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How to determine a suitable security algorithm for a special application scenario is a complex problem. In this paper, this complex
problem is formulated as a multicriteria decision-making (MCDM) problem, and we propose a novel MULTIMOORA
(multiobjective optimization on the basis of a ratio analysis plus the full MULTIpevaluation information in the security algorithms
evaluation problem.�eMULTIMOORAmethod is an excellent decisionmethod, which owns strong robustness. However, it has
not been used to process the complex information structure of q-rung orthopair fuzzy sets. Moreover, it cannot solve the problem
that the extreme values negatively in�uence the ranking results, and it also cannot capture the interrelationship hiding behind the
criteria. To overcome the above challenges, we propose novel q-rung orthopair fuzzy Dombi power Heronian mean (DPHM)
operator and q-rung orthopair fuzzy Dombi power geometric Heronian mean (DPGHM) operator. Based on these two op-
erators, the MULTIMOORA method is improved for solving the security algorithms’ evaluation problem. Finally, a practical
example for evaluating �ve security algorithms is used to illustrate the decision process of the proposed q-rung orthopair fuzzy
MULTIMOORA method.

1. Introduction

With the quick development of multiple information
technologies including cloud computing, Internet of �ings,
and edge computing [1], more and more companies and
personals choose to upload their private data to the network
[2]. However, as the scale of network becomes larger, the
whole network becomes more complicated [3]. �e network
shows massive security loophole [4]. �e companies and
personals also own the special software to improve their
business. �e software also has massive security loophole
and risks. To ensure the reliability of software and network,
researchers and scholars have provided some solutions. For
example, Abdel-Basset et al. [5] have put forward a neu-
trosophic decision-making model for evaluating the
e-government website according to the quality, security, and
accessibility. Wang et al. [6] have combined the TOPSIS

(technique for order of preference by similarity to ideal
solution) approach with the 0-1 integer programming
method to choose an intelligent web service for improving
the reliability of network.

Researchers and scholars also designed a number of
e¦cient security algorithms to ensure the security re-
quirements of network [7–9]. However, these security al-
gorithms usually own di©erent characteristics and
advantages [10]. For a special application scenario, a suitable
security algorithm should be selected for satisfying the re-
quirements of this application scenario. How to choose the
most suitable security algorithm for a special application
scenario is a big challenge. To address this problem, Ning
et al. [11] formulated this problem as a multicriteria deci-
sion-making (MCDM) problem and proposed a hybrid
model for selecting the best encryption algorithm according
to several requirements such as the performance, physical,
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and security. However, the study [11] still has some
shortcomings.

(1) In the study [11], crisp values are used to evaluate
security algorithms. Since the security algorithm
evaluation problem becomes more and more com-
plex, it is not easy for decision makers to use accurate
crisp values for evaluating security algorithms [13].
4e birth of fuzzy sets (FSs) [14] provides decision
makers with a new way to express uncertain eval-
uation information. However, FSs only describe the
membership degree (MD) information. To enhance
the uncertain information modeling capability,
intuitionistic fuzzy sets (IFSs) [15] were proposed to
express the MD and nonmembership degree (NMD)
information. In IFSs, the sum of MD and NMD
values is not larger than 1. To provide the decision
makers with more freedom for expressing the
evaluation information, the concept of Pythagorean
fuzzy sets (PFSs) was proposed by Yager and
Abbasov [16], where the square sum of MD and
NMD is not larger than 1. To generalize the concepts
of IFSs and PFSs, a generic version, called q-rung
orthopair fuzzy set (q-ROFS), was proposed by Yager
[17]. In this study, we intend to use q-ROFSs to
express the uncertain information. 4e significance
of q-ROFSs is that this information representation
way is flexible, and it provides the decision makers
with more freedom than PFSs and IFSs.

(2) q-ROFSs have attracted many researchers since its
birth. For example, linguistic q-ROFSs [18–20] and
interval-valued q-ROFSs [21] are the qualitative and
uncertain versions of q-ROFSs. To fuse q-ROFSs’
information, various aggregation operators have
been proposed [22–28], such as Archimedean
Bonferroni mean operators [22], partitioned Bon-
ferroni mean operators [23], Heronian mean oper-
ators [24], Maclaurin symmetric mean operators
[25, 26], Hamy mean operators [27], and Choquet
integral operators [28]. 4ey are the value mea-
surement MCDM methods [29–31], which do not
consider the distance between each criterion value
and maximum criterion value.

