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An increasing popularity of researches focuses on the vibration signal with the characteristics of nonstationary, nonlinear, and
strong noise interference. A nonlinear dimension and feature reduction method called multiple empirical mode entropy de-
composition-nonlocal orthogonal preserving embedding (MEMED-NLOPE) is proposed to implement condition monitoring in
this paper. Different from multiple empirical mode decomposition (MEMD), MEMED adopts maximum entropy method, which
can directly output the subsignal with the maximum correlation and realize nonlinear dimensionality reduction. Besides,
multiscale feature extraction method is used during preprocessing nonlinear data process, which realizes feature reduction.
Finally, nonlocal orthogonal preserving embedding algorithm-exponentially weighted moving average (NLOPE-EWMA) realizes
the automatic detection of the fault. Taking the laboratory rolling bearing test and naval gun pendulum mechanism test as cases,
the effectiveness of MEMED-NLOPE is verified.

1. Introduction

Mechanical components as the vital parts of mechanical
equipment are prone to wear and cracks on the surface with
long-term overload operation. Wear increases the me-
chanical components transmission error, generally resulting
in increased vibration, noise, and dynamic loads [1]. If the
early minor damage of components cannot be detected in
time, once the fatigue deteriorates and the parts break, the
mechanical equipment will be shut down. With the dete-
rioration of the fault degree, the mechanical equipment may
be shut down for a long time, resulting in catastrophic
failures and unexpected economic losses [2]. )erefore,
condition monitoring of mechanical components is an ef-
fective measure to avoid the continuous deterioration of
parts after damage. Vibration signals are widely used to
characterize the state of mechanical equipment because of
their ease of acquisition, but usually the collected vibration
signals have many interference components and have
nonstationary and nonlinear characteristics, which also
bring difficulties to fault diagnosis.

In recent years, the multivariate statistical process
monitoring (MSPM) technology is often used to detect faults
in industrial production processes, such as partial least
squares (PLS) [3], principal component analysis (PCA) [4],
and independent component analysis (ICA) [5]. )ose
traditional monitoring methods process the intermediate
data by dimensionality reduction and extract a small number
of components to construct the monitoring statistics that
can reflect the characteristics of the original data. At this
time, the performance of dimensionality reduction will affect
the monitoring effect.

Different from the dimensionality reduction method
that maintains the global data structure, manifold learning is
used to maintain the characteristics of local data structure,
such as locally linear embedding (LLE) [6], Laplacian
eigenmap (LE) [7], local preserving projections (LPP) [8],
and neighborhood preserving embedding (NPE) [9]. Both
LPP and NPE belong to linear projection methods, but these
methods may lose the key information contained in the
global data structure because they only consider the
neighborhood relationship to maintain the local
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characteristics.)erefore, in order to consider the global and
local data structure characteristics, a method combining LPP
and PCA method is proposed [10, 11]. )e test results show
that its monitoring performance is better than that of single
method. Besides, orthogonal neighborhood preserving
embedding (ONPE) is developed from NPE [12]; by setting
additional orthogonal constraints on the projection vector, it
not only maintains the characteristics of local structure but
also avoids the distortion defects of NPE [13]. In order to
fully consider the global and local structure characteristics of
data, combined with the basic principles of PCA and ONPE
algorithm, a nonlocal orthogonal preserving embedding
(NLOPE) algorithm is proposed [14]. However, those
methods still belong to linear method and have limitations in
dealing with nonlinear data.

In the data preprocessing stage, empirical mode de-
composition (EMD) is often used to describe the charac-
teristics of nonlinear and nonstationary signals [15].
However, when processing multiple signals (multichannel
signals), EMD may lead to different number and frequency
scale of IMF for signal decomposition of each channel [16].
)e proposal of multivariate empirical mode decomposition
(MEMD) [17] ensures the matching of IMF components in
quantity and scale. However, in the process of data pre-
processing, the dimension of subsignals and features may
increase, which will affect the effect of condition monitoring.
To realize subsignals and nonlinear dimensionality reduc-
tion, entropy has been widely developed and used in this
field, which can measure the correlation, uncertainty, and
complexity of signals and features [18, 19].

In this paper, a linear dimension and feature reduction
method called multiple empirical mode entropy decom-
position-nonlocal orthogonal preserving embedding
(MEMED-NLOPE) is proposed on the basis of MEMD and
NLOPE. To reduce the redundancy of subsignal set and
reduce the complexity of the system, MEMED takes both
advantages of MEMD and maximum entropy method into
account. To verify the effectiveness of MEMED-NLOPE,
MEMED-NLOPE and MEMD-NLOPE are employed to
detect the faults of naval gun pendulum mechanism, and
MEMED-NLOPE is verified by the experimental data set of
rolling bearing in laboratory.

)e rest of the paper is organized as follows. MEMD,
PCA, ONPE, and NLOPE are reviewed and analyzed in
Section 2. )e proposed MEMED-NLOPE is developed in
Section 3. In Section 4, two cases are used to demonstrate the
effectiveness of the proposed method. Finally, conclusions
are drawn in Section 5.

