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Single-rod cylinders are generally employed in electro-hydrostatic actuators (EHAs). A condition that is di�cult to detect and
could degrade the performance in single-rod EHAs, is the faulty cylinder piston seal. It causes internal leakage from one chamber
of the actuator to another. In this work, a position controller with tolerance to actuator internal leakage is synthesized for a single-
rod EHA using quantitative feedback theory (QFT). �e controller is also robust to di�erent loading and environmental
sti�nesses. �e ability of the controller is compared with another QFT controller that is synthesized without considering leakage
fault.�e simulation results show that the QFTfault-tolerant controller can meet prescribed speci�cations despite internal leakage
up to 8.6 L/min.

1. Introduction

An electro-hydrostatic actuator (EHA) is pump-controlled
that has already been used for aircrafts [1], vehicles [2], and
manipulators [3, 4]. In the literature, a double-rod cylinder is
often used in an EHA system and its circuit structure is
simple. However, single-rod EHAs with four possible circuit
con�gurations have more potential applications [5, 6].
Single-rod EHAs can su�er from various faults. In partic-
ular, a leaky piston seal can cause internal leakage from one
chamber of the actuator to another that can degrade system
performance. In order to compensate for the adverse e�ects
caused by faults, fault-tolerant control (FTC) methods are
widely utilized. FTC schemes can be divided into two
groups, namely, active and passive FTC. In the former, the
controller is adaptive and alters online as faults happen. In
the latter, a robust controller is designed that is insensitive to
faults in closed-loop performance [7–11]. �is type of
controllers is preferable due to its simple structure and easy
application.

Quantitative feedback theory (QFT) is a robust linear
controller design method. During the controller design
process, performance speci�cations, parametric uncer-
tainties, and controller structure can be balanced [12, 13].
QFT controllers have been successfully applied to deal with
internal leakage fault. Karpenko and Sepehri [14] developed
an active QFT-based FTC scheme, and they further designed
passive QFT fault-tolerant controllers [15, 16]. All these
controllers were implemented on valve-controlled systems.
Ren et al. [17–20] synthesized QFT position and QFT ac-
tuating pressure controllers despite leakage. �ese con-
trollers were developed for double-rod EHAs. Apart from
QFT, an adaptive backstepping technique developed by
Chen and Liu [21] has been proposed to deal with internal
leakage. �is system is not an EHA because directional
valves were used to control the ¢ow. Maddahi et al. [22]
developed a fractional-order PID fault-tolerant controller
for a valve-controlled system. Moghaddam et al. [23]
combined fractional-order PID controllers and a fuzzy in-
ference system to accommodate internal leakage for a single-
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rod EHA. However, this active FTC strategy necessitates a
fault detection algorithm. *e contribution of the work is to
design of a passive FTC scheme for a single-rod EHA that is
tolerant to internal leakage fault et al. l four quadrants. *e
system includes various load masses, environmental stiff-
nesses, and other uncertainties. *e novelties are (1) the
development of a robust fault-tolerant controller despite
cross port leakage for a single-rod EHA, (2) the establish-
ment of the mathematical model for the system considering
leakage fault, and (3) the performance comparison of the
fault-tolerant controller and the one designed for normal
operation (no leak).

*e remainder of this paper is organized as follows:
mathematical model of the system is described in Section 2.
Section 3 shows the development of a QFT fault-tolerant
controller and QFT normal controller. Section 4 examines
the performances of the two QFTcontrollers in simulations.
Conclusions are provided in Section 5.

2. Modeling

*e novel single-rod EHA circuit developed by Costa and
Sepehri [6] is used for this study. Its schematic is shown in
Figure 1. *e system includes a bidirectional main pump, a
servomotor, an auxiliary pump, a relief valve, a single-rod
cylinder, a load mass, a spring, a one-directional flow
control valve, and a three-position four-way directional
valve. *e settling pressure of a relief valve (item 4) is
5.5 ×105 Pa. *e working principle of the system is de-
scribed in [6, 24]. When the load pressure pL (pL � pa-Abpb/
Aa)> 0, the solenoid y of V2 is energized, and when pL < 0,
the solenoid z is energized. *e four quadrants of the
system is shown in Figure 2.

