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For a conventional narrowband radar system, its insufficient bandwidth usually leads to the lack of detectable information of the
target, and it is difficult for the radar to classify the target types, such as rotor helicopter, propeller aircraft, and jet aircraft. To
address the classification problem of three different types of aircraft target, a joint multifeature classification method based on the
micro-Doppler effect in the echo caused by the target micromotion is proposed in this paper. +rough the characteristics analysis
of the target simulation echoes obtained from the target scattering point model, four features with obvious distinguishability are
extracted from the time domain and frequency domain, respectively, that is, flicker interval, fractal dimension, modulation
bandwidth, and second central moment. +en, a support vector machine model will be applied to the classification of the three
different types of aircraft. Compared with the conventional method, the proposed method has better classification performance
and can significantly improve the classification probability of aircraft target. +e simulations are carried out to validate the
effectiveness of the proposed method.

1. Introduction

Modern warfare is a four-dimensional integration of land,
sea, air, and space, in which the aircraft target has the su-
periority of high mobility and usually acts as the vanguard of
the war. Generally speaking, there are three types of aircraft
on the battlefield: rotor helicopter, propeller aircraft, and jet
aircraft. It is necessary for the defense side to classify and
identify the target of air intrusion in time to respond to the
potential menaces and formulate their corresponding re-
sponse strategies. In 2014, the Malaysia Airlines MH17 was
shot down in eastern Ukraine due to the poor classification
and identification ability of aircraft target, which caused a
huge humanitarian crisis and reflected the necessity of the
research on aircraft target classification and identification.

Since the range resolution of conventional narrowband
radar is larger than the physical size of the target, less ef-
fective information can be extracted from the radar echo.
Also, its mechanical scanning mode may lead to short target

observation time, which makes it difficult to classify and
identify the target under the low-resolution radar system.
Compared with the working mode of using low-resolution
radar to search targets with high-resolution radar for target
classification, if the function of target classification can be
directly extended in low-resolution radar, it can not only
avoid the system complexity brought by large bandwidth to
the radar but also greatly optimize the operational perfor-
mance of the existing narrowband radar. It provides fa-
vorable support for the improvement of radar back-end
informatization and decision-making strike in the combat
process.

In the field of aircraft target classification and identifi-
cation, the research on broadband radar is widely reported,
and most of its main methods are based on high-resolution
range profile [1–3], inverse synthetic aperture imaging [4, 5],
and image processing [6–8]. New regime radars, such as
MIMO radar [9–11], have achieved high precision target
tracking and superresolution estimation of parameters, and
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many useful explorations have already been conducted in
the field of target identification. For conventional narrow-
band radar, most researchers multiple echo features and use
support vector machine (SVM) classifiers to classify aircraft
target types [12–20]. For example, [17] focuses on the dif-
ference of three types of aircraft target echoes in the Doppler
domain, decomposes the echo by using empirical mode
decomposition (EMD) algorithm, and then regards the
waveform entropy, energy ratio, and second central moment
of the decomposed intrinsic mode function (IMF) as a
feature combination. Finally, the target classification is
successfully achieved through the SVM classifier. However,
this method not only is computationally intensive but also
requires a high signal-to-noise ratio (SNR), and the classi-
fication performance degrades rapidly once the signal is
contaminated by noise. Reference [18] extracts features with
obvious differentiation such as Doppler shift, relative am-
plitude and waveform entropy in time and frequency do-
mains, and Rayleigh entropy of time-frequency spectrum
through feature analysis of a large amount of measured echo
data. However, this method has obvious drawbacks: (1)
using the Doppler shift as a classification featuremust ensure
that the flight directions of three types of targets do not differ
greatly, which is basically impossible for the noncooperative
target. (2)+e combination of features is susceptible to other
factors, and the robustness is poor. (3) +e acquisition of
feature values in the time-frequency domain must use the
time-frequency analysis, which has a large amount of op-
erations and cannot meet the real-time requirements of
radar work. Reference [19] realizes aircraft target classifi-
cation by extracting fractal and amplitude fluctuation. +e
advantage of this method is that it achieves a high classi-
fication probability with fewer feature values, and its
drawback is that although the amplitude fluctuation can
characterize the undulation characteristic of the echo, the
feature is susceptible to noise interference and not robust
under low SNR condition. In [20], the scattering point
model is used to model three types of target. +e sparse echo
data is obtained by simulation, the echo is reconstructed by
orthogonal matching pursuit algorithm (OMP) and smooth
L0 norm reconstruction algorithm, and the amplitude
fluctuation and waveform entropy are extracted. +e
shortcoming of this method is that the proposed target
model is only equivalent by a small number of scattering
points, and the model is too simple and does not consider
the effects of fuselage and flight attitude, which is incon-
sistent with the actual situation.