(3) As one of the efficient decision methods, the
MULTIMOORA (multiobjective optimization on
the basis of a ratio analysis plus the full MULTI-
plicative form) method [32] consists of three sub-
models for comprehensively determining the
decision results. As shown in Table 1, the decision
results that are obtained from the MULTIMOORA
method are robust and the MULTIMOORA method
outperforms than some other decision methods [12].
Because of its excellent characteristics, the MUL-
TIMOORAmethod has been used to process various
evaluation information, such as interval numbers
[33], IFSs [34], picture fuzzy sets [35], and proba-
bilistic linguistic term sets [36]. To the best of our
knowledge, there have been no research results on

the combination of q-ROFSs and MULTIMOORA
method to date. In this paper, we intend to extend
the MULTIMOORA method for processing the q-
ROFS information in the MCDM problems. Nev-
ertheless, the MULTIMOORA method cannot
handle the case that extreme values influence the
reliability of the decision results. Moreover, it is
incapable of processing the complex interrelation-
ships hiding behind criteria values.

Hence, the motivations of this study are summarized as

(1) Amore flexible way of q-ROFSs is used to express the
uncertain and vague evaluation information for the
security algorithms evaluation problems

(2) A novel decision-making method is developed to
solve the security algorithms evaluation problems
and select an appropriate algorithm for a special
application scenario

To overcome the challenges, a novel q-rung orthopair
fuzzy MULTIMOORA method based on Dombi power
Heronian mean aggregation operators is proposed in this
paper, and it is applied to solve the security algorithms’
evaluation problem.

(1) 4e Dombi operational laws, special forms of t-norms
and t-conorms, show strong flexibility when com-
puting input values. 4e power average (PA) operator
has the ability of alleviating negative influences of
extreme input values on the decision results. 4e
Heronian mean (HM) acts as a mapping function that
can capture the complex interrelationships among
input values. Considering the excellent characteristics,
in this paper, some Dombi power Heronian mean
aggregation operators are proposed to fuse q-rung
orthopair fuzzy numbers (q-ROFNs), which are q-
rung orthopair fuzzy Dombi power Heronian mean
(q-ROFDPHM) operator and q-rung orthopair fuzzy
Dombi power geometric Heronian mean (q-
ROFDPGHM) operator, as well as their weighted
forms. Afterwards, their features are discussed.

(2) 4e weighted forms of the q-ROFDPHM and q-
ROFDPGHM operators are applied to improve the
MULTIMOORA method so that a novel q-rung
orthopair fuzzy MULTIMOORA method is put
forward for handling the security algorithms’ eval-
uation problem. After that, the detailed decision-
making procedure of the proposed q-rung orthopair
fuzzy MULTIMOORA method is provided.

(3) A case concerning the evaluation of five security
algorithms is provided to show the implementation
processes of the proposed q-rung orthopair fuzzy
MULTIMOORAmethod. Afterwards, the influences
of the parameters on the ranking results are ana-
lyzed. 4en, the q-rung orthopair fuzzy MULTI-
MOORA method is compared with the existing
decision methods that handle the q-ROFS
information.
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4e rest content of this paper is organized as follows.4e
basic knowledge of q-rung orthopair fuzzy sets, PA, Dombi
T-conorm and T-norm, HM operator, and MULTIMOORA
method is provided in Section 2. In Section 3, the q-
ROFDPHM operator and its weighted form are put forward.
Section 4 puts forward the q-ROFDPGHM operator and its
weighted form. In Section 5, we apply the proposed oper-
ators to propose a novel q-rung orthopair fuzzy MULTI-
MOORA method and also present the decision procedure.
In Section 6, an illustrative example of evaluating of security
algorithms is provided to show the implementation process
of the proposed q-rung orthopair fuzzy MULTIMOORA
method. In Section 7, some valuable conclusions are listed.

2. Preliminaries

In this paper, the basic information of q-ROFSs, PA, Dombi
T-conorm and T-norm, HM operator, and MULTIMOORA
method is provided.

2.1. q-Rung Orthopair Fuzzy Sets. 4e concept of q-ROFSs
was proposed based on IFSs and PFSs. 4e q-ROFSs show
higher flexibility and larger value range than IFSs and PFSs
[37–39].