From Figure 1, the flow equation of the main pump is

Q1 � Q2 � ωmVd. (1)

*eflows out of and into the pump are represented byQ1
and Q2, respectively; ωm is the speed of the servo motor; the
pump displacement is represented by Vd. *e speed of the
servo motor is [17].

ωm

·
� τm −ωm(  + Kmu( ( . (2)

Here, Km represents the servomotor gain; τm represents
the time constant of the motor; u is used as input voltage to
the motor. *e actuator area ratio is

α �
Ab

Aa

, (3)

where Aa and Ab are the area of the piston at the cab side and
the rod side, respectively. *e load pressure is

pL � pa − αpb, (4)

where pa and pb are the chamber pressures of the actuator.
*e continuity equations are

Q1 + Qac � Qa,

� Aa _xp +
Voa(  + Aaxp 

βe

⎛⎝ ⎞⎠ _pa + Ql,

(5)

Qbc − Q2 � −Qb,

� −Ab _xp +
Vob(  − Abxp 

βe

⎛⎝ ⎞⎠ _pb − Ql,
(6)

where Qac and Qbc are flows from the auxiliary circuit; Qa
and Qb are the flows into and out of the actuator, respec-
tively; xp and _xp are the actuator position and velocity,
respectively; βe is the effective bulk modulus of the fluid; Voa
and Vob are actuator chamber volumes at the two sides,
respectively.*e internal leakageQl is constructed as follows
[17]:

Ql � Ki pa − pb( . (7)

In (7), Ki is the coefficient of the internal leakage. For
single-rod actuators, the following assumption can be used
[25,26].

Voa(  + Aaxp 

βe

≈
Vob(  − Abxp 

βe

≈
Voa(  + Vob( 

2βe

� C,

(8)

where C is the hydraulic compliance. *e dynamic equation
of the piston is

mrod + mL(  €xp � AapL − f _xp + FL. (9)

In (9), €xp is actuator acceleration; mrod is the piston and
the rod mass; mL is the load mass; f is the viscous damping
coefficient; the load force FL is
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Figure 1: Schematic of the system developed in [6]. 1: Servomotor.
2: Bidirectional pump.3: Auxiliary pump. 4: Relief valve. 5: Ac-
tuator. 6: Load mass. 7: Spring. 8: Tank. V1: One-directional flow
control valve. V2: *ree-position four-way directional valve.
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FL � mrod + mL( g − kxp, (10)

where g is the gravitational acceleration; k is the stiffness of
the environment.

When the actuator is extending ( _xp >0), the auxiliary
pump provides flow into one side of the actuator through V1
(Quadrants I and II in Figure 2). *e following equation can
be obtained:

Qb − Ql � α Qa − Ql( . (11)

From Equations (3) to (8) and (11), the following
equations can be obtained:

1 + α2 Qa � 1 + α2 Aa _xp + C _pL +(1 + α)KipL, (12)

1 + α2 Qb � α 1 + α2 Aa _xp + Cα _pL +(1 + α)KipL. (13)

In Quadrant I, pL > 0 and Qac � 0. Performing Laplace
transformation of Equations (1), (2), (5), (9), (10), and
(12), the following plant transfer function P1(s) can be
obtained:

P1(s) �
Xp(s)

U(s)
,

�
1 + α2 AaVdτmKm

s + τm(  mrod + mL( Cs
3

+ B1s
2

+ A1s +(1 + α)kKi 
,

(14)

where the constant A1 and B1 are

A1 � kC +(1 + α)fKi + 1 + α2 A
2
a,

B1 � fC +(1 + α) mrod + mL( Ki.
(15)

In Quadrant II, pL< 0 and Qbc � 0. *e plant model P2(s)
can be got using Equations (1), (2), (6), (9), (10), and (13):

P2(s) �
Xp(s)

U(s)
,

�
1 + α2 AaVdτmKm

s + τm(  α mrod + mL( Cs
3

+ B2s
2

+ A2s +(1 + α)kKi 
,

(16)
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Figure 2: Four-quadrant operation of the system developed in [6].
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where the constant A2 and B2 are

A2 � αkC +(1 + α)fKi + α 1 + α2 A
2
a,

B2 � αfC +(1 + α) mrod + mL( Ki.
(17)

When the actuator is retracting ( _xp <0), the oil flows
from one chamber of the actuator to the tank (Quadrants III
and IV in Figure 2).