To address the shortcomings of existing methods, this
paper proposes a set of robust feature combinations based
on the micro-Doppler effect, which can make full use of the
information of the echo fuselage component and the
micromotion component with a small amount of com-
putation and strong noise immunity. Firstly, the radar
echoes are generated by scattering point model simulation,
pulse compression is conducted, and clutter suppression is
performed by using adaptive complex variational modal
decomposition. +en, the flicker interval and fractal di-
mension are extracted in time domain, modulation
bandwidth and second central moment are extracted in

frequency domain as a feature combination, and three
binary SVM classifier is used for classification. Simulation
results show that the proposed method has faster classi-
fication speed and better classification performance than
the existing methods.

2. Echo Model

+e radar echo of an aircraft target is the vector sum of the
fuselage echo and the rotating parts echo, and the fuselage
part has only translational components, while in addition to
the translational components, the rotating parts still have
some micromotion components; thus, this paper mainly
gives the radar echo model of the rotating parts. Taking the
helicopter as an example, the position relationship between
the target and the radar is shown in Figure 1. +e radar
coordinate system O − UVW is established with the radar
position O as its origin, and the reference coordinate system
Q − XYZ is established with the center of the helicopter
rotor Q as its origin, where the XY plane remains horizontal
and the X axis is parallel to the U axis. At the same time, the
target coordinate system Q − xyz is established where the
rotor is located as the surface xy. Let the distance from the
radar to the target be R0 and its pitch angle and azimuth
angle be α and β, respectively, where 0≤ α≤ π/2. For the
convenience of analysis and without loss of generality, this
paper assumes that the radar beam illuminates the target at
β � 0.

Let the radar transmit signal be a narrowband LFM
signal, denoted as
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where rect(·) is the rectangular window function; exp(·) is
the exponential function; A is the signal amplitude; Tp is
pulse width; j is the imaginary unit; fc is the carrier fre-
quency; μ is the LFM slope; 􏽢t is the fast time; tm is the slow
time, tm � mTr (m denotes the mth echo and Tr is the pulse
repetition period); t is the total time, t � 􏽢t + tm.

+e echo of the rotor after pulse compression and clutter
suppression can be expressed as

sr
􏽢t, tm( 􏼁 � 􏽘

K

k�1
􏽘

I

i�1
σikATp sin c B 􏽢t −

2Rik tm( 􏼁

c
􏼠 􏼡􏼢 􏼣

· exp −j
4π
λ

Rik tm( 􏼁􏼔 􏼕,

(2)

where K is the number of blades; I is the number of scat-
tering points on a single blade of the target; σik is the
scattering coefficient; B is the signal bandwidth; λ is the radar
wavelength; sin c(·) is the distance term, which contains the
position information and migration information of the
target; exp(·) is the Doppler term, which contains the
Doppler information of the target; Rik(tm) is the distance
from the scattering point on the rotor to the radar.

