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With increasing developments in information technology, IT projects have received widespread attention. However, the success
rate of large information technology projects is extremely low. Most current extension forecast models are designed based on a
balanced number of samples and require a large amount of training data to achieve an acceptable prediction result. Constructing
an e�ective extension forecast model with a small number of actual training samples and imbalanced data remains a challenge.
�is paper proposes a Meta-IP model based on transferable knowledge bases with few-shot learning and a model-agnostic meta-
learning improvement algorithm to solve the problems of sample scarcity and data imbalance.�e experimental results show that
Meta-IP not only outperforms many current imbalance processing strategies but also resolves the problem of having too few
samples. �is provides a new direction for IT project extension forecasts.

1. Introduction

Information technology (IT) project schedule management
is an important part of ITproject construction. According to
a report published by the Standish Group [1], small-scale
projects are much more likely to succeed than larger ones,
with large software projects having a success rate of only
approximately 2%. Improving the on-time completion rates
of a project while ensuring construction quality and meeting
cost budgets poses a signi�cant challenge to project man-
agers. We investigated the performance of extension forecast
models in imbalanced datasets by analyzing two key con-
cepts: the degree of imbalance and the size of data. �e
results show that the imbalanced data and scarcity of data
have a signi�cant impact on the extension forecast perfor-
mance of the IT project.

Although several models have been proposed for project
extension forecasts, most of them use classical datasets with
paired samples. �e IT projects are mostly large-scale
projects, and the successful completion of such projects is
extremely rare. �erefore, researchers are faced with a
dataset in which the number of uncompleted projects is
signi�cantly higher than the number of completed projects.

We explored the predictive ability of several current ex-
tension forecast models in imbalanced datasets and found
that methods designed for balanced datasets often fail to �t
with imbalanced datasets. When the training data is heavily
skewed, the training models tend to remember a small
number of samples from minority classes.

Motivated by these limitations, this paper proposes a
model called Meta-IP. �is meta-learning-based model was
designed to solve the data imbalance problem in the ex-
tension forecast of IT projects. In this paper, we propose a
meta-learning-based imbalance classi�cation model for
small-sample IT projects, which combines transfer learning
and meta-learning. We use transfer learning to solve the
problem of sparse raw data samples and (model-agnostic
meta-learning) MAML to process the data for imbalance.
Not only does the model solve the problem of sample
sparsity, but it also reduces over�tting in terms of imbal-
anced processing. Experimental results show the superiority
of this algorithm compared to existing algorithms.

�e main contributions of Meta-IP are as follows:

1. In the proposed model, transfer learning can avoid the
limitations of sample scarcity and improve forecast
accuracy and generalization performance in few-shot
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conditions. Which provides the geometrical and al-
gebraic basis for IT project extension forecasts.

2. Meta-IP makes full use of the excellent performance
of MAML to solve data imbalances to reduce over-
fitting and greatly decrease the number of training
samples required.

3. A meta-learning-based IT extension forecast model
that combines transfer learning with meta-learning.
As far as we know, this work is the first to incorporate
transfer learning and meta-learning into IT project
management, providing a rapid generalization of
performance.

*e rest of this paper is organized as follows: Section 2
introduces the imbalanced data processing methods and
defines meta-learning and its related trends. *e solutions
for sample scarcity and imbalanced datasets and the pro-
posed architecture are presented in Section 3. Section 4
discusses the dataset and provides an overview of selected
classification models. Evaluation and analysis of the ex-
perimental results are discussed in Section 5. Section 6 offers
a summary of the paper and a discussion of future work.

2. Related Work

2.1. Imbalanced Data Processing Methods. *e current
widely used methods for dealing with imbalanced data can
be broadly classified into oversampling, undersampling, and
classifier methods.

2.1.1. Oversampling. Oversampling mechanically replicates
representatives from the minority class. However, this does
not create new information about the minority class, and
oversampling can result in overfitting. *e Synthetic Mi-
nority Oversampling Technique (SMOTE) method ad-
dresses severe overfitting by developing individual pieces to
create more diversity in a few classes of data. *e generation
of unique samples is achieved by linear interpolation of a few
classes of existing observations. SMOTE is widely used, and
some improvements have been made for generating addi-
tional training data to produce better decision bounds after
training [2–4]. For example, support vector machine (SVM)
SMOTE generates new minority examples along the bounds
found by the support vector machine. However, SMOTE
and its derivedmethods apply only to tabular data and not to
high-dimensional data such as images.

2.1.2. Undersampling. Undersampling can reduce the
number of the majority class samples, and it can prevent
users from employing multiple classes of data to learn.
Unlike oversampling, undersampling balances data by re-
moving data samples randomly from the majority class to
achieve class balance in the dataset. However, this entails the
risk of losing critical data in most categories. *erefore,
several researchers have proposed methods to select the
majority of samples that can be removed without losing
essential information in most categories. Wilson [5] pro-
posed an Edit nearest neighbor (ENN) algorithm in which

class data points that do not agree with the predictions of the
K-nearest neighbor (K-NN) algorithm are removed. How-
ever, as with oversampling, undersampling is not suitable for
high-dimensional data because the data being processed is
often not informative enough. *e Classifier model focuses
on minority class samples during the training process. *ere
are three types of classifier models: cost-sensitive learning
[6], regularizers [7], and rescaling the classifier scores [8].
For example, cost-sensitive learning can change the loss in
the number of minority class samples by changing the
learning rate or by applying different weights to the training
samples. Regularizers can either increase the number of
generalization errors of many classes on a small course of
data or impose constraints on the “equilibrium perfor-
mance” measured on small balanced datasets.