2. Background Techniques

2.1. MEMD. EMD is suitable for one-dimensional real
signals. For the processing of multichannel signals (multi-
channel signals), the EMD method often needs to solve the
single channel signals, respectively, which may lead to the
different number and frequency scale of IMF decomposed by
each channel signal; that is, there is the problem of oscil-
lation mode calibration of different channels, which is not
conducive to the synchronous correlation analysis between

multichannel signal channels. Although CMED [20],
BEMD [21], and TEMD [22] are Multivariate Applications
of EMD methods in multivariate data, they are limited to
multivariate data: only binary and ternary signals. For real
multivariate signals, it is still impossible to decompose the
signal on the premise of correctly analyzing the physical
meaning of the signal. )e proposal of MEMD realizes the
multichannel synchronous joint analysis of multichannel
signal oscillation modes, obtains the common modes of
different channels, ensures the matching of intrinsic mode
function (IMF) components in quantity and scale, and
solves the problem of mode calibration of multichannel
signals.

)e specific implementation of MEMD can be sum-
marized as the following steps.

Let an n-dimensional vector group sequence V(t){ }
T
t�1 �

v1(t), v2(t), . . . , vn(t)􏼈 􏼉 represent a n-tuple signal, the length
of the signal sequence is T, and Xθk � xk

1, xk
2, . . . , xk

n􏼈 􏼉

represents the direction vector set of the corresponding
angle θk � θk

1, θ
k
2, . . . , θk

n− 1􏽮 􏽯 on the n − 1-dimensional
sphere. If you want to establish K direction vectors in
spherical space, then k � 1, 2, 3, . . . , K.

(1) )e Hammersley sequence sampling method is used
to obtain a suitable set of uniform sampling points
on the n − 1-dimensional sphere, that is, the direc-
tion vector of the n-dimensional space.

(2) )e mapping pθk (t) of the input signal v(t) on each
direction vector Xθk is calculated.

(3) Determine the instantaneous time tθk􏼈 􏼉
K

k�1 corre-
sponding to the extreme value of the mapping signal
pθk (t)􏼈 􏼉

K

k�1 of all direction vectors, and l represents
the extreme point position, l ∈ [1, T].

(4) )e extreme point [t
θk

l , v(t
θk

l )] is interpolated by
multivariate spline interpolation function to obtain
K multivariate envelopes eθk (t)􏼈 􏼉

K

k�1.
(5) For K direction vectors in spherical space, the mean

m(t) of n-tuple signal is as follows:

m(t) �
1
K

􏽘

K

K�1
e
θk (t). (1)

(6) Extract the intrinsic mode function h(t) through
h(t) � v(t) − m(t). If h(t) meets the judgment
standard of multivariate IMF, take the v(t) − h(t)

result as the input signal in step (2), continue the
iterative calculation in steps (2)∼(6), and extract a
new multivariate IMF component h(t); otherwise,
take h(t) as the input signal of step (2) and continue
the iteration of steps (2)∼(6).

After a series of MEMD decomposition processes,
similar to the EMD algorithm, the original n-tuple signal
V(t){ }

T
t�1 � v1(t), v2(t), . . . , vn(t)􏼈 􏼉 is decomposed into a

series of addition forms of IMF (hi t( )}
q
i�1) and Residual r(t),

as follows:

V(t) � 􏽘

q

i�1
hi(t) + r(t), (2)

2 Mathematical Problems in Engineering



where q represents the decomposed multivariate IMF
function, h(t) is h1

i (t), h2
i (t), . . . , hn

i (t)􏼈 􏼉
T

t�1, r(t) is r1(t),􏼈

r2(t), . . . , rn(t)}T
t�1, corresponding to n groups of IMF

components and n margins of n-tuple signals, respectively.
)e number of IMF decomposed by each channel of mul-
tivariate signal is the same, and the frequencies of IMF in
each layer are different.)e first decomposed IMF frequency
is high, and then the decomposed IMF frequency is low, and
the decomposed residual frequency is the lowest. )e IMF
corresponding to each variable of n-tuple signal is aligned
according to the frequency scale in n channels to form
multiple IMF.

2.2. Principal Component Analysis. PCA, namely, principal
component analysis, is one of the most widely used data
dimensionality reduction algorithms. In this study, the PCA
algorithm is implemented based on eigenvalue decompo-
sition covariance matrix. )e specific steps are as follows:

Step 1: input data set X � x1, x2, x3, . . . , xn􏼈 􏼉, which
needs to be reduced to k dimension.
Step 2: deaveraging (i.e., decentralization), that is, each
feature subtracts its own average.
Step 3: calculate the covariancematrix (1/n)XXT. Note:
dividing or not dividing the number of samples n or
n − 1 has no effect on the calculated eigenvector.
Step 4: find the eigenvalue and eigenvector of covari-
ance matrix (1/n)XXT by eigenvalue decomposition
method.
Step 5: sort the eigenvalues from large to small, and
select the largest k of them. )en, the corresponding x
eigenvectors are used as row vectors to form the ei-
genvector matrix P.
Step 6: convert the data into a new space constructed by
k eigenvectors, i.e., Y � PX.