From the position relationship in Figure 1, the distance
from the scattering point on the target to the radar can be
written as
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where R0 is the initial distance between the radar coordinate
system and the reference coordinate system; v is the target
translational velocity; r0 is the position of the target scattering
point in the target coordinate system,
r0 � [rik cos(Ω), rik sin(Ω), 0]T, where Ω � ωtm + θik, ω is
the angular velocity of rotation, θik is the initial phase, rik is
the distance of the scattering point from the center of the rotor
in the target coordinate system, and 0≤ rik ≤ l; Rinit is the
initial rotation matrix determined by the initial Euler angles.

Rinit �
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Among them,

a11 � cos ϕe cos φe − sin ϕe cos θe sin φe,

a12 � −cos ϕe sin φe − sin ϕe cos θe cos φe,

a13 � sin ϕe sin θe,

a21 � sin ϕe cos φe + cos ϕe cos θe sin φe,

a22 � −sin ϕe sin φe + cos ϕe cos θe cos φe,

a23 � −cos ϕe sin θe,

a31 � sin θe sin ϕe,

a32 � sin ϕe cos φe,

a33 � cos θe,
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where ϕe is the cross-roll angle; θe is the pitch angle; φe is the
yaw angle. According to the z − x − z regulation [21], the
target coordinate system Q − xyz can be transformed into
the reference coordinate system Q − XYZ by rotating ϕe

around the z-axis, θe around the x-axis, and φe around the
z-axis. +en, the coordinate of the scattering point in the
reference coordinate system is

Rinitr0 �

a11rik cos Ω + a12rik sin Ω

a21rik cos Ω + a22rik sin Ω

a31rik cos Ω + a32rik sin Ω
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At this point, the instantaneous frequency of the target
echo is
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When the target is in the far-field condition, namely,
‖R0‖≫ ‖vtm + Rinitr0‖, n can be approximated as n � R0/
‖R0‖, which is the line of sight (LOS) direction of the radar.
+e first term in (7) is the Doppler frequency caused by
target translation fd � 2vΤn/λ, and the second term is the
micro-Doppler frequency caused by rotation. Substituting
(6). we can obtain
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where m � a11 cos α + a31 sin α, n � a12 cos α + a32 sin α. It
can be concluded that the echo of the rotor conforms to
sinusoidal modulation law and is distributed on both sides
centered on the translational Doppler shift. +e sideband
width is related to the target size, rotation speed, pitch angle,
and target attitude. Propeller and jet aircraft are modeled in a
similar way and are no longer described here.

3. Classification of Targets

In the classification stage, feature extraction and analysis are
first performed on the echoes of three types of targets to find
the features with greater differentiation between them. On this
basis, suitable feature combinations and classifiers are selected
to achieve the classification of different aircraft targets.

3.1. Characteristics Analysis

3.1.1. Flicker Interval. +e high-speed rotating parts, such as
the main rotor and tail of the helicopter, the propellers of the
propeller aircraft, and the turbines of the jet aircraft, on the
aircraft target will produce periodic modulation in the radar
echo.+eperiodicmodulation caused by such rotating partswas
firstly proposed by Professor Chen of the US Naval Laboratory
in 2000, who referred to the mechanical vibration and rotation
of targets or target components other than center-of-mass
advection as micromotion and also named the Doppler mod-
ulation phenomenon caused by micromotion in radar echo as
the micro-Doppler effect [21–23].+emicro-Doppler effect can
reflect the geometric composition and motion characteristics of
target structural components, which is a unique feature of the
target and can be used to determine the nature of the target,
providing a new way for radar target classification. +erefore,
using the micro-Doppler characteristics of targets to conduct
classification and identification is a current research hotspot.

+e fluctuation characteristics of the radar echo vary for
different targets. When the rotating part on the target rotates
perpendicular to the radar LOS direction, the echo intensity
will reach the maximum. When it deviates from the radar
LOS direction, the echo intensity will decrease sharply. +is
phenomenon is known as the time-domain modulation of
micromotion, which is called the flicker phenomenon [24].
Figure 2 shows the time-domain echo of three types of
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Figure 1: Radar-target position relationship.
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target. +e echo of helicopter and propeller aircraft made an
obvious flicker phenomenon. Multiple flickers can be ob-
served in a short dwell time, and the flicker interval in the
helicopter echo is significantly much longer than that of
propeller aircraft. Meanwhile, the flicker in the echo of jet
aircraft cannot be detected due to its many blades, small size,
and fast rotation speed, and being often obscured.+erefore,
the differences of echo amplitude fluctuation of three types
of target can be measured by extracting flicker interval.