However, none of these methods prevent fast overfitting
of minority-class data and are suboptimal when applied to
highly overparameterized models with short memory data
[9].

2.2. Meta-Learning. Meta-learning is a method proposed to
address the characteristics of traditional neural network
models with poor generalization performance and poor
adaptation to new kinds of tasks [10]. Meta-learning tech-
niques use the meta-knowledge accumulated from historical
tasks as a priori knowledge, then learn a small number of
target samples to quicklymaster the new task.*is technique
improves the training method and training time and is
highly adaptive to, and robust in, unknown scenarios. *e
corresponding machine meta-learning research is now
broadly divided into five methods: metric-based learning
methods, generalization-based learning initialization
methods, optimizer-based methods, additional external
storage methods, and data augmentation-based methods. Of
these, the most progress has been made in learning gen-
eralization-based initialization, which has gradually become
the backbone of the meta-learning field.

Meta-learning is currently widely used in natural lan-
guage processing [11] and in computer vision fields [12] such
as image recognition [13, 14], image classification [15, 16],
object detection [17, 18], and recommender systems [19, 20].
In these scenarios, samples may be inherently scarce or
difficult to collect, and annotated labels may be difficult to
obtain. Moreover, the actual situation is often much more
complex than the experimental setting. *e best experi-
mental accuracy results in the area of learning initialization
based on strong generalizability come from the MAML [21]
proposed by Finn et al. Subsequent improvements based on
MAML include the relation network [22], residual network
[23], and Bayesian experiments [24]. Due to the openness
and flexibility of MAML, it can also be used for a series of
gradient descent-based training models, including classifi-
cation [25], regression [26], and reinforcement learning [27].
Several outstanding meta-learning algorithms have been
derived from MAML in combination with other techniques,
such as avoiding the problem of tricky gradient descent of
high-dimensional parameters [28], realistic robot short-time
learning motion [22], and face replacement techniques [29].
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*e benefits of MAML for imbalanced data processing stem
from the fact that users can choose different sampling
strategies for sampling support and querying data in the
inner and outer loops. By complementing the two losses of the
inner and outer loop, MAML can significantly improve per-
formance beyond the baseline and reduce overfitting [30].

3. Meta-IP Model

To address the problems of sample scarcity and data im-
balance in IT projects, this paper proposes Meta-IP, a data
imbalance extension forecast model for few-shot IT projects
based on meta-learning. *e model solves the problems of
sample scarcity and data imbalance through two modules: a
transfer learning module with transferable knowledge, and a
data imbalance processing module based on the MAML
algorithm.

3.1. Few-Shot Processing. By sharing learning parameters
with the new model, the transfer learning method with
learning ability can transfer knowledge from the source task
to the target task [31, 32]. *is optimization method of
transfer learning can greatly improve the generalization
ability of the original model and the speed of new task
modeling [33]. Due to the difficulty of collecting data from
the small number of IT projects, most of the current deep
learning-based IT project extension forecasts rely on labo-
ratory simulation data rather than real-world situations. To
address this issue, this paper will train on a source domain
dataset and test on a target domain dataset.*is will not only
alleviate the problem of the small amount of real-world data
but will also improve the accuracy of the model’s conversion
to real-world situations. In the module dealing with sample
sparsity, we apply two datasets (the specific description of
the dataset is presented in paper 4.1.): the source domain
dataset from the prior knowledge base (Dmeta) and the target
domain dataset for a specific task (Dnovel, IT project ex-
tension forecast) is given as follows:

Dmeta � Xi, Yi( , YiϵCmetal 
Nmeta
i�1

Dnovel � Xi, Yi( , YiϵCnovel 
Nnovel
i�1 .

(1)

Xi in (Xi, Yi) denotes the original feature vector of the
i-th item, where Yi is the class label.Nmeta andNnovel indicate
the total number of observations of Dmeta and Dnovel, re-
spectively. *e two-class labels Cmeta and Cnovel are
disjointed.

In transfer learning, the task-specific dataset can be
represented as T � S∪Q. T consists of a supported dataset S
and a small set of labeled query sets Q from the same set of
classes, so that the classifier can correctly distinguish the
query set Q depending on the support set. *e meta-learner
trains the data with a large amount of labeled data from the
underlying dataset Dmeta, which is then modified in the task-
specific dataset Dnovel for a specific category. Only the
classifier is trained, and the weight of the feature extractor is
fixed. In this paper, all supporting datasets are represented
by S(k), and, similarly, the query set is represented by Q(k).

Items come from the same set of classes C(k), and there are
three cases of subsets of C: Cmeta, Cnovel, and Cmeta ∪Cnovel.