2.3. Orthogonal Neighborhood Preserving Embedding.
Given data set X � x1, x2, . . . , xN􏼈 􏼉 ∈ Rm, as a kind of linear
dimensionality reductionmethod, the goal of the orthogonal
neighborhood preserving embedding (ONPE) algorithm is
to reduce the dimension of high-dimensional data X to low-
dimensional data Y � y1, y2, . . . , yN􏼈 􏼉 ∈ Rd, that is,
Y � ATX, using a transformation matrix
A � [a1, a2, . . . , ad] ∈ Rm×d(d<m), and the low-dimen-
sional data can express the essential characteristics of the
original high-dimensional data. )e NPE algorithm is the
basic form of ONPE. NPE maintains the local characteristics
in the data structure by constructing the neighborhood
graph between adjacent samples. )erefore, each sample can

be expressed as a linear combination of adjacent samples and
their corresponding weight coefficients. )e weight coeffi-
cient matrix W minimizes the following objective functions:

min􏽘
i

xi − 􏽘
j

Wijxj

����������

����������

2

. (3)

In order to fully maintain the local characteristics of the
data structure, the high-dimensional spatial data xi are
mapped to the low-dimensional feature space to obtain yi,
and the weight coefficients between xi and its nearest
neighbors will be projected to the low-dimensional feature
space to be saved to characterize the connection relationship
between yi and its nearest neighbors. )e low-dimensional
mapping Y of high-dimensional data X can calculate the
following loss functions:

min 􏽘
i

yi − 􏽘
j

Wijyj

����������

����������

2

,

s.t. Y
T
Y � A

T
XX

T
A � I,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where 􏽐
k
j�1 Wij � 1, i � 1, 2, . . . , N, k is the number of

nearest neighbors in the neighborhood of xi. If xj is not the
nearest neighbor of xi, there is Wij � 0.

ONPE adds an orthogonal constraint on the basis of
NPE, that is, mapping high-dimensional data to low-di-
mensional feature space through an orthogonal projection
matrix A. According to (3) and (4), the projection matrix is
calculated by the following formulas:

a1 � argmin
a

􏽘
i

yi − 􏽘
j

Wijyj

����������

����������

2

� argmin
a

A
T
XMX

T
A,

s.t.AT
XX

T
A � I,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ak � argmin
a

􏽘
i

yi − 􏽘
j

Wijyj

����������

����������

2

� argmin
a

A
T
XMX

T
A,

s.t.aT
k a1 � a

T
k a2 � · · · � a

T
k ak− 1 � 0,

A
T
XX

T
A � I,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where k � 2, 3, . . . , d, M � (I − W)T(I − W). )rough it-
erative calculation by Lagrange operator, the expression of
orthogonal matrix A is as follows:

(a) a1 is the eigenvector corresponding to the minimum
eigenvalue of matrix (XXT)− 1XMXT;

(b) ak is the eigenvector corresponding to the minimum
eigenvalue of matrix Q(k), where Q(k) is

Q
(k)

� I − XX
T

􏼐 􏼑
− 1

A
(k− 1)

A
(k− 1)

􏼐 􏼑
T

XX
T

􏼐 􏼑
− 1

A
(k− 1)

􏼔 􏼕
− 1

A
(k− 1)

􏼐 􏼑
T

􏼨 􏼩 · XX
T

􏼐 􏼑
− 1

XMX
T
, (6)

where A(k− 1) � [a1, a2, . . . , ak− 1].

Mathematical Problems in Engineering 3



2.4. Objective Function of Nonlocal Orthogonal Preserving
Embedding. In order to fully consider the global and local
structure characteristics of data, combined with the basic
principles of PCA and ONPE algorithm, a nonlocal or-
thogonal preserving embedding (NLOPE) algorithm is
proposed. Assuming data set x � x1, x2, · · · , xN􏼈 􏼉 ∈ Rm×N,
the objective function of NLOPE is as follows:

J(a)NLOPE � ηJ(a)Local − (1 − η)J(a)Global

� ηmin
a

a
T
xMx

T
a − (1 − η)max

a
a

T
Ca

� min
a

a
T ηxMx

T
− (1 − η)C􏼐 􏼑a

� min
a

a
T ηL′ − (1 − η)C( 􏼁a,

(7)

s.t. aT
k a1 � aT

k a2 � · · · � aT
k ak− 1 � 0,

a
T ηxx

T
+(1 − η)I􏽨 􏽩a � 1, (8)

where C � (1/N) 􏽐
N
i�1(xi − x)(xi − x)T, x � (1/N) 􏽐

N
i�1 xi.

Using Lagrange operator, projection matrix A can be
obtained by calculating the following feature decomposition
problem:

(a) a1 is the eigenvector corresponding to the minimum
eigenvalue of matrix S− 1D;

(b) ak is the eigenvector corresponding to the minimum
eigenvalue of matrix Q(k), where Q(k) is

Q
(k)

� I − (S)
− 1

a
(k− 1)

a
(k− 1)

􏼐 􏼑
T
(S)

− 1
a

(k− 1)
􏼔 􏼕

− 1
a

(k− 1)
􏼐 􏼑

T
􏼨 􏼩S

− 1
D, (9)

where k � 2, 3, . . . , d, d is the dimensions of data in
NLOPE feature space, + a(k− 1) � [a1, a2, . . . , ak− 1],
S � ηxxT + (1 − η)I, and D � ηxMxT − (1 − η)C.