Definition 1 (see [17]). Let X � x1, x2, . . . , xn􏼈 􏼉 be a finite
universe of discourse (UoD); then, a q-ROFS A on X is
mathematically expressed as

A � 〈x, μA(x), ]A(x)〉|x ∈ X􏼈 􏼉, (1)

where μA: X⟶ [0, 1] and ]A: X⟶ [0, 1] are the
membership degree (MD) and nonmembership degree
(NMD) of the element x belonging to the q-ROFS A, re-
spectively. 4e constraint conditions for q-ROFS are
0≤ μA(x)≤ 1, 0≤ ]A(x)≤ 1, and 0≤ μq

A(x) + ]q

A(x)≤ 1, for
all q≥ 1. 4e parameter q is a positive integer. 4e value of
πA(x) �

����������������������
(1 − (μA(x))q − (]A(x))q)q

􏽰
is defined to be the

hesitant degree (HD) of the element x belonging to the q-
ROFS A. For convenience, the two-tuple (μA(x), ]A(x)) is
simplified as (μA, ]A), which is also called q-rung orthopair
fuzzy number (q-ROFN) by Liu and Wang [40].

For comparing q-ROFNs, the definitions of score
function and accuracy function were given by Liu andWang
[40] for q-ROFNs as follows.

Definition 2 (see [40]). Given a q-ROFN o � (μ, ]), then its
score function and accuracy function are defined as s(o) �

μq − ]q and h(o) � μq + ]q, in which s(o) ∈ [− 1, 1] denotes
the score function and h(o) ∈ [0, 1] is the accuracy function.

Based on the above score function and accuracy function
presented in Definition 2, Liu and Wang [40] gave a method
for comparing two q-ROFNs as follows.

Definition 3 (see [40]). Given two q-ROFNs o1 � (μ1, ]1)
and o2 � (μ2, ]2), s(o1) and s(o2) are their score function
values, and h(o1) and h(o2) are their accuracy function
values,

(1) If s(o1)> s(o2), then it can be considered that o1 > o2.
(2) If s(o1) � s(o2), then their accuracy function values

should be further compared as follows:

(1) If h(o1)> h(o2), then o1 > o2.
(2) If h(o1) � h(o2), then o1 � o2.

To measure the deviation degree between any two q-
ROFNs, Liu et al. [41] provided the definition of distance
between them as follows.

Definition 4 (see [41]). For q-ROFNs, o1 � (μ1, ]1) and
o2 � (μ2, ]2), the distance between them is computed as

d o1, o2( 􏼁 �
1
2

μq
1 − μq

2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ]q
1 − ]q

2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + πq
1 − πq

2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑, (2)

where π1 and π2 are the HD values of q-ROFNs o1 and o2,
respectively.

2.2. Power Average Operator. 4e power average (PA) is a
useful aggregation operator that was put forward by Yager
[42]. 4e PA operator has the ability of alleviating negative
influences of extreme input values on the calculation results.
4e original PA operator was devised to process crisp values.
Its mathematical definition is given as follows:

Definition 5 (see [42]). Let oi(i � 1, 2, . . . , n) be a series of
nonnegative crisp values; then, the PA operator really acts as
a function that

PA o1, o2, . . . , on( 􏼁 � 􏽘
n

i�1

1 + S oi( 􏼁( 􏼁

􏽐
n
k�1 1 + S ok( 􏼁( 􏼁

oi􏼠 􏼡, (3)

where S(oi) � 􏽐
n
j�1,j≠ i Sup(oi, oj) is the support degree for oi

from oj and Sup(oi, oj) � 1 − d(oi, oj).
4e support degree satisfies the following features:

(1) Sup(oi, oj) ∈ [0, 1]

(2) Sup(oi, oj) � Sup(oj, oi)

(3) If d(oi, oj)<d(or, ok), then Sup(oi, oj)> Sup(or, ok),
where d(oi, oj) denotes the distance between oi and
oj

Table 1: Performance comparison among decision-making methods [12].