*e process of generating tasks from Dnovel:
T � S∪ Q 

Tnovel

k�1 is carried out by performing novel by
random sampling (Tnovel is the total number of Cnovel on the

set of labels C
(k)

 
Tnovel

k�1
of sampling tasks on the dataset

Dnovel), followed by sampling instances in these classes.
Compute the loss L on the query set Q, conditional on S and
Dmeta for the classifier fθ(X(k)|S(k), Dbase), and record.

Y
(k)

� fθ X
(k)

|S(k), Dbase . (2)

*en, update model’s parameters θ:

a �
1

| Q|


|Q|

k�1
δ Y

(k)
� Y

(k)
 . (3)

*e model trained by Dnovel now needs to learn to
classify the task-specific query set Q

(k) and then adapt to Q
(k)

using its support set S
(k). *e support set in this module is

used to calculate the prototype of data features, and the
query set is used to train and improve the model’s perfor-
mance. *e process is shown in Figure 1.

Because Cmeta and Cnovel are disjoint, the tasks of datasets
Dmeta and Dnovel are not directly related and are linked
together by some transferable knowledge so as to resolve the
problem of sample scarcity.

3.2. Imbalanced Data Processing. *e module dealing with
data imbalance in this paper is based on the MAML al-
gorithm and uses small loops of meta-learning to deal
with data imbalance. *e inner and outer loops of
standard MAML algorithms have their own potential
unique loss functions. In the inner loop, the model is fine-
tuned by minimizing loss functions defined by a set of
supporting data. *e outer loop evaluates the fine-tuned
model against a batch of queries from a query set from the
same task.

*e initial values of the weights are crucial for the speed
of convergence because, for the same local minimum, dif-
ferent weights require different numbers of iterations to
converge. *e proposed Meta-IP method exploits the fact
that meta-learning decouples the inner and outer loop loss
functions, allowing different class balancing strategies for
each position. We use the progress of the IT project to
synthesize the training data, train, and draw Xmeta-training
tasks T � T1, T2 . . . , TX  from the train dataset. Each
training task contains a support set and a query set.
*erefore, the support set Si � ]i1, ]i2 . . . , ]is

� (xi1, yi1), (xi2, yi2) . . . , (xis, yis)}. *e key steps in
Meta-IP, including task sampling, meta-training, and meta-
testing, are then implemented, as shown in Figures 2 and 3.

At the same time, we can use rebalanced data in the
query set to guide the algorithm in the training process to
achieve high accuracy for class-balanced data. *is allows us
to combine the benefits of training with imbalanced data
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Figure 1: Few-shot processing flow chart.
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Figure 2: Training pipeline of the Meta-IP.
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(preventing overfitting) and the benefits of training with
balanced data (a few classes are not ignored). To formalize
the metabolic balancing algorithm, consider a neural net-
work f with parameters θ, which maps samples to predic-
tions. θ denotes the initial parameter, α denotes the external
cyclic learning rate, c denotes the internal cyclic learning
rate, and M and N denote the sample imbalance support
batches and balanced query batches, respectively. In the
inner loop of the metabolic balancing training procedure,
through the calculation of adaptive parameters using the
gradient descent method, the loss of sample batches M is
minimized to obtain the new parameters.

θ0 � θ − α∇θLM fθ( . (4)

*en, in the outer loop, the model is evaluated on a new
balanced sample N based on the new parameter θ0, and the
loss LossN is calculated based on these predictions.

LossN � LossN + LNf θ′(  + βLMf(θ). (5)

We accumulate the external loss over multiple support
and query batches, fine-tune each support batch separately,
and finally update θminimize to minimize the query loss.

θminimize � θ − c∇θLossN. (6)

*e advantage of Meta-IP is that it allows us to choose
different sampling strategies for sampling support and query
sets in inner and outer loops. By using complementary
sampling strategies for these two losses, the performance
beyond the baseline can be significantly improved.*e losses
for each dataset are unfolded against each other using naive
Bayesian, Bagging, Boosting, SMOTE, and SVM.

It is known that balanced datasets are not an efficient way
to achieve fairness for applications such as default predic-
tion, extension forecast, and facial recognition [34]. How-
ever, despite our training improvements on imbalanced
data, our goal is to obtain high accuracy, not fairness.

4. Experiment

An extended completion of an IT project is a tabular binary
classification problem, in which the positive samples are
projects that are extended and the negative samples are
projects that are completed on schedule. In this task, we
trained a feedforward neural network with five fully con-
nected layers using binary cross-entropy loss.

4.1. Dataset Description. In this experiment, there are two
types of datasets: the source domain dataset, which
contains the simulation data in a simulated environment,
and the target domain dataset for task-specific learning,
which is derived from all IT projects in Province S, China,
from 2015 to 2019, and contains the real management
metrics of these IT projects in the actual progress man-
agement. *e dataset is divided into five parts (each part
represents a year) describing the time period from year 1
(2015) to year 5 (2019). *e class labels of the dataset (“0” for
completed and “1” for extended) were determined based on the
completion status of all projects collected in 2020. *e di-
mension of the input characteristics (including class labels) is
14, of which 9 attributes are numeric attributes and 5 attributes
are categorical attributes. *e details of the dataset can be
viewed in Table 1.