For the new sample xnew, the mapping in the low-di-
mensional NLOPE feature space is

ynew � A
T
xnew, (10)

where A � [a1, a2, . . . , ak].
)e detailed derivation and calculation of projection

matrix A are shown in [12]; there is

I − S
− 1

a
(k− 1)

a
(k− 1)

􏼐 􏼑
T
S

− 1
a

(k− 1)
􏼔 􏼕

− 1
a

(k− 1)
􏼐 􏼑

T
􏼨 􏼩S

− 1
Dak � λak.

(11)

)us, ak is the eigenvector corresponding to the mini-
mum eigenvalue of matrix Q(k), and the expression of Q(k) is
as follows:

Q
(k)

� I − (S)
− 1

a
(k− 1)

a
(k− 1)

􏼐 􏼑
T
(S)

− 1
a

(k− 1)
􏼔 􏼕

− 1
a

(k− 1)
􏼐 􏼑

T
􏼨 􏼩S

− 1
D.

(12)

2.5. Calculation of Parameters. In the construction of the
NLOPE model, parameter η makes the global data structure
characteristics and local data structure characteristics oc-
cupy different components in the above model.)e selection
of parameter η affects the extraction of potential features in
the data and then affects the effect of mechanical equipment
fault detection, fault detection, and degradation perfor-
mance evaluation.

It can be seen from (12) that the objective function of
NLOPE is composed of two subobjective functions.
)erefore, the objective function optimization problem of
the NLOPE model is essentially a double objective opti-
mization problem. Usually, it is difficult to obtain the

optimal solution of the two subobjective functions at the
same time. However, by balancing the two subobjective
functions, a relatively better solution can be obtained.

By balancing the global data structure characteristics and
local data structure characteristics of the model, the cal-
culation of parameter η is as follows:

ηSLocal � (1 − η)SGlobal, (13)

where SGlobal � ρ(C) and SLocal � ρ(L′) represent the energy
changes of J(a)local and J(a)local, respectively.

According to (7), parameter η is used to balance matrix
L′ andmatrixC in the NLOPEmodel, which can be regarded
as the energy change of balance L′ and C. Based on the
principle of the PCA method, the eigenvectors corre-
sponding to the first few large eigenvalues can characterize
the distribution of matrix energy. )erefore, the maximum
eigenvalues of matrix L′ and matrix C can be used to es-
timate the energy change.

In the NLOPE model, parameter η is calculated as
follows:

η �
ρ(C)

ρ L′( 􏼁 + ρ(C)
, (14)

where ρ(·) is the spectral radius of the matrix, and matrix L′
and matrix C are defined in (7).

2.6. Detection Index. Hotelling’s T2 and SPE statistics are
often used as indicators of industrial process fault de-
tection to judge whether the production process is ab-
normal. Hotelling’s T2 is used to measure the change of
sample variables in the potential variable space, and SPE

is mainly used to measure the change of sample variables
in the residual space. When the statistics T2 or SPE

exceed their respective control limits, it indicates that the
process may be abnormal. T2 and SPE are calculated as
follows:
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T
2

� y
TΛ− 1

y, (15)

where y is the low-dimensional feature sample of sample x

projected in NLOPE feature space, and Λ � (yyT/(N − 1))

is the covariance matrix of the projection vector of training
sample in NLOPE feature space.

SPE � 〈Φ(x),Φ(x)〉 − 〈y, y〉

� k(x, x) −
2
N

􏽘

N

i�1
k xi, x( 􏼁 +

1
N

2 􏽘

N

i�1
􏽘

N

j�1
k xi, xj􏼐 􏼑 − y

T
y

� 1 −
2
N

􏽘

N

i�1
k xi, x( 􏼁 +

1
N

2 􏽘

N

i�1
􏽘

N

j�1
k xi, xj􏼐 􏼑 − y

T
y.

(16)

Among them, ynew � ATxnew.
In order to detect the early faults of mechanical

equipment more accurately and reliably, the exponential
weighted moving average (EWMA) is proposed by inte-
grating T2 and SPE statistics. )e statistic U is a linear
combination of T2 and SPE statistics, including

U �
T
2

LT2
+

SPE

LSPE

, (17)

where LT2 and LSPE are the control limits of statistics T2 and
SPE, respectively, which can be calculated by kernel density
estimation (KDE). (T2/LT2) and (SPE/LSPE) normalize T2

and SPE to (0, 1), respectively.
)e detection index EWMA is calculated as follows:

Wt � (1 − c)Wt− 1 + cUt, (18)

where Wt represents the detection index, which is composed
of the current index quantity and the historical index
quantity, and c is the smoothing coefficient between (0, 1).
When c takes a larger value, the current detection quantity
Ut has a larger proportion in the detection quantity Wt− 1
than the historical detection quantity Wt. )e control limit
of the detection amount EWMA is also calculated by the
kernel density estimation method. In this chapter, the
smoothing coefficient c takes the empirical value of 0.2.