If the flicker interval is extracted directly in the time-
domain echo, it is easily affected by the noise and leads to
large error. In order to reduce the adverse impact of noise,
this paper improves the extraction accuracy of the target
flicker interval by autocorrelation processing, which can
improve the output SNR and the estimation accuracy of the
flicker interval because there is a correlation between signals,
while there is no correlation between signals and noise and
noise and noise.

Assuming that the noisy signal is X(t) � s(t) + n(t), the
temporal autocorrelation function of its sample function is
usually expressed by taking the limit of integration. But
under nonideal noise conditions, where the noise is not
standard Gaussian white noise, apart from signal autocor-
relation and noise autocorrelation, the mutual correlation

between signal and noise should be taken into consideration.
+us, the autocorrelation function can be expressed as
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where (·)∗ is the conjugate operation. From (9), it can be
concluded that, after the autocorrelation process, its SNR is
improved by T times. At this point, the flicker intervalΔ􏽢t can
be estimated by finding the peak and subpeak of the au-
tocorrelation function.

Δ􏽢t � τ1 − τ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (10)

where τ1 is the delay value when R(τ) takes the peak and τ2
is the delay value when R(τ) takes the subpeak.

+e distribution of the time-domain flicker interval
extracted by the autocorrelation method is shown in Figure 3,
which shows that the flicker interval in the target echo of the
rotor helicopter is the largest, while the jet aircraft is the

smallest, and the propeller aircraft is between the two. On the
premise of accurate flicker interval extraction, the feature can
be used to effectively distinguish these three types of targets,
but in the actual processing, the flicker interval extraction is
not accurate for certain special scenes, so other effective
features need to be found to supplement them.

3.1.2. Fractal Dimension. Fractal, an important branch of
nonlinear science in recent years, was first introduced into
the field of natural science to characterize complex graphs or
complex processes. Mandelbrot defined a shape whose
components are similar to the whole in some way as a fractal
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Figure 2: Target echo: (a) helicopter; (b) propeller; (c) jet.
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[25], and the parameter used to characterize the fractal is
called the fractal dimension. In 1983, Wheeler pointed out
that the importance of fractal to future science is equivalent
to the importance of entropy to modern science [26]. Both
entropy and fractal are measures of complexity [27–30], but
entropy is always dependent on the measurement scale when
used to measure multiscale complexity [31, 32], and if the
linear scale of measurement is changed, the entropy value
changes, which leads to uncertainty, whereas fractal di-
mension is independent of the measurement scale.

+ere are many fractal phenomena in nature, such as
coastlines, mountain shapes, cloud masses, and grasses. And
it has been shown that meteorological clutter, sea clutter, and
ground clutter also have fractal properties, so fractal is
widely used in the field of radar target detection because the
difference of fractal dimension between targets and clutter
are obvious, such as target detection in clutter background
based on fractal dimension [33]. At the same time, the fractal
is considered to have potential in the field of recognition,
such as target geometric shape description [34], musical
instrument signal classification and recognition [35], and
aircraft target classification and identification [36].

Since narrowband radar aircraft targets aremostly under the
above three kinds of clutter, the fractal dimension of the same
target is relatively stable, and different targets have different
fractal dimension due to different geometric shape and mod-
ulation characteristic, which makes it possible to classify and
identify aircraft targets based on the fractal.+e study shows that
the fractal dimension is basically unaffected by noise [37], which
is practically significant for radar target identification.

Currently, the methods for calculating fractal dimension
mainly include the Higuchi method [38] and the box-
counting method [19]. Since conducting aircraft target
identification requires high real-time performance, this
paper uses the box-counting method to calculate the fractal
dimension, which is considered to be the fastest and most
practical method to calculate the fractal dimension.