*ere are two main features in the dataset: nondeter-
ministic factors and deterministic factors. Nondeter-
ministic factors include development team maturity,
acceptance criteria, process maturity, activity resource re-
quirements, and human resource allocation. Deterministic
factors include size, complexity, software development bud-
get, software personnel monthly labor budget, construction
management fee budget, consulting fee budget, bidding fee
budget, project supervision fee budget, and construction time
[35].

4.2. Dataset Pre-Processing. Data preprocessing is crucial to
the model. In the data preprocessing stage, the numerical
features are standardized and normalized using the pre-
processing package in the scikit-learn (sklearn) module. *e
primary data preprocessing techniques such as virtual
coding, data normalization, and correlation analysis are used
to process the original dataset to obtain valid classification
results. Numerical features are normalized by removing the
mean and unit variance. *e classification features are then
optimized using virtual coding and polynomial processing.
Virtual coding transforms a continuous input variable into
multiple elements, while polynomial processing increases
the diversity of features.

4.3. Evaluation Metrics. *ree evaluation metrics were used
in this study, the area under curve (AUC) [36], the geometric
mean (G-mean) [37], and the balance of accuracy (BACC)
[38]. Each of these metrics reflects the performance of the
model with a different focus. *e rules for calculating these
metrics are given as follows:

Because we usually care about positive instances of
classification results, we used the F indicator to measure the
classifier’s performance. TP means true samples correctly
identified, or true positives; FN means false samples in-
correctly identified as true samples, or false negatives; TN
means false samples correctly identified, or true negatives;
and FP means true samples incorrectly identified as false
samples, or false positives.

Update θxt

Task Txt Support Set Query Set

Parameters θ

Figure 3: A testing pipeline of the Meta-IP.

Mathematical Problems in Engineering 5



Sensitivity � TPR �
TP

TP + FN

Specificity � TNR �
TN

TN + FP

Fβ �
1 + β2  × Sensitivity × Specificity
β × Sensitivity + Specificity

.

(7)

AUC is a classical evaluation index in classification
problems, defined as the area under the receiver operating
characteristic (ROC) curve and between that and the co-
ordinate axis. AUC is defined by the following given
equation:

AUC �
insi∈positiveclassrankinsi

− M ×(M + 1)/2
M × N

, (8)

where rankinsi represents the serial number of the i-th sample
(the probability score is ranked from smallest to most sig-
nificant in the rank position). M, N are the number of
positive samples and the number of negative examples,insi
positive class rankins i, respectively. *e equation adds only
the ordinal numbers of positive samples.

G-mean is a composite metric widely used to measure
the accuracy of imbalanced learning models. *e G-mean is
defined as following:

G − Mean �

�������������������

Sensitivity × Specificity


. (9)

Finally, we used BACC rates to evaluate the results.
BACCmore accurately reflects the actual performance of the
classifier in imbalanced learning. Based on the mixed matrix,
its definition is

BACC �
TPR + TNR

2
. (10)

4.4. Experiment Setup. To improve the reliability of the
experiments, reduce the occurrence of chance events, and
offset the randomness of sampling, each group of experi-
ments was trained for 50 epochs and assessed using the
optimal results. *e training was repeated 20 times.

An IT project extension forecast is a tabular binary
classification problem, with positive samples representing
the completed projects and negative samples the uncom-
pleted projects. We used a two-stage approach based on data
analysis and the concept of the center of gravity [39]. *e
neural network was trained on a set of unbalanced data of
the centers of mass from an a priori knowledge base (the first

stage involved finding local minima close to the global
minimum, and successful training was indicated when the
local minima were relative to the global minimum).
Moreover, at this stage, we trained a pretrained model of a
five-layer feedforward network with the number of channels
per layer as shown in Table 2. In the second training stage, a
specific IT project extension forecast was used, in which the
classifier was modified to distinguish between correctly la-
beling the dataset and a few shots. *e weights of the ini-
tialized neural network were learned using the complete data
in the second training stage.

*is model has four hidden layers, followed by a binary
classification output for predicting item extensions. We
used a probability of a 0.5 dropout rate after the second
level. Each layer of the neural network (except for the final
layer) had a ReLU activation function that was used to
increase the speed of gradient descent. Meta-IP, like the
other sampling methods, uniformly used the Adam opti-
mizer with a learning rate of 0.001 and trained for 100
epochs. We split the original dataset into a training and a
test dataset at a ratio of 8 : 2 and used a batch size of 24. θ0
was calculated as described in (4), with a c constant of 0.01
and a loss accumulation constant β of 0. *e accumulated
loss reached 80 meta-steps before updating θ. We used a
support batch size of 24 and a query batch size of 16. In the
training dataset Train, in which the proportion of extension
forecast items was equal to or less than 20% of the total
number of samples. *e prediction performance decreased
significantly compared to the balanced data. Although the
performance of all classifiers was affected by the imbal-
anced dataset, the degradation in prediction performance
became more pronounced as the dataset imbalance
increased.

5. Results and Discussion

To address the problems of sample scarcity and data im-
balance in IT projects, this paper proposes Meta-IP, a data
imbalance extension forecast model for few-shot ITprojects
based on meta-learning. *e model solves the problems of
sample scarcity and data imbalance through two modules: a
transfer learning module with transferable knowledge and a
data imbalance processing module based on the MAML
algorithm.