3. Proposed Condition Monitoring Model

Based on the analysis of the above background techniques,
the MEMED-NLOPE model is proposed. Firstly, the ar-
chitecture of MEMED-NLOPE is proposed; secondly, the
preprocessing stage of nonlinear data is described in detail;
finally, the steps of the automatic fault detectionmodel based
on NLOPE-EWMA is described.

3.1. Proposed Architecture. )e MEMED-NLOPE model is
mainly divided into two parts.)e first part is nonlinear data
preprocessing, and the second part is automatic fault de-
tection model.

For the first part, MEMED decomposes the signals
collected by each sensor, quantitatively analyzes the

correlation and orthogonality between the multiscale sub-
signal and the original signal, selects the subsignal with the
maximum correlation for the preliminary extraction of
multi domain features, and uses the feature measurement
criterion based on mutual information to optimize and
eliminate redundant features, as the input of the fault de-
tection model.

For the second part, it proposes condition monitoring
model, adopts PCA which extracts the correlation between
multidimensional variables from the historical normal op-
eration data, and diagnoses abnormalities through their
unexpected changes, but PCA only considers the global
structure relationship between samples and ignores the local
structure relationship. )erefore, based on the PCA multi-
variate statistical process monitoring method, combined with
the local orthogonal preserving embedding (ONPE) algo-
rithm, this project proposes NLOPE, which uses exponential
weighted moving average (EWMA) statistics as detection
index to realize the construction of the condition monitoring
model. )e research scheme is shown in Figure 1.

3.2. Preprocessing Nonlinear Data

3.2.1. MEMED

(1) Maximum Entropy Method. Based on the information
entropy theory, the mutual information between different
subsignals and source signals is measured to characterize
the correlation of subsignals, reduce the redundancy of
subsignal set, and reduce the complexity of the system.
)e formula of information entropy is as follows:

H(X) � E[I(X)]

� − 􏽘
n

i�1
p xi( 􏼁I xi( 􏼁

� − 􏽘
n

i�1
p xi( 􏼁logbp xi( 􏼁,

(19)

where I(xi) represents the amount of information of xi:

I xi( 􏼁 � logb

1
p xi( 􏼁

􏼠 􏼡

� − logbp xi( 􏼁.

(20)

p(xi) is the probability of occurrence of xi. )e number
of information ontologies contained in a randomly gener-
ated event is only related to the probability of occurrence of
the event. )e lower the probability of an event, the larger
the information ontology contained in the received infor-
mation when the event really occurs.)emeaning is that the
event with probability 0 has a large amount of information;
on the contrary, it has a small amount of information. )e
reason for taking logarithm is to make the product sum. Two
independent events x, y: p(x, y) � p(x)∗p(y) and
I(x, y) � I(x) + I(y).

Information entropy is the mathematical expectation of
information.
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Mutual information is

I xi, yi( 􏼁 � log
p xi, yi( 􏼁

p xi( 􏼁p yi( 􏼁
. (21)

Average mutual information is the mathematical ex-
pectation of mutual information:

I(X, Y) � E I xi, yi( 􏼁􏼂 􏼃

� 􏽘
i

􏽘
j

p xi, yi( 􏼁log
p xi, yi( 􏼁

p xi( 􏼁p yi( 􏼁
.

(22)

From the formula,

I(X, Y) � H(X) + H(Y) − H(X, Y). (23)

(2) MEMED Flow Chart. Based on MEMD, MEMED adopts
the maximum entropy method to output the subsignal with
the maximum correlation, which realizes the function of
dimension reduction and avoid data explosion. )e specific
flow of MEMD is shown in Figure 2.

3.2.2. Multiscale Feature Extraction Method

(1) Fault Feature Construction Method. )e vibration signal is
used to evaluate the running state of mechanical equipment.
Generally, the corresponding features are extracted from the
time domain, frequency domain, and time-frequency domain
of the signal as the basis of diagnosis. Time-domain analysis is
to describe the change of signal waveform and amplitude
with time. Frequency domain analysis is to describe the
change of signal power or energy with frequency. Time-
frequency analysis is to study the change of signal spectrum
with time and represent the distribution of signal strength
or energy in both time and frequency dimensions.

Time-domain and frequency-domain features generally
include root mean square, kurtosis, skewness, peak factor,
spectral mean square deviation, and envelope spectral
variance. Table 1 contains 11 times domain characteristic
parameters (p1 − p11) and 13 frequency domain characteristic
parameters (p12 − p24). In each characteristic expression,
x(n) is the time-domain signal sequence, n � 1, 2, . . . , N, N

are the number of samples, s(k) is the spectrum of signal
x(n), k � 1, 2, . . . , K, K are the number of spectral lines, and
fk is the frequency value of the k spectral line. )e time-
domain characteristic parameters p1 and p3 − p5 describe the
amplitude and energy changes of the time-domain signal; p2
and p6 − p11 describe the time series distribution of time-
domain signals. )e frequency domain characteristic pa-
rameter p12 describes the change of frequency domain energy;
p13 − p15, p17 and p21 − p24 reflect the concentration and
dispersion of the spectrum; p16, p18 − p20 reflects the change
of the position of the main frequency band.

)e time-frequency domain features include sample
entropy, permutation entropy, wavelet energy entropy, and
EEMD information entropy, which are generally calculated
by time-frequency analysis methods such as wavelet analysis
and empirical mode decomposition.