Methods Computational time Simplicity Mathematical calculations Stability
MULTIMOORA Very less Very simple Minimum Good
TOPSIS Moderate Moderately critical Moderate Poor
VIKOR Less Simple Moderate Medium
ELECTRE High Moderately critical Moderate Medium

Mathematical Problems in Engineering 3



2.3. Dombi T-Norm and T-Conorm. 4e Dombi T-norm
(TNM) and T-conorm (TCNM), which were proposed by
Dombi [43], are referred to as special forms of t-norms and
t-conorms. 4eir mathematical expressions are provided as
follows.

Definition 6 (see [43]). Given any two real values, m and n,
then the Dombi TNM and Dombi TCNM act as two
functions, which are mathematically defined as

D(m, n) �
1

1 + ((1 − m)/m)
ℵ

+((1 − n)/n)
ℵ

􏼐 􏼑
(1/ℵ)

,

D
∗
(m, n) � 1 −

1

1 + (m/(1 − m))
ℵ

+(n/(1 − n))
ℵ

􏼐 􏼑
(1/ℵ)

,

(4)

where ℵ> 0, m, n ∈ [0, 1].
Based on the above Dombi TNM and Dombi TCNM,

Jana et al. [44] gave the Dombi operational laws for com-
puting q-ROFNs as follows.

Definition 7 (see [44]). Given two q-ROFNs o1 � (μ1, ]1)
and o2 � (μ2, ]2), then the Dombi operational laws of q-
ROFNs are defined as

(1) o1⊕o2 � ((1 − (1/(1+((μq
1/ (1 − μq

1))
ℵ+ (μq

2/(1−

μq
2))
ℵ )(1/ℵ))))(1/q),(1/(1+ (((1 − ]q

1)/]
q
1)
ℵ+ ((1 − ]q

2)/
]q
2)
ℵ)(1/ℵ)))(1/q))

(2) o1 ⊗ o2 � ((1/(1 + (((1 − μq
1)/μ

q
1)
ℵ+ ((1 − μq

2)/
μq
2)
ℵ)(1/ℵ))) (1/q), (1 − (1/(1 + ((]q

1/(1−

]q
1))
ℵ + (]q

2/(1 − ]q
2))
ℵ)(1/ℵ))))(1/q))

(3) lo1 � ((1 − (1/(1 + (l(μq
1/(1 − μq

1))
ℵ) (1/ℵ))))(1/q),

(1/1 + (l((1 − ]q
1)/]

q
1)
ℵ)(1/ℵ))(1/q))

(4) ol
1 � ((1/(1 + (l((1 − μq

1)/μ
q
1)
ℵ) (1/ℵ)))(1/q), (1−

(1/(1 + (l (]q
1/(1 − ]q

1))
ℵ)(1/ℵ))))(1/q)), where ℵ> 0

2.4. Heronian Mean and Geometric Heronian Mean
Operators. 4e aggregation operators (AOs) [45–47] are
value measurement MCDM methods. It is very simple and
easy to perform AOs.4e AOs are the processes, which fuse
given input values into a single value [48]. For aggregating
the complicated information structures of various fuzzy
sets, researchers have put forward various AOs. 4e
Heronian mean (HM) operator [49], an excellent and
useful AO, is capable of processing the complicated in-
terrelationships among input values, which are common in
theMCDM contexts.4eHM operators can be divided into
two categories: arithmetic HM (AHM) and geometric HM
(GHM) operators, which are mathematically defined as
follows.

Definition 8 (see [49]). Let oi(i � 1, 2, . . . , n) be a series of
nonnegative real values; the parameters c, η≥ 0; then, the
AHM operator can aggregate the nonnegative real values as

HMc,η
o1, o2, . . . , on( 􏼁 �

2
n(n + 1)

􏽘

n

i�1
􏽘

n

j�i

o
c
i o

η
j

⎛⎝ ⎞⎠

(1/(c+η))

.

(5)

Definition 9 (see [49]). Let oi(i � 1, 2, . . . , n) be a series of
nonnegative real values; the parameters c, η≥ 0; then, the
GHM operator can aggregate the nonnegative real values as

GHMc,η
o1, o2, . . . , on( 􏼁 �

1
c + η

􏽙

n

i�1
􏽙

n

j�i

coi + ηoj􏼐 􏼑
(2/n(n+1))

.

(6)

For the AHM operator, its aggregated values are greatly
influenced by extreme values [50]. 4e GHM operator is
capable of balancing the big differences among input values
[51]. 4erefore, the GHM operator performs better than the
AHM operator in some cases.