Let D be any nonempty bounded subset on Rn and N(ε)
be the minimum number of sets with a maximum diameter
of ε which can cover D. +en, the box dimensions of the
upper and lower bounds of D are defined as

dim D � lim
ε⟶ 0

log N(ε)
−log ε

,

dimD � dim
ε⟶0

log N(ε)
−log ε

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

where dim and dim represent the lower and upper bounds
of the box dimension of the set, respectively. If the values of
the upper and lower bounds are equal, it is called the box
dimension of D and denoted as

F D � lim
ε⟶0

log N(ε)
−log ε

. (12)

In the actual calculation, Nε(D) is generally taken as an
integer multiple of two. If the number of range bins con-
taining the target is N, let

cellmax � 2n >N, (13)

where cellmax is the closest power function to N. In (13),

ε � 2(1−e)
, 1≤ e≤ log2(cellmax + 1),

N(ε) � cellmax/ε.

⎧⎨

⎩ (14)

+e box-counting algorithm can be understood as fol-
lows: take boxes with side lengths of ε and cover the fractal.
Some of the boxes will be empty due to the existence of gaps
inside the fractal and then record the number of nonempty
boxes as N(ε). Reduce the size of the boxes and N(ε) will
become larger. According to the definition, the slope of the
log ε and log N(ε) curve in the double logarithmic coor-
dinate system is the fractal dimension. Figure 4 shows the
distribution of fractal dimension for the three types of
aircraft targets. It can be seen that the fractal dimension of
helicopter is the smallest, ranging from 1.4 to 1.5, that of jet
aircraft is the largest, ranging from 1.63 to 1.7, and propeller
aircraft is between the two, ranging from 1.54 to 1.72. +e
feature is able to better distinguish helicopter from each
other, but the overlap between the feature distribution of jet
and propeller aircraft results in a weak differentiation ability
of the two targets.

3.1.3. Modulation Bandwidth. In the time-domain echo, the
flicker interval is one of the most intuitive indexes that are
not easily affected by other factors, and the fractal dimension
can be independent of the measurement scale. However, in
order to fully characterize the differences in the micro-
motion characteristics of three types of target, the echo
spectrum is also investigated in this paper.

From (8), it can be seen that the frequency modulation
caused by the rotation of each scattering point on the
target shows a sinusoidal pattern, and the amplitude is
determined by the target size, rotation speed, pitch angle,
and target attitude. At a certain moment, for the same
target, the rotation speed, pitch angle, and target attitude
are the same, so the modulation amplitude is only de-
termined by the position of the corresponding scattering
point on the rotor. +e modulation amplitude caused by
the scattering point located at the center of rotation is zero,
while the modulation amplitude caused by the scattering
point located at the tip of the blade will obtain the
maximum value. At this time, the modulation bandwidth
of the target is

Bm D �
2ωl

λ

�������

m
2

+ n
2

􏽱

. (15)

In order to obtain the modulation bandwidth of the
target, it is necessary to transform the echo from time
domain to frequency domain by Fourier transform, and this
process can achieve a coherent accumulation effect and has
good antinoise performance. Figure 5 shows the spectrum of
three types of target echo, where rotor helicopter and
propeller aircraft have obvious frequency modulation, and
the bandwidth of helicopter is larger than that of propeller
aircraft, while the frequency modulation phenomenon
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caused by micromotion cannot be detected in the echo of jet
aircraft. +erefore, the differences in frequency spectrum
can be measured by extracting the frequency modulation
bandwidth.