(2) Fault Feature Selection Method. Similarly, based on the
information entropy theory, the mutual information between
different features is measured to characterize the correlation
between features and reduce the redundancy of feature sets.

3.3. Automatic Fault Detection Model Based on NLOPE-
EWMA. )e offline modeling steps based on NLOPE are as
follows:

Step 1: the features of training samples after MEMD
adaptive decomposition, multiscale subsignal selection,
and multi-scale feature extraction are constructed as
feature samples, and the feature samples are standardized
Step 2: calculate the projection coefficient matrix from
(9)
Step 3: calculate the sum SPE statistics of all training
samples, and calculate the sum of control limits, so as to
calculate the detection index EWMA and its control
limits

)e steps of online detection based on NLOPE are as
follows:

Step 1: after multiscale feature extraction, the feature
samples of each test sample are constructed, and the
feature test samples are standardized by using the mean
and variance of the training feature samples

MEMD

Multi-source 
sensor signal

Maximum 
entropy method

Sub signal with 
the maximum 

correlation

Multi scale and 
multi domain 

feature extraction
NLOPE-EWMA

MEMED

Pre-processing Non-linear Data
Automatic Fault 
Detection Model

Figure 1: Research scheme of MEMED-NLOPE.
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NO

NO

YES
YES

n-ary input signal v (t)

Map v (t) to K-direction vectors

Find the extreme point of pθk (t)}

Save allowance r (t) = v (t)

Save h (t) 
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θk , v (tl

θk)] is 
interpolated in K directions to obtain 
the multivariate envelope of the signal

h (t) meet IMF guidelines

Find the instantaneous time {tθk}
corresponding to the extreme value of

the mapped signal

Information entropy

i > q

YES

NO

NO

YES

Save hi (t) corresponding to Max

MEMD

Maximum entropy 
method

i = i + 1

i = 2

Max = I1 [h1 (t), v (t)]

Max = I1 [h1 (t), v (t)]

Cacultate Ii [hi (t), v (t)]

Input I1 [h1 (t), v (t)]

I1 [h1 (t), v (t)]> Max

The signal decomposition result of MEMD is:
v (t) = hi (t) + r (t)q

i=1

k=1

k=1
K

K

Map v (t) to K direction 
vectors, i.e. pθk (t)}k=1

K

v (t) = h (t)

h (t) = v (t) – m (t) 

v (t) = v (t) – h (t) 

Find the mean m (t) from the 
k=1
Kmultivariate envelope {eθk (t)}

Figure 2: MEMED flow chart.
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Step 2: calculate the projection of the test sample in the
low-dimensional feature space from (10)
Step 3: calculate the detection amount EWMA corre-
sponding to the test sample and judge whether it ex-
ceeds the monitoring limit

)e fault detection process based on the NLOPE method
is shown in Figure 3. Using the NLOPE method, the offline
detection model is constructed by using normal vibration
signals, the new data samples are input into the detection
model, and the fault detection of mechanical equipment can
be carried out by calculating the detection indexes.

4. Experimental Verification and Analysis

To verify the effectiveness of MEMED-NLOPE, the labo-
ratory rolling bearing test and naval gun pendulum
mechanism test are taken as cases. Besides, the programming
software used in the experiment is MathWorks Matlab
R2018a, and the computer configuration is Core i7-10875H
CPU @ 2.30GHz.

4.1. Experimental Data Set of Naval Gun Pendulum
Mechanism

4.1.1. Experimental Design. )e life test of typical me-
chanical parts of naval gun is carried out by using the test
bench of energy storage mechanism of single 130mm naval
gun pendulum. In the test, the data of the health and fracture
damage of the pressing plate and the health and crack
damage of the roller are collected.)e damage of mechanical
parts is shown in Figures 4 and 5. In the test, six vibration
acceleration sensors, numbered a1–a6, and acoustic sensors
are arranged near the sliding plate and pressing plate
mechanism of the pendulum. )e location of the sensor
measuring points is shown in Figure 6. Two vibration ac-
celeration sensors (No. a7-a8) are arranged near the roller
track, and the measuring point positions of the sensors are
shown in Figures 7 and 8.

)e test data collected are composed of the following:

(1) Platen Data. )e composition of platen data col-
lected in the test is shown in Table 2, and the
sampling frequency is 10 kHz. )e number of times
of one test in the table indicates that the artillery test

bench has completed a complete action cycle of latch
closing, recoil, reentry, latch opening, lower swing,
and upper swing.

(2) Roller Data. )e roller test adopts rollers in two
states, and the test data composition is shown in
Table 3.

4.1.2. Condition Monitoring and Analysis of Pendulum
Mechanism. MEMD-NLOPE and MEMED-NLOPE are
used to monitor the condition of platen in different status,
and the results are shown in Figure 9.

It can be seen from Figure 9 that under the condition
monitoring model constructed by MEMD-NLOPE, when
the monitoring object is the healthy platen and roller, some
of the detection indicators of the test sample exceed the
monitoring limit; the part exceeding the monitoring limit
indicates that the detection model generates false alarm.
While when the monitoring object is the platen and roller
tending to be damaged, some of the detection indicators of
the test sample are below the monitoring limit. Under the
condition monitoring model constructed by MEMED-
NLOPE, most of the detection indicators of the test samples
are within the normal monitoring range, and the collected
training samples are consistent with the state of the naval
gun platform.

