all these reasons, the annotation of the lower ex-
tinguisher by the RANGE-MBR method is the best.

7.7. Experiment 7. (is experiment highlights the impor-
tance of the annotation method on the calculation of the
IoU. Figure 14 corresponds to image P1128 from the DOTA
dataset. (e objects of interest in these images are the air-
planes. We use the BBAVectors detector [6] to generate the
red prediction bounding boxes. Ground truth bounding
boxes used in [6] are colored green. (e blue rectangles
correspond to the annotations of the airplanes by the
RANGE-MBR method. For all i � 1, 2, 3, we denote by IoUg

i

(IoUb
i , respectively) the Intersection over Union between the

green (blue, respectively) rectangle enclosing the airplane Ai

and the corresponding red rectangle. (e results of this
experiment are reported in Table 5. (e use of minimum
ground truth rectangles best reflects the performance of an
object detector. In view of the results of Table V, it is rea-
sonable to rely on the results of the second row rather than
those of the first row.

Figure 12: (e relevant points Mn are colored in yellow. (e red
rectangle corresponds to RANG-MBR (Mn), while the green
rectangle corresponds to RC-MBR (Mn).

Figure 13: Annotation of an image with FBB, RANGE-MBR, and
RC-MBR.

Table 4: Areas of bounding rectangles in Figure 13.

Method
Object FBB RANGE-MBR RC-MBR
Upper fire extinguisher 7227 8295 8046
Lower extinguisher 21726 19917 19844
Exit sign 4902 6927 6146

Figure 14: RANGE-MBR allows to build quasi-minimum
bounding rectangles.

Table 5: IoU computation for the objects in Figure 14.

Airplane 1 2 3
IoUg

i 0.5230 0.5114 0.7252
IoUb

i 0.6222 0.6186 0.7087
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8. Conclusion

In this piece, we provide a novel approach that is both
resilient and semi-automatic in nature for the annotation of
objects. According to the results of the experimental re-
search, we are able to assert that

(1) Robust semi-automatic annotation is quasi-opti-
mal in the sense that Definition 2 describes, and
that its optimality increases with dilated objects,
which is the case for the majority of the objects
that appear on the images that were collected by
the use of aerial photography.

(2) Robust semi-automatic annotation is quick and re-
liable in the sense that the bounding rectangle does
not have any gaps, and is oblivious to the skill of the
person doing the annotation.

(3) Robust semi-automatic annotation is simple to put
into action and might be easily incorporated into
platforms for annotating text.

(4) Robust semi-automatic annotation is sensitive to
the annotation of items displaying symmetry, with
respect to one or more directions. Given this
scenario, it is not appropriate for the relevant
points to follow the same symmetry in order for
the created rectangle to be somewhat close to the
ideal rectangle.

(qe critical angle, as described in Section 6, would
look somewhat like this: the emphasis on experimental
research using large-scale collected data on horizontal
and oriented object datasets, as well as detectors of state-
of-the-art oriented objects. Once a good estimate of the
threshold angle has been made, the robust semi-auto-
matic annotation technique is the one that allows the
simultaneous construction, from the same image library,
of two different data sets: one for the elements horizontal
and another for oriented objects.

Appendix

A. [Script. 1: Collect Mn, draw RC-MBR (Mn) and
RANGE-MBR (Mn)] Here, we assume that we have al-
ready implemented the RANGE-MBR and RC-MBR
functions, in the MATLAB language. (e following
scripts

(1) Read the image and then display it
(2) Ask the annotator to click on the most relevant

points of the object (Mn is a 2 × n matrix)
(3) Determine the rectangle A corresponding to RC-

MBR (Mn)

(4) Determine the rectangle B corresponding to
RANGE-MBR (Mn)

(5) Draw the two rectangles with the colors red and
green, respectively
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