2.5. MULTIMOORA. To obtain more robust decision re-
sults, the full multiplicative form (FMF) was applied by
Brauers and Zavadskas [32] to extend the initial MOORA
(multiobjective optimization on the basis of ratio analysis)
method. 4us, the MULTIMOORA method has three
components: ratio system (RS) component, reference point
(RP) component, and FMF component, respectively [52].
4ese three components derive the decision results inde-
pendently. For the purpose of determining the final decision
result, the decision results obtained from these three
components are processed by the dominance theory [32]. In
the following part, the process for implementing the
MULTIMOORA method is listed as follows.

Let us suppose that there exists an MCDM problem
consisting of m alternatives x1, x2, . . . , xm􏼈 􏼉 and n criteria
a1, a2, . . . , an􏼈 􏼉. 4e weight vector of criteria is denoted as

[ω1,ω2, . . . ,ωn], where 􏽐
n
j�1 ωj � 1 and 0≤ωj ≤ 1. 4e de-

cision matrix (DM) R � (oij)m×n corresponding to the
MCDM problem contains the evaluation information from
experts. 4e element oij represents the evaluation infor-
mation of alternative xi with respect to criterion aj.

4e evaluation information of alternatives across mul-
tiple criteria usually shows different dimensions, so the
evaluation information in the DM R � (oij)m×n is suggested
to be normalized as

􏽥oij �
oij

���������

􏽐
m
i�1 oij􏼐 􏼑

2
􏽱 . (7)

After that, the normalized DM 􏽥R � (􏽥oij)m×n can be
derived.

2.5.1. RS Component. In this component, the criteria should
be divided into two categories: benefit-type (BT) criteria and
cost-type (CT) criteria. For BT criteria, the larger the
evaluation information of alternative, the better the alter-
native. For CTcriteria, the larger the evaluation information
of alternative, the worse the alternative. 4e weighted
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arithmetic aggregation operator (AAO) is used to calculate
the ranking value Yi of alternative xi as

Yi � 􏽘
k

j�1
ωj􏽥oij − 􏽘

n

j�k+1
ωj􏽥oij, (8)

where k represents the number of benefit-type criteria and
n − k means the number of cost-type criteria. From the
above equation, it is noted that the alternative in the RS
component having the maximum ranking value is consid-
ered as the best one. 4erefore, the alternatives can be
ranked based on the descending order of their ranking
values.

2.5.2. RP Component. For the RP component, the worst
criterion value of each alternative that is farthest from the
reference point of the corresponding criterion should be first
derived, and then, the alternative with the smallest worst
criterion value is considered as the optimal one.

In this component, the reference point of each criterion
is first determined as

oj � max
i

􏽥oij, j≤ k;min
i

􏽥oij, j> k􏼚 􏼛, (9)

where oj denotes the reference point of alternatives with
respect to criterion aj.

4en, the weighted distance between the normalized
evaluation information of the alternative xi with respect to
each criterion and the reference point of the same criterion is
computed as dij � ωj|oj − 􏽥oij|.

Finally, the ranking value Di of alternative xi is com-
puted as Di � maxjdij.

According to the RP component, the optimal alternative
should have the smallest ranking value.4us, the alternatives

can be ranked based on the ascending order of their ranking
values.

2.5.3. FMF Component. 4e design idea of FMF component
is the same as that of RS component. In the FMF component,
the better alternative should have higher values for benefit-
type criteria and lower values for cost-type criteria. 4e
weighted geometric aggregation operator (GGO) is used to
determine the ranking value Ui of alternative xi as
Ui � 􏽑

k
j�1 (􏽥oij)

ωj /􏽑
n
j�k+1 (􏽥oij)

ωj .
According to the design idea, the alternative having the

largest ranking value should be considered as the best one in
the FMF component. Hence, the alternatives can be ranked
based on the descending order of their ranking values.

To aggregate the ranking orders of alternatives obtained
from these three components, the dominance theory was
suggested by Brauers and Zavadskas [32] to be used for
deriving the final decision results.

3. q-Rung Orthopair Fuzzy Dombi Power
Heronian Mean Operators

In this section, we use the PA operator, Dombi operational
laws for q-ROFNs, and arithmetic HM operator to propose
q-rung orthopair fuzzy Dombi power HM (q-ROFDPHM)
operator and its weighted form. 4en, the features are
discussed.