In this paper, the modulation bandwidth is calculated by
taking the envelope of the spectrum, using the mean value of
the envelope amplitude as the threshold, and setting the
envelope values smaller than the threshold to zero. Its
distribution is shown in Figure 6. From the distribution of
themodulation bandwidth, it can be seen that the bandwidth
of the jet aircraft target is small, only 200Hz, and its dis-
tribution range is very concentrated, which is because of the
fact that there is no micro-Doppler effect in this type of
target echo; that is, micro-Doppler modulation does not
occur. In contrast, the modulation bandwidth distribution of
rotor helicopter and propeller aircraft is more complex, and
it can be seen in Figure 5 that the rotor helicopter target echo
bandwidth is slightly larger than that of propeller aircraft,
but after taking the target attitude and feature extraction
method into consideration, the rotor helicopter echo
modulation bandwidth is mainly concentrated in
1800–2800Hz, and the propeller aircraft echo modulation
bandwidth is distributed in 500–2800Hz. +erefore, this

feature is able to distinguish jet aircraft better, while it does
weakly in distinguishing rotor helicopter and propeller
aircraft.
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Figure 5: Frequency spectrum: (a) helicopter; (b) propeller; (c) jet.
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3.1.4. Second Central Moment. Although the modulation
bandwidth can measure the differences of three types of
target in the frequency domain to a certain extent and enjoys
some noise immunity, there are some errors under the
influence of attitude and feature extraction method, and the
robustness of the feature is insufficient. +erefore, this paper
also extracts the classical feature of the second central
moment in frequency domain to realize the classification.
For a signal spectrum sequence X � Xi􏼈 􏼉

N

i�1 , its second
central moment is

U
2

� 􏽘
N

i�1
i − i0( 􏼁

2
Xi, (16)

where Xi � Xi/􏽐
N
i�1 Xi and i0 � 􏽐

N
i�1 i · Xi. +e second

central moment characteristic in the frequency domain
reflects the sparsity of the deviation of the frequency-domain
echo relative to its geometric center of gravity. According to
Figure 5, it can be seen that, for helicopter, the geometric
center of gravity of the spectrum is mainly determined by the
fuselage component, and the other components are con-
centrated near the fuselage component; that is, the deviation
relative to the geometric center of gravity is dense and the
second central moment is the smallest, while jet aircraft is
just the opposite, which enjoys the largest second central
moment, and propeller aircraft is in between. Its distribution
is shown in Figure 7.

In practical systems, information such as target RCS and
actual velocity can also be obtained, which can be used to
further improve the classification performance, but these
features are not used in this paper due to the limitation of a
priori information and real-time requirements.

4. Classification Method

+e flicker interval, fractal dimension, modulation band-
width, and second central moment are used to classify three
types of target, and the processing steps are as follows:

(1) Simulated echo generation: aimulated radar echoes
are generated by using the scattering point model
and processed for pulse compression and clutter
suppression to obtain a range-azimuth amplitude
map. +e range bin where the target is located is
determined from the target detection results, and the
slow time dimensional data within that range bin is
extracted.

(2) Feature combination acquisition: the fractal di-
mension is extracted from the slow time dimensional
data using a box-counting algorithm, and the flicker
interval is extracted by autocorrelation in time do-
main. Subsequently, the Fourier transform is then
used to transform the slow time dimensional data
into the frequency domain to calculate the second
central moment, the modulation bandwidth is
extracted using the idea of taking the envelope over
the threshold, and these four feature values are used
as feature combination for the classification of three
types of target.

(3) Classifier design: the extracted feature combination
is fed into three binary SVM classifiers for classifi-
cation. +e first classifier is used to distinguish be-
tween rotor helicopter and propeller aircraft, the
second classifier is used to distinguish between rotor
helicopter and jet aircraft, the third classifier is used
to distinguish between propeller aircraft and jet
aircraft, and the final classification results are ob-
tained by a voting mechanism.+e classifier model is
shown in Figure 8.

In Figure 8, both training and test data are generated for
simulation, with a total of 21 SNR sampling points and 500
sets of data under each sampling point. Among them, 150
sets are randomly selected as the training dataset for each
classification, the remaining 350 sets are used as the test
dataset, and the average classification accuracy under each
SNR sampling point is obtained as the final classification
accuracy by 100 Monte-Carlo experiments.