In Quadrant III, pL< 0 and Qbc � 0, Qac is [24].

Qac � −Kapa, (18)

where Ka is the pressure sensitivity gain. Using Equations (1)
to (10) together with (18), the plant model P3(s) can be
obtained as follows:

P3(s) �
Xp(s)

U(s)
,

�
(1 + α)Cs + αKa AaVdτmKm

s + τm(  mrod + mL( C
2
s
4

+ C3s
3

+ B3s
2

+ A3s + kKaKi 
,

(19)

where the constant A3, B3, and C3 are

A3 � fKaKi + 2kCKi + kCKa +(1 − α)
2
Aa

2
Ki + α2Aa

2
Ka,

B3 � mrod + mL( KaKi + 2fCKi + fCKa + kC
2

+ 1 + α2 CAa
2
,

C3 � 2 mrod + mL( CKi + mrod + mL( CKa + fC
2
.

(20)

In Quadrant IV, pL> 0 and Qac � 0, Qbc is [24].

Qbc � −Kbpb, (21)

where Kb is the pressure sensitivity gain. Using Equations (1)
to (10) together with (21), the plant model P4(s) is

P4(s) �
Xp(s)

U(s)
,

�
(1 + α)Cs + Kb AaVdτmKm

s + τm(  mrod + mL( C
2
s
4

+ C4s
3

+ B4s
2

+ A4s + kKbKi 
,

(22)

where the constant A4, B4, and C4 are

A4 � fKbKi + 2kCKi + kCKb +(1 − α)
2
Aa

2
Ki + Aa

2
Kb,

B4 � mrod + mL( KbKi + 2fCKi + fCKb + kC
2

+ 1 + α2 CAa
2
,

C4 � 2 mrod + mL( CKi + mrod + mL( CKb + fC
2
.

(23)

*e system includes the above four cases and is hereby
the system model is expressed as P(s)∈{P1(s), P2(s), P3(s),
P4(s)}. *e internal leakage coefficient Ki and spring stiffness
k change the plant type. Table 1 lists the parameter values
[24] of the system. *e minimum value of Ki is 0, which
represents a healthy piston seal. *e maximum value of Ki is
prescribed to represent the most severe piston faulty

condition. Note that, the uncertainty range of mL and k are
also considered to ensure that both resistive and assistive
load forces can be generated. *ese parameters are used in
the simulations.

3. QFT Controller Design

Figure 3 shows the schematic of the control system [13]. As
per prescribed specifications, a controller G and a prefilter F
have to be synthesized despite uncertainties in the plant P.

3.1. Plant Templates. Parametric uncertainties of the plant
(shown in Table 1) are captured by templates in the fre-
quency domain on the Nichols chart. Template sizes are
influenced by the effects of uncertainties on the plant. *e
templates of the plant P(s) for normal operation (Ki � 0) and
the ones considering internal leakage (Ki≥ 0) are shown in
Figures 4(a) and 4(b), respectively. Note that internal leakage
increases templates sizes at low frequencies. It introduces
phase variation with a maximum value of 90 degree and a
magnitude variation. *e larger templates make it hard to
design the controller.

3.2. Prescribed Specifications

3.2.1. Tracking Specification. *e uncertain plant P(s) is
expressed as P(s, β), where the vector β� [τm, Km, f, C, mrod,
mL, Ki, k, Ka, Kb]T. With reference to Figure 3, the transfer
function of the closed-loop system T(s, β) is

T(s, β) � F(s)
G(s)P(s, β)

1 + G(s)P(s, β)
, (24)

where G(s) represents the QFT controller for normal op-
eration GN(s) or the QFT fault-tolerant controller GFTC(s);
F(s) is the prefilter designed for GN(s) or GFTC(s). *e
tracking requirement is shown as follows:

Table 1: Parameter values of the single-rod electro-hydrostatic
actuator.