Definition 10. Given a set of q-ROFNs
oi � (μi, ]i)(i � 1, 2, . . . , n) and three parameters c, η≥ 0 and
ℵ> 0, then the q-ROFDPHM operator is defined as

q − ROFDPHM o1, o2, . . . , on( 􏼁 �
2

n(n + 1)
⊕
n

i�1
⊕
n

j�i

n 1 + S oi( 􏼁( 􏼁

􏽐
n
k�1 1 + S ok( 􏼁( 􏼁

oi􏼠 􏼡

c

⊗
n 1 + S oj􏼐 􏼑􏼐 􏼑

􏽐
n
k�1 1 + S ok( 􏼁( 􏼁

oj
⎛⎝ ⎞⎠

η

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

(1/(c+η))

. (10)

Based on the Dombi operational laws of q-ROFNs [36]
and HM operator, the following theorems can be derived.

Theorem 1. Given n q-ROFNs oi � (μi, ]i)(i � 1, 2, . . . , n)

and the parameters c, η≥ 0 and ℵ> 0, then the aggregated
result derived from equation (10) is still an q-ROFN, which is

q − ROFDPHM o1, o2, . . . , on( 􏼁 �
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(11)
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where ξi � ((1 + S(oi))/ 􏽐
n
k�1(1 + S(ok))), ψj � ((1 + S

(oj))/ 􏽐
n
k�1(1 + S(ok))), (μq

i /(1 − μq
i )) � (1/ai), (μq

j/
(1 − μq

j)) � (1/aj), ((1 − ]q
i )/]q

i ) � (1/bi), ((1 − ]q
j)/]q

j) �

(1/bj), (1/nξi) � ti, and (1/nψj) � ej.

Proof. According to Definition 10, we have

q − ROFDPHM o1, o2, . . . , on( 􏼁 �
2

n(n + 1)
⊕
n

i�1
⊕
n

j�i

n 1 + S oi( 􏼁( 􏼁

􏽐
n
k�1 1 + S ok( 􏼁( 􏼁

oi􏼠 􏼡

c

⊗
n 1 + S oj􏼐 􏼑􏼐 􏼑

􏽐
n
k�1 1 + S ok( 􏼁( 􏼁

oj
⎛⎝ ⎞⎠

η

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

(1/(c+η))

. (12)

Let ξi � ((1 + S(oi))/􏽐
n
k�1(1 + S(ok))) and ψj � ((1 +

S(oj))/ 􏽐
n
k�1(1 + S(ok))); then, we can derive

q − ROFDPHM o1, o2, . . . , on( 􏼁 �
2

n(n + 1)
⊕
n

i�1
⊕
n

j�i
nξioi( 􏼁

c ⊗ nψjoj􏼐 􏼑
η

􏼐 􏼑􏼠 􏼡

(1/(c+η))

. (13)

According to Definition 7, it can be derived that

nξioi � 1 −
1

1 + nξi μq
i / 1 − μq

i( 􏼁( 􏼁
ℵ

􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/q)

,
1

1 + nξi 1 − ]q
i( 􏼁/]q

i( 􏼁
ℵ

􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

nψjoj � 1 −
1

1 + nψj μq
j/ 1 − μq

j􏼐 􏼑􏼐 􏼑
ℵ

􏼒 􏼓
(1/ℵ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,
1

1 + nψj 1 − ]q
j􏼐 􏼑/]q

j􏼐 􏼑
ℵ

􏼒 􏼓
(1/ℵ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(14)

Let (μq

i /(1 − μq

i )) � (1/ai), (μq

j/(1 − μq

j)) � (1/aj),
((1 − ]q

i )/]q

i ) � (1/bi), and ((1 − ]q

j)/]q

j) � (1/bj); then, we
have

nξioi � 1 −
1

1 + nξi 1/aℵi( 􏼁( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

,
1

1 + nξi 1/bℵi( 􏼁( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

⎛⎜⎝ ⎞⎟⎠,

nψjoj � 1 −
1

1 + nψj 1/aℵj􏼐 􏼑􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,
1

1 + nψj 1/bℵj􏼐 􏼑􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

nξioi( 􏼁
c

�
1

1 + c 1/nξi( 􏼁aℵi( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

, 1 −
1

1 + c 1/nξi( 