4.1. Simulation Analysis. In order to be closer to reality, the
scattering point model used in this paper fully considers the
main structure of the target, such as the fuselage, main rotor,
tail, and weapon mount. Assume that the backscattering
properties of the materials used in the target are basically the
same; that is, the scattering points are assumed to be uni-
formly distributed, and the scattering intensity is the same.
+e scattering point models of three types of target are
shown in Figure 9, and the specific target parameters are set
as Table 1. +e difference is ensured by randomly selecting
the target’s attitude to ensure that the variability of each
simulation, the target’s cross-roll angle, longitudinal sway
angle, and yaw angle in the simulation obey the uniform
distribution on (−π/2, π/2), (−π/6, π/6), and (−π/12, π/12),
respectively, and the target flight direction is determined by
its attitude. +e radar parameters are referenced to a con-
ventional narrowband air surveillance radar with a carrier
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Figure 7: Distribution of second central moment.

Mathematical Problems in Engineering 7



frequency of 1GHz, bandwidth of 2MHz, and pulse repe-
tition frequency of 4000Hz. It should be pointed out that all
the SNR mentioned are the SNR after pulse compression.

+e target can be detected, and its azimuthal dimen-
sional data can be obtained by clutter suppression of the
target echo. +e flicker interval, fractal dimension, modu-
lation bandwidth, and second central moment features in
frequency domain are extracted and classified by a three-
classification SVM classifier. After 100 Monte-Carlo ex-
periments, the average classification probability of the three
types of target under different SNR conditions is shown in
Figure 10. It is worth pointing out that the SNR after pulse
compression of conventional narrowband surveillance radar
is usually above 5 dB, and the target may not be detected
when the SNR is low, so the SNR region is set from −10 dB to
10 dB in this paper.

From the classification results, it can be concluded that
the classification of targets based on the method proposed in
this paper has the highest classification probability of 100%

for jet aircraft because the feature distribution of jet aircraft
is relatively simple in the feature combination proposed in
this paper, and its feature distribution basically does not
overlap with the rotor helicopter and propeller aircraft.
Similarly, it is due to the more overlapping feature distri-
bution of rotor helicopter and propeller aircraft that the
classification probability of these two types of targets is
comparatively low, with the best classification probabilities
of 98.49% and 98.31%, respectively. As the SNR decreases,
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Figure 8: +ree-class SVM model.
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Figure 9: Scattering point model: (a) helicopter; (b) propeller; (c) jet.

Table 1: Target parameters.

Parameters Helicopter Propeller Jet
Number of rotors 2 4 1
Number of blades 3/4 4 21
Length (m) 7.3/1.4 2.05 0.44
Rotation speed (r/min) 288/360 1020 5000
Distance (m) 28000 28000 28000
Height (m) 1500 5000 7000
Speed (m/s) 81 150 289
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Figure 10: Classification result.
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the classification probability of jet aircraft remains essen-
tially unchanged, and that of propeller aircraft changes
relatively flat, but that of rotor helicopter is more variable,
with a classification probability of only 86.37% at
SNR� −10 dB.

In order to verify the advances of the proposed method
in this paper, the proposedmethod is also compared with the
methods used in [17] (method 1), [18] (method 2), [19]
(method 3), and [20] (method 4) for the target classification
performance, and the comparative simulation result is
shown in Figure 11.