Symbol
Value

Nominal Range
V d 8×10−6 —
τ m 3 2.3–4.0
K m 5.8 5.6–6.0
A a 3167×10−6 —
A 0.75 —
K i — 0–2.4×10−11

β e 689×106 356×106–1030×106

C 3.46×10−12 2.20×10−12–7.03×10−12

m rod 10 9–11
m L — 0–300
F 900 600–1200
K — 0–130×103

K a, Kb 4.65×10−10 2.08×10−10–4.65×10−10
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TL(jω) �
1

((1/0.5s) + 1)(s + 1)((1/5s) + 1)((1/30s) + 1)((1/200s) + 1)
2





≤ |T(jω, β)|≤ TU(jω) �
(1/0.55s) + 1

((1/0.9s) + 1)(s + 1)
2




∀ω ∈ [0∞),

(25)

where TU(s) is the upper tracking bound and TL(s) is the
lower tracking bound. According to (25), the frequency
responses of T(s, β) should be within the above-given two
tracking bounds.

3.2.2. Stability Specification. *e stability specification is
[13]

G(jω)P(jω, β)

1 + G(jω)P(jω, β)




≤ 1.6 (4.1 dB) ∀ω ∈ [0 ∞), (26)

(26) ensures a gainmargin of 4.22 dB and a phase margin
of 36.42o [17, 18].

3.2.3. Sensitivity Specification. *e following equation needs
to be satisfied for disturbance rejection:

1
1 + G(jω)P(jω, β)




≤ 1.8 (5.1 dB) ∀ω ∈ [0∞). (27)

3.3. LoopShapingandPrefilterDesign. A nominal plant P(jω,
β0) is selected by using a set of parameters in P(jω, β). It is
then employed to calculate QFT bounds together with the
above-prescribed specifications and plant templates on the
Nichols chart. *e controller is designed by shifting the
nominal plant P(jω, β0) until the nominal loop transmission
L(jω, β0)�G(jω) P(jω, β0) satisfies QFT bounds et al.l se-
lected frequencies. *e bounds are either open or closed. In
order to satisfy these bounds, L(jω, β0) should be above the
open bounds and outside closed bounds at the corre-
sponding frequencies on the Nichols chart.

Figure 5(a) shows the QFT bounds and a suitable loop
transmission for normal operation (Ki � 0). In order to
satisfy open bounds, a small gain is employed in the con-
troller. *e next two poles are also added to satisfy closed
bounds at high frequencies. *e normal controller is shown
in the following equation:

GN(s) �
50

((1/6s) + 1)((1/6s) + 1)
. (28)

When the internal leakage is considered (Ki≥ 0), the
QFT bounds and a suitable loop transmission are shown in

Prefilter
F
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Figure 3: Schematic of the QFT control system.
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Figure 5(b). An integrator is added in the fault-tolerant
controller to make L(jω, β0) satisfy QFT bound requirements
with a smaller controller bandwidth. Next, the open-loop
gain is increased tomeet open bounds. Finally, two zeros and
two poles are used in the controller to satisfy closed bounds
at intermediate frequencies and high frequencies, respec-
tively. *e designed fault-tolerant controller is shown in the
following equation:

GFTC(s) �
80(s + 1)((1/2s) + 1)

s((1/10s) + 1)((1/20s) + 1)
. (29)

By observing (28), an integrator, a high open-loop gain,
and two zeros are needed in the fault-tolerant controller to
cope with internal leakage fault. *e ratio of controller gains
|GFTC(s)|/| GN(s)| is also calculated to further ascertain the
price, as shown in Figure 6. It is seen that the integrator part
in GFTC(s) introduces extra gain at low frequencies

(ω< 1 rad/s) to remove static errors caused by leakage. At the
intermediate-frequency band (1 rad/s≤ ω≤ 10 rad/s), two
zeros of GFTC(s) leads to over 8 dB ratio, that is required to
satisfy its QFT bounds. Although the magnitude of GFTC(s)
is much higher than that of GN(s) (ratio >25 dB) at high
frequencies (ω> 10 rad/s), which indicates GFTC(s) is more
susceptible to noise and unmodelled high-frequency dy-
namics, the prescribed specifications are still satisfied for
both controllers.