5.1. Validation of Transfer Learning Capability. *e transfer
learning capability of Meta-IP performed better than models
trained on unprocessed data. *e transfer learning process
was divided into two stages. *ree experiments were con-
ducted to verify the influence of ITproject samples onDmeta,

Table 1: Details of the imbalanced dataset.

Data-set Total number of samples Negative sample Positive sample Digital features Classification features Total number features
1st-year 499 425 74 9 5 14
2nd-year 338 313 25 9 5 14
3rd-year 590 554 36 9 5 14
4th-year 706 664 42 9 5 14
5th-year 442 428 14 9 5 14
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ITproject samples onDnovel, and the transfer learning model
processed dataset on the forecast accuracy of different ITprojects
under balanced data and imbalanced data. Figures 4 and 5 show
the results of the transfer learning in terms of accuracy, on the
balanced and imbalanced datasets of IT projects.

Figures 4 and 5 clearly show that the accuracy of the
extended forecast decreases when the dataset is not sub-
jected to imbalanced treatment. Figure 4 shows that the
transfer learning model proposed in this paper has the
highest values in terms of accuracy, sensitivity, specificity,

Table 2: *e number of channels per layer of a feedforward neural network.

Neural Network Input layer First layer Second layer *ird layer Fourth layer Output layer
*e number of channels 14 16 24 20 24 1
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Figure 4: Performance of a transfer learning model under the imbalanced dataset.
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Figure 5: Performance of a transfer learning model under the balanced dataset.
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and Fβ values. *is shows that the transfer learning model
has the capability to solve the problem of sample scarcity.

5.2. Comparison of Meta-IP with Other Imbalanced Data
Processing Methods. To compare the imbalanced data pro-
cessing performance of Meta-IP, we compare it with the
traditional and latest imbalanced data processing models.
For all imbalanced data processing models, we use open-
source implementations. *e first five models are compared

Table 3: Comparison of AUC and BACC across models trained with various sampling methods on the ITproject extension forecast tasks.
Bold figures reflect the row maximum.

Model
1st-year dataset 2nd-year dataset 3rd-year dataset 4th-year dataset 5th-year dataset

AUC BACC AUC BACC AUC BACC AUC BACC AUC BACC
Naive Bayesian 0.967 84.3± 0.11 0.958 83.2± 0.03 0.962 85.7± 0.10 0.74 87.2± 0.08 0.963 85.6± 0.09
Bagging 0.943 73.2± 0.05 0.957 77.2± 0.02 0.963 73.9± 0.04 0.962 78.3± 0.07 0.972 75.2± 0.09
SMOTE 0.952 70.8± 1.30 0.952 66.8± 0.90 0.979 71.2± 1.20 0.955 69.3± 0.80 0.957 69.5± 1.10
SVM 0.921 79.2± 1.00 0.934 83.4± 0.90 0.958 81.3± 0.80 0.963 80.2± 1.10 0.954 82.7± 1.20
SMEOTE+ 0.955 72.4± 0.02 0.945 74.3± 0.03 0.935 72.7± 0.01 0.937 77.3± 0.05 0.943 74.8± 0.07
SMOTE+ 0.946 73.5± 0.03 0.927 72.7± 0.01 0.947 73.5± 0.04 0.953 76.7± 0.03 0.938 72.8± 0.05
Meta-IP 0.975 89.7 ± 0.05 0.965 90.1 ± 0.06 0.988 91.2 ± 0.02 0.985 89.3 ± 0.03 0.976 91.8 ± 0.07
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Figure 6: Comparison of (F)β across models trained with various sampling methods on the IT project extension forecast tasks.

Table 4: *e G-mean values were achieved with Meta-IP on
balanced training sets by sample.

Dataset Meta-IP
1st-year 88.3
2nd-year 88.2
3rd-year 89.2
4th-year 89.8
5th-year 89.2

Table 5: *e G-mean values were achieved with forecast models
on balanced and imbalanced training datasets (1st-year) by various
sampling methods. Bold figures reflect the row maximum.

Forecast
model Imbalanced Naive

Bayesian Bagging SMOTE SVM

LDA 32.9 73.4 83.1 76.5 79.6
LR 33.6 72.1 83.5 76.3 80.1
NN 32.8 71.5 84.6 77.2 81.2
SVM 32.1 72.2 82.3 75.2 79.5
RF 31.7 71.1 84.8 77.3 81.5

Table 6: *e G-mean values were achieved with forecast models
on balanced and imbalanced training datasets (2nd-year) by various
sampling methods. Bold figures reflect the row maximum.

Forecast
model Imbalanced Naive

bayesian Bagging SMOTE SVM

LDA 39.1 72.3 83.9 75.4 82.1
LR 40.9 70.5 83.6 77.6 83.4
NN 42.3 70.9 84.4 77.8 81.9
SVM 41.3 73.3 85.9 76.5 82.5
RF 42.7 72.8 85.6 75.2 83.2
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as traditional and the latest imbalanced data processing
model. Since the data sets are private, the second twomodels
[40, 41] are the latest imbalanced data processing models
that use similar datasets as in this article.