4.1.3. Summary. )rough the action cycle test of mechanical
mechanism on the naval gun test bench, the data infor-
mation of key mechanical parts in the damaged state is
obtained. Using the proposed detection model, the normal
operation state and abnormal operation state of the naval
gun test bench are detected and analyzed. )e performance
evaluation results based on MEMD-NLOPE and MEMED-
NLOPE are shown in Table 4, respectively.

According to the results in Table 4, the performance of
condition monitoring based on MEMED-NLOPE is better
than that based on MEMD-NLOPE, and the average ac-
curacy of normal and damage detection of platen and roller
is greater than 90%, indicating that MEMED-NLOPE can
determine the normal operation state of pendulum mech-
anism and detect the faults of mechanical components.
However, when the platen is in a healthy state, the false

Table 1: Characteristic parameters.

No. Characteristic expression No. Characteristic expression No. Characteristic expression

1 p1 � (􏽐
N
n�1 x(n)/N) 9 p9 � (p5/p3) 17 p17 �

��������������������

􏽐
K
k�1 (fk − p16)

2s(k)/K
􏽱

2 p2 �

��������������������

􏽐
N
n�1 (x(n) − p1)

2/N − 1
􏽱

10 p10 � (p4/1/N 􏽐
N
n�1 |x(n)|) 18 p18 �

�������������������

􏽐
K
k�1 f2

ks(k)/􏽐
K
k�1 s(k)

􏽱

3 p3 � (􏽐
N
n�1

�����
|x(n)|

􏽰
/N)2 11 p11 � (p5/1/N 􏽐

N
n�1 |x(n)|) 19 p19 �

���������������������

􏽐
K
k�1 f4

ks(k)/􏽐
K
k�1 f2

ks(k)

􏽱

4 p4 �

������������

􏽐
N
n�1 x(n)2/N

􏽱
12 p12 � (􏽐

K
k�1 s(k)/K) 20 p20 � 􏽐

K
k�1 f2

ks(k)/
������������������

􏽐
K
k�1 s(k) 􏽐

K
k�1 f4

ks(k)

􏽱

5 p5 � max|x(n)| 13 p13 � (􏽐
K
k�1 (s(k) − p12)

2/K − 1) 21 p21 � (p17/p16)

6 p6 � (􏽐
N
n�1 (x(n) − p1)

3/(N − 1)p3
2) 14 p14 � (􏽐

K
k�1 (s(k) − p12)

3/K(
���
p13

√
)3) 22 p22 � (􏽐

K
k�1 (fk − p16)

3s(k)/Kp3
17)

7 p7 � (􏽐
N
n�1 (x(n) − p1)

4/(N − 1)p4
2) 15 p15 � (􏽐

K
k�1 (s(k) − p12)

4/Kp2
13) 23 p23 � (􏽐

K
k�1 (fk − p16)

4s(k)/Kp4
17)

8 p8 � (p5/p4) 16 p16 � (􏽐
K
k�1 fks(k)/􏽐

K
k�1 s(k)) 24 p24 � (􏽐

K
k�1 (fk − p16)

(1/2)s(k)/K ���
p17

√
)

8 Mathematical Problems in Engineering



Features after multi-
scale feature extraction

Features after multi-
scale feature extraction

Training

Testing

Training 
characteristic sample

Training 
characteristic sample

Detection model:
NLOPE-EWMA

EWMA Fault detection

Offline modeling

Online modeling

Figure 3: Fault detection process based on NLOPE-EWMA.

Figure 4: Damage diagram of pressing plate.

Figure 5: Crack damage of roller.
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Measuring
point 3

Measuring
point 1

Measuring
point 6

Measuring
point 5

Measuring
point 2

Figure 6: Layout of measuring points of acceleration sensor.
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alarm rate is little high, which reflects that MEMD-NLOPE
has certain instability in this test.

4.2. Experimental Data Set of Rolling Bearing in Laboratory

4.2.1. Experimental Design. )e mechanical failure test
bench used in the laboratory is purchased from Anhui

Chaokun Testing Equipment Co., Ltd. )e test of bearing is
shown in Figure 10.

)e data used in the study are shown in Table 5.

4.2.2. Condition Monitoring and Analysis.
MEMED-NLOPE is used to monitor the condition of
bearing in different status, and the results are shown in

(a) (b)

Figure 8: Test bench sensor measuring points.

Measuring
point 7

Measuring
point 8

Figure 7: Layout of measuring points of acceleration sensor.

Table 2: Composition of platen test data.

No. Data Number of tests Platen status Data type
1 Yaban_Data1 20 Damaged status Test data
2 Yaban_Data2 20 Damaged status Test data
3 Yaban_Data3 20 Healthy status Test data
4 Yaban_Data4 20 Healthy status Test data
5 Yaban_Data5 20 Healthy status Training data

Table 3: Composition of roller test data.