From Figure 11, it can be seen that the average classi-
fication probability of the three types of target in the pro-
posedmethod is the highest and the classification probability
is more stable under different SNR conditions, maintaining
above 93.72%. +e classification probability of the feature
combination proposed in method 1 is seriously influenced
by noise, and it is more stable at SNR >5 dB and can be
maintained at about 87.80%, but the classification proba-
bility decreases rapidly as the SNR decreases, and the
classification probability is only 47.12% when SNR� −10 dB.
In comparison, the classification performance of method 2 is
the best among the four compared methods, with a classi-
fication probability of 93.65% at high SNR and a classifi-
cation probability of more than 80% at low SNR, but it is still
not comparable to the performance of the proposed method.
+e classification performance of method 3 and method 4 is
close because both methods use amplitude fluctuation fea-
ture; besides, the fractal feature used in method 3 and the
entropy feature used in method 4 have some similarities.
And because the proposed feature combination in these two
methods does not use more feature values, which can ac-
curately describe the properties of the target echo, the
classification probability is not high, and the best classifi-
cation probability is only 79.93% and 81.16%. +us, it can be
seen that the proposed feature combination in this paper has
good robustness and the classification performance is sig-
nificantly higher than the existing methods.

Further demonstrations of the reasons for the better
classification performance of the proposed method com-
pared with [17–20]. (1) +e fundamental reason is that this
paper extracts the time-domain flicker interval and fre-
quency-domain modulation bandwidth based on the micro-
Doppler modulation characteristics of the target echo, which
are more discriminative than the traditional statistical fea-
tures. Meanwhile, the proposed fractal dimension is not
affected by noise, and both the time-domain flicker interval
and the frequency-domain modulation bandwidth enjoy
strong antinoise ability, but they are not discussed in any
existing methods. (2) Compared with [17], which uses a
single frequency-domain feature, the combination of fea-
tures proposed in this paper covers both time-domain
features and frequency-domain features, which can more
comprehensively characterize the potential information
contained in the signal. +e feature combination proposed
in [17] is obtained by the EMD algorithm, which lacks a
complete theoretical basis, and the modal aliasing and
endpoint effects in its IMF components will lead to false
frequency distributions, which cannot accurately

characterize the frequency-domain properties of the target.
Moreover, the proposed modal energy ratio feature is not
robust in low SNR or strong clutter environment. (3) Ref-
erence [18] obviously proposes multiple features in the time
domain, frequency domain, and time-frequency domain to
analyze the target echo, which has one more dimension than
the method in this paper, but the proposed feature com-
bination is not universal and has poor performance in the
data used in this paper. In terms of Doppler shift, this
parameter is obviously influenced by the direction of the
target flight; for example, a helicopter target can obtain a
large Doppler shift when the angle between the helicopter
and the radar LOS direction is small; while the angle between
the jet and the radar LOS direction is large, its Doppler shift
will be small, so the classification stability is poor by using
this feature directly. Meanwhile, [18] utilized entropy fea-
tures in multiple domains, which are susceptible to the
measurement scale and the resolution of the time-frequency
analysis method in the time-frequency domain and do not
have advantages over the fractal feature proposed in this
paper. (4) Reference [19] verified the effectiveness of using
the fractal feature for target classification using measure-
ment data, but the proposed feature combination is too
single, with only two time-domain features. Compared with
the multidimensional and multifeature of the proposed
method, it has obvious disadvantages. (5) +e feature
combination proposed in [20] is more adaptable in the case
of a small number of scattering points, but the three types of
target models used in this paper are composed of a large
number of scattering points, so the performance degrades
seriously, while the feature combination proposed in this
paper is actually less affected by the target model and the
performance is more stable.

5. Conclusion

For conventional narrowband radar, the characteristics of
Doppler shift, amplitude fluctuation, and time-frequency
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Figure 11: Comparative simulation result.
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spectrum are directly extracted to classify the three types of
targets, which are susceptible to unfavorable factors such as
noise and computation, and the classification probability is
not high. However, the concept of the micro-Doppler effect
makes scholars realize that the micromotion information on
the target reflects the essential characteristics of the target to
a certain extent, which provides a new way for the classi-
fication. In this paper, the micro-Doppler modulation is
analyzed from time domain and frequency domain, and a
novel classification method based on the feature combina-
tion of flicker interval, fractal dimension, modulation
bandwidth, and second central moment is proposed. Sim-
ulation results show that this method is insensitive to noise
and has high robustness. Compared with the existing
methods, it has a higher classification probability, which can
be maintained above 93.72%.
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