We ran it 30 times on an ITdataset project to reduce the
occurrence of chance events and then averaged and validated
the BACC. *e data processing methods were all run with
the same default parameter values. When the classes of
training data were imbalanced, the overfitting generated
during the training further affected the training results. *e
models overfit disproportionately to a few types of data,
leading to a significant performance gap between the ma-
jority and minority classes at training time. For an ITproject
with imbalanced data, we analyzed the overfitting behavior
of three models: the naive Bayesian model, the oversampling
training model, and the Meta-IP training model.

From the statistical results, we found that naive Bayesian
sampling performed better than the standard-based sam-
pling method, as the randomization algorithm itself is un-
certain. *e results show that even though the other
sampling techniques performed well, the model trained with
Meta-IP (an imbalanced data processing module) had the
best results, with a significant increase in AUC. Table 3 lists
the average AUC and BACC for the five years of cross-
validation. *e table indicates that the imbalanced data
processing performance of the Meta-IP (an imbalanced data

processing module) algorithm had a higher average BACC
than the other algorithms.

*e results also showed that Meta-IP (the imbalanced
data processing module) achieved a significant performance
compared to the traditional and latest imbalanced data
processing models. *e naive Bayesian model did not ac-
tually learn to recognize the patterns contained in the mi-
nority class and was blindly input to classify into the
majority class. *erefore, we concluded that training rou-
tines that meaningfully deal with class imbalance have better
performance than the oversampling and naive Bayesian
models in a few classes and also perform better than
undersampling models in most classes. During training,
Meta-IP (the imbalanced data processing module) reduced
the overfitting of a few classes of data and, therefore,
achieved higher overall test accuracy than the other models.

5.3. Comparison of Meta-IP with Other Imbalanced Data
Processing Methods. In this paper, we take β� 1. *e Fβ of
the five algorithms in the data after processing by different
sampling methods are shown in Figure 6.

For each algorithm, the larger the imbalance ratio of the
samples, the smaller the Fβ values. As can be seen from
Figure 6, Meta-IP has the largest Fβ values for the same
extension forecast method, SVM the second largest, and
imbalanced data the smallest. In terms of Fβ values, Meta-IP
outperforms the other algorithms.

In previous studies, when the dataset showed an im-
balanced distribution, the predictive performance of the
minority group (sensitivity) decreased and that of the ma-
jority class (specificity) increased. In addition, the classifi-
cation boundaries of the majority class tended to breach the
classification boundaries of the minority class, thereby bi-
asing the classification toward the majority class [42]. Our
experimental study examined the impact of different im-
balanced data treatments on different extension forecast
models, and we determined these metrics through a fixed
default threshold that defined the boundary value that
classified the sample into extended and nonextended items.
Table 4 shows the results obtained for the Meta-IP built on
different samples and Tables 5–9 show the results obtained
for Table 6 forecast models built on different Table 7 samples.
We contextualized the results by analyzing the G-mean
values that measured the overall prediction according to a
ratio of sensitivity and specificity. *e following tables Ta-
ble 8 shows that the G-mean takes into account Table 9
trade-off between sensitivity and specificity. With all
methods running under the same conditions, Meta-IP

Table 7: *e G-mean values were achieved with forecast models on balanced and imbalanced training datasets (3rd-year) by various
sampling methods. Bold figures reflect the row maximum.

Forecast model Imbalanced Naive bayesian Bagging SMOTE SVM
LDA 37.3 75.6 85.5 78.5 83.2
LR 35.5 76.3 84.6 76.5 84.3
NN 36.9 77.4 85.2 75.6 82.6
SVM 37.8 78.3 86.5 77.6 82.2
RF 35.5 78.2 86.3 76.9 83.9

Table 8: *e G-mean values were achieved with forecast models
on balanced and imbalanced training datasets (4th-year) by various
sampling methods. *e bold figures reflect the row.

Forecast
model Imbalanced Naive

Bayesian Bagging SMOTE SVM

LDA 38.7 75.4 82.3 76.2 82.1
LR 36.6 75.6 84.5 77.9 83.2
NN 37.8 76.8 83.7 77.4 84.2
SVM 38.1 74.9 82.1 76.1 83.6
RF 38.2 76.7 84.6 71.1 82.0

Table 9: *e G-mean values were achieved with forecast models
on balanced and imbalanced training datasets (5th-year) by various
sampling methods. Bold figures reflect the row maximum.

Forecast
model Imbalanced Naive

Bayesian Bagging SMOTE SVM

LDA 42.1 75.7 81.5 72.7 75.4
LR 44.3 74.8 82.6 71.5 75.2
NN 43.5 75.6 83.7 73.6 76.5
SVM 41.9 76.4 82.2 73.9 76.5
RF 42.3 74.3 83.8 74.6 77.8
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achieved a higher overall test accuracy than the other models
in Table 4.

*e results of the comparisons showed that Meta-IP
performs well in handling data imbalances in few-shot
extension forecasts of IT projects, preventing over-adapta-
tion to most classes and overfitting. In the case of data
scarcity, the standard error of Meta-IP is significantly re-
duced, and the prediction performance is improved
dramatically.