Loop shaping just ensures the satisfactions of Equations
(26), (27), and (30), therefore a prefilter was synthesized to
meet (25). *e prefilter can make closed-loop frequency
responses within upper and lower QFT tracking bounds.*e
prefilter designed for normal operation and the one syn-
thesized considering internal leakage are given by (31),
respectively. Both prefilters have the same number of zeros
and poles.

20 log10|T(jω, β)|max − 20 log10|T(jω, β)|min ≤ 20 log10 TU(jω)


 − 20 log10 TL(jω)


, (30)

FN(s) �
((1/2s) + 1)((1/4s) + 1)((1/150s) + 1)

((1/0.5s) + 1)((1/30s) + 1)((1/500s) + 1)
, (31)

FFTC(s) �
((1/5s) + 1)((1/5s) + 1)((1/180s) + 1)

((1/0.5s) + 1)(1/1.5s + 1)((1/15s) + 1)
. (32)

4. Simulation Studies

*e designed two QFT controllers were examined under
normal operation (no leak) and leaky operation, respec-
tively. *eir ability to satisfy tracking bounds was shown in
simulations. *e ranges of parameters listed in Table 1 were
also considered.

In the first test, the nominal system was operated under
normal operation. A load of 300 kg and a spring of 130 kN/m

was chosen as the load force. Simulation results for the
normal controller GN and fault-tolerant controller GFTC are
shown in Figures 7 and 8, respectively. As is seen, the ac-
tuator position responses of the two controllers are within
tracking bounds. In addition, when the quadrant switches,
the control signal ofGFTC is more oscillatory than that ofGN.
*is is because the bandwidth of GFTC is higher, making it
more sensitive to the changes and disturbances of the
system.
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Figure 5: QFT bounds (B) (ω) and nominal loop transmission (L) (jω, β0) (a) for normal operation and (b) considering actuator internal
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Next, internal leakage was gradually introduced (Ki increases
from 0 to itsmaximumvalue) to evaluate the performance of the
two controllers in leaky operation.*e responses ofGN andGFTC
to a 100-mm square-wave input are shown in Figures 9 and 10,
respectively. It is seen that the steady-state error of GN increases
with leakage and finally the tracking specification is violated. On
the other hand, the position response of GFTC satisfies tracking
bounds, even when leakage increases to 4.4L/min.

Finally, GFTC was tested under various leakage levels
(Ki increases from 0 to 2.4 ×10−11m3/(s·Pa)), step inputs
(50mm, 100mm, and 150mm), load masses (0 kg, 150 kg,
and 300 kg), and environmental stiffnesses (0 kN/m,
65 kN/m, and 130 kN/m). Parametric uncertainties in
Table 1 were also considered. With reference to Figure 11,
tracking bounds are satisfied even if leakage increases to
8.6 L/min.
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andmoving a loadmass of 300 kg in the presence of increasing leakage flow. (a) Position. (b) Control signal. (c) Position error. (d) Leakage flow.
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Figure 10: Simulation responses of QFTcontrollerGFTC and FFTC to a 100-mm square-wave input for actuator working against a 130kN/m spring
and moving a load mass of 300kg in the presence of increasing leakage flow. (a) Position. (b) Control signal. (c) Position error. (d) Leakage flow.
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5. Conclusions

A fault-tolerant controller was synthesized for a single-rod
EHA. *e controller required an integrator, a high open-
loop gain, and two zeros to compensate for leakage flow.
Another QFT controller was also designed under normal
operation (no leak). Simulation results demonstrated that
the QFTfault-tolerant controller was capable of maintaining
actuator responses within tracking bounds despite internal
leakage up to 8.6 L/min. However, the QFT normal con-
troller could not satisfy the prescribed specifications if in-
ternal leakage occurred.
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