No. Data Number of tests Roller status Data type
1 Gunlun_Data1 20 Damaged status Test data
2 Gunlun_Data2 20 Damaged status Test data
3 Gunlun_Data3 20 Healthy status Test data
4 Gunlun_Data4 20 Healthy status Test data
5 Gunlun_Data5 20 Healthy status Training data
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Figure 9: Continued.
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Figure 9: Continued.
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Figure 9: Continued.
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Figure 11; the corresponding data of different test groups are
as follows:

(a) Zc_Data1 (Taining data), Zc_Data2 (First group of
test data), and Zc_Data3 (Second group of test data)

(b) Zc_Data1 (Training data), Zc_Data4 (First group of
test data), and Zc_Data5 (Second group of test data)

(c) Zc_Data1 (Training data), Zc_Data6 (First group of
test data), and Zc_Data7 (Second group of test data)

(d) Zc_Data1 (Training data), Zc_Data8 (First group of
test data), and Zc_Data9 (Second group of test data)

(e) Zc_Data1 (Training data), Zc_Data10 (First group of
test data), and Zc_Data11 (Second group of test data)
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Figure 9: Condition monitoring results using MEMD-NLOPE and MEMED-NLOPE. (a) Condition monitoring of healthy platen using
MEMD-NLOPE. (b) Condition monitoring of healthy platen using MEMED-NLOPE. (c) Condition monitoring of trending to damage
status of platen using MEMD-NLOPE. (d) Condition monitoring of trending to damage status of platen using MEMED-NLOPE. (e)
Condition monitoring of healthy bearing using MEMD-NLOPE. (f ) Condition monitoring of healthy bearing using MEMED-NLOPE. (g)
Condition monitoring of concave crack on outer race of roller using MEMD-NLOPE. (h) Condition monitoring of concave crack on outer
race of roller using MEMED-NLOPE.

14 Mathematical Problems in Engineering



Table 4: Performance evaluation results based on MEMD-NLOPE and MEMED-NLOPE.

Mechanical
parts Status Cumulative

number of tests

False alarm times/
missed detection
times based on
MEMD-NLOPE

False alarm rate/
missed detection rate
based on MEMD-

NLOPE (%)

False alarm times/
missed detection
times based on
MEMED-NLOPE

False alarm rate/
missed detection rate
based on MEMED-

NLOPE (%)

Platen

Healthy
status 40 15 37.50 4 10.00

Tending to
damaged
status

40 19 47.50 1 2.50

Roller

Healthy
status 40 6 15.00 0 0.00

Damaged
status 40 4 10.00 1 2.50

Figure 10: Mechanical failure test bench for bearing.

Table 5: Data related to mechanical failure test of bearing.

Experimental group Rated speed Fault design of bearing Vibration signal data Sampling frequency of vibration signal
Experimental group 1 1000 r/min Healthy status Zc_Data1—Zc_Data3 200 ks/S
Experimental group 2 1000 r/min Inner race damaged status Zc_Data4—Zc_Data5 200 ks/S
Experimental group 3 1000 r/min Outer race damaged status Zc_Data6—Zc_Data7 200 ks/S
Experimental group 4 1000 r/min Ball damaged status Zc_Data8—Zc_Data9 200 ks/S
Experimental group 5 1000 r/min Mixed damaged status Zc_Data10—Zc_Data11 200 ks/S
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Figure 11: Continued.
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Figure 11: Continued.
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Figure 11: Condition monitoring of different states of bearings. (a) Condition monitoring of healthy bearing. (b) Condition monitoring of
damaged inner race. (c) Condition monitoring of damaged outer race. (d) Condition monitoring of damaged ball. (e) Condition monitoring
of mixed damage.

Table 6: Performance evaluation results of the fault detection model.

Status Cumulative number of tests False alarm times/missed detection times False alarm rate/missed detection rate (%)
Healthy status 40 0 0.00
Inner damage 40 0 0.00
Outer damage 40 0 0.00
Ball damage 40 0 0.00
Mixed damage 40 0 0.00
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4.2.3. Summary. )rough the rolling bearing test on the
mechanical fault test-bed in the laboratory, the data infor-
mation of the bearing under different states is obtained, and
the normal operation state and abnormal operation state of
the bearing are detected and analyzed by using the proposed
detection model. )e performance evaluation results of
MEMED-NLOPE are shown in Table 6.

It can be seen that MEMED-NLOPE can detect the
bearing in different states, and its performance is verified.

5. Conclusions

In this paper, a linear dimension and feature reductionmethod
called multiple empirical mode entropy decomposition-non-
local orthogonal preserving embedding is proposed. In order to
reduce the dimension of multivariate signals and consider the
correlation between sub signals and source signals, MEMED
adopts the maximum entropy method to directly output the
subsignal with the maximum correlation. )en, the multiscale
feature extraction method reduces the redundancy of feature
set by describing the correlation between features. Finally, the
automatic fault detection model based on NLOPE-EWMA is
proposed to realize condition monitoring. Based on the results
of two cases, the performance of condition monitoring based
on MEMED-NLOPE is verified, in which the average accuracy
of normal and damage detection is higher in comparison with
MEMD-NLOPE. For the future work, the massive amounts of
data frommultiple sensors could be considered for naval gun in
health condition monitoring and fault diagnostics.
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