6. Conclusions

We have presented a new model dubbed Meta-IP for IT
project extension forecasts. Meta-IP solves the problem of
transfer learning by directly generating task-specific learner
parameters, thereby reducing the difficulty of training on
new datasets and then dealing with imbalanced data by
MAML. Finally, the experimental results show that our
proposed model achieves other advanced methods. *ere-
fore, this study can serve as a heuristic development for
researchers to design few-shot postponement prediction
models for ITprojects with imbalanced datasets and provide
new solutions to overcome the imbalanced data problem.

However, Meta-IP lacks the capacity for theoretical and
in-depth analysis of the specific selection for generating
parameters. *ere is still a need to develop few-shot meta-
learning algorithms with good generalization abilities and
fewer labeled samples. Determining how to construct better
meta-learners, more effective task-based meta-learners,
cross-domain few-shot meta-learners, and multidomain
few-shot meta-learners should be the focus of future
research.

Despite Meta-IP’s performance in handling imbalanced
data, our results should be interpreted with caution. *e
results reflect only the information contained in the data and
the characteristics of the input data; further research should
be more complex, as most models are validated under ex-
perimental conditions that are not representative of real-
world scenarios with imbalanced datasets. We speculate that
even if research is being conducted to design more complex
models, it will not prevent the postponement of a real-world
IT project because the complexity of the data makes the
model’s performance suboptimal, and the data problem
cannot be truly addressed from the ground up.
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H. Gottschalk, “Application of decision rules for handling
class imbalance in semantic segmentation,” 2019, https://
arxiv.org/abs/1901.08394.

[9] N. Rout, D. Mishra, andM. K. Mallick, “Handling imbalanced
data: a survey. International conference on advances in soft
computing,” Intelligent Systems and Applications, ASISA,
vol. 628, pp. 431–443, 2018.

[10] X. X. Li, Z. Sun, J. H. Xue, and Z. Y. Ma, “A concise review of
recent few-shot meta-learning methods,” Neurocomputing,
vol. 456, pp. 463–468, 2021.

[11] X. Wu, D. Sahoo, and S. Hoi, “Meta-RCNN: meta learning for
few-shot object detection,” in Proceedings of the 28th ACM
International Conference on Multimedia ACM, Virtual Event,
China, October, 2021.

[12] J. Choi, J. Kwon, and K. M. Lee, “Deep meta learning for real-
time target-aware visual tracking,” in Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), Seoul, Korea, October, 2019.

10 Mathematical Problems in Engineering

https://www.letpub.com
https://www.infoq.com/articles/standish-chaos-2015/
https://www.infoq.com/articles/standish-chaos-2015/
https://arxiv.org/abs/2102.12894
https://arxiv.org/abs/2102.12894
https://arxiv.org/abs/1901.08394
https://arxiv.org/abs/1901.08394


[13] D. ADas and C. Lee, “A two-stage approach to few-shot
learning for image recognition,” IEEE Transactions on Image
Processing, vol. 29, p. 1, 2019.

[14] J. Narwariya, P. Malhotra, L. Vig, G. Shroff, and V. Tv, “Meta-
learning for few-shot time series classification,” 2019, https://
arxiv.org/abs/1909.07155.

[15] Q. Wang, G. Wang, G. Kou, M. Zang, and H. Wang, “Ap-
plication of meta-learning framework based on multiple-
capsule intelligent neural systems in image classification,”
Neural Processing Letters, vol. 53, no. 4, pp. 2581–2602, 2021.

[16] X. Zhong, C. Gu, W. Huang, L. Li, and C. W. Lin, “Com-
plementing representation deficiency in few-shot image
classification: a meta-learning approach,” in Proceedings of the
2020 25th International Conference on Pattern Recognition
(ICPR), Milan, Italy, January, 2020.

[17] Q. Liu, X. Zhang, Y. Liu, K. Huo, W. Jiang, and X. Li, “Multi-
polarization fusion few-shot HRRP target recognition based
on meta-learning framework,” IEEE Sensors Journal, vol. 21,
Article ID 18085, 2021.

[18] T. Hassan, M. Shafay, S. Akçay et al., “Meta-transfer learning
driven tensor-shot detector for the autonomous localization
and recognition of concealed baggage threats,” Sensors,
vol. 20, no. 22, p. 6450, 2020.

[19] M. Saveski, A. Mantrach, and Acm, Item Cold-Start Recom-
mendations: Learning Local Collective Embeddings, in Pro-
ceedings of the 8th ACM Conference on Recommender Systems
(RecSys), pp. 89–96, Foster City, Silicon Valley, CA, USA,
August, 2014.

[20] H. Wang and Y. M. L Zhao, “ML2E: meta-learning embed-
ding ensemble for cold-start recommendation,” IEEE Access,
vol. 8, Article ID 165757, 2020.

[21] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-
learning for fast adaptation of deep networks,” in Proceedings
of the 34th International Conference on Machine Learning,
Sydney, Australia, August, 2017.

[22] A. Nagabandi, I. Clavera, S. Liu et al., “Learning to adapt in
dynamic, real-world environments through meta-reinforcement
learning,” 2018, https://arxiv.org/abs/1803.11347.

[23] K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, and Ieee, “Deep
residual learning for image recognition,” in Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 770–778, Las Vegas, Nevada, USA, June,
2016.

[24] T. Kim, J. Yoon, O. Dia, S. Kim, Y. Bengio, and S. Ahn,
“Bayesian model-agnostic meta-learning,” 2018, https://arxiv.
org/abs/1806.03836.

[25] E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths,
“Recasting gradient-based meta-learning as hierarchical
bayes,” 2018, https://arxiv.org/abs/1801.08930.

[26] Z. Li, F. Zhou, C. Fei, and L. Hang, “Meta-S. G. D.: Learning to
learn quickly for few-shot learning,” 2017, https://arxiv.org/
abs/1707.09835.

[27] M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch,
and P. Abbeel, “Continuous adaptation via meta-learning in
nonstationary and competitive environments,” 2017, https://
arxiv.org/abs/1710.03641.

[28] A. A. Rusu, D. Rao, J. Sygnowski et al., “Meta-learning with
latent embedding optimization,” 2018, https://arxiv.org/abs/
1807.05960.

[29] E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky, “Few-
shot adversarial learning of realistic neural talking head
models,” IEEE, 2018, https://arxiv.org/abs/1905.08233.

[30] A. Bansal, M. Goldblum, and V. Cherepanova, “MetaBalance:
high-performance neural networks for class-imbalanced,”
2021, https://arxiv.org/abs/2106.09643.

[31] A. Gupta, C. Devin, Y. X. Liu, P. Abbeel, and S. Levine,
“Learning invariant feature spaces to transfer skills with re-
inforcement learning,” 2017, https://arxiv.org/abs/1703.
02949.

[32] S. Wang, D. Wang, D. Kong, J. Wang, W. Li, and S. Zhou,
“Few-shot rolling bearing fault diagnosis with metric-based
meta learning,” Sensors, vol. 20, no. 22, p. 6437, 2020.

[33] R. Raileanu, M. Goldstein, A. Szlam, and R. Fergus, “Fast
adaptation via policy-dynamics value functions,” 2020,
https://arxiv.org/abs/2007.02879.

[34] V. Albiero, K. Zhang, and K. W. Bowyer, “How does gender
balance in training data affect face recognition accuracy?” in
Proceedings of the 2020 IEEE International Joint Conference on
Biometrics (IJCB), Houston, TX, USA, September, 2020.

[35] E. Markopoulos, “An IT project management methodology
generator based on an agile project management process
framework,” 10th Int Conf on Appl Human Factors and Ergon
(AHFE)/AHFE Int Conf Human Factors in Artificial Intelli-
gence and Social Comp/AHFE Int Conf on Human Factors,
Software, Serv and Syst Engn/AHFE Int Conf of Human
Factors in Energy, vol. 965, pp. 421–431, 2020.

[36] J. M. Lobo, A. Jimenez-Valverde, and R. Real, “AUC: a
misleading measure of the performance of predictive distri-
bution models,” Global Ecology and Biogeography, vol. 17,
no. 2, pp. 145–151, 2008.

[37] M. Kubat, “Adressing the curse of imbalanced training sets:
one-sided selection,” in Proceedings of the International
Conference on Machine Learning, Atlanta GA USA, June,
2016.

[38] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann,
“*e balanced accuracy and its posterior distribution,” in
Proceedings of the 2010 20th International Conference on
Pattern Recognition, DBLP, Istanbul, Turkey, August, 2010.

[39] A. Saadi and H. Belhadef, “Towards an optimal set of initial
weights for a deep neural network archi- tecture,” Neural
Network World, vol. 29, no. 6, pp. 403–426, 2019.

[40] Y. J. Jang, I. B. Jeong, Y. K. Cho, and Y. Ahn, “Predicting
business failure of construction contractors using long short-
term memory recurrent neural network,” Journal of Con-
struction Engineering and Management, vol. 145, no. 11,
p. 145, 2019.

[41] N. Basurto, A. Jimenez, S. Bayraktar, and A. Herrero, “Im-
proving the prediction of project success in the telecom sector
by means of advanced data balancing,” Journal of Construc-
tion Engineering and Management, vol. 0, 2022.

[42] M. J. Kim, D. Ki Kang, andH. B. Kim, “Geometric mean based
boosting algorithm with over-sampling to resolve data im-
balance problem for bankruptcy prediction,” Expert Systems
with Applications, vol. 42, no. 3, pp. 1074–1082, 2015.

Mathematical Problems in Engineering 11

https://arxiv.org/abs/1909.07155
https://arxiv.org/abs/1909.07155
https://arxiv.org/abs/1803.11347
https://arxiv.org/abs/1806.03836
https://arxiv.org/abs/1806.03836
https://arxiv.org/abs/1801.08930
https://arxiv.org/abs/1707.09835
https://arxiv.org/abs/1707.09835
https://arxiv.org/abs/1710.03641
https://arxiv.org/abs/1710.03641
https://arxiv.org/abs/1807.05960
https://arxiv.org/abs/1807.05960
https://arxiv.org/abs/1905.08233
https://arxiv.org/abs/2106.09643
https://arxiv.org/abs/1703.02949
https://arxiv.org/abs/1703.02949
https://arxiv.org/abs/2007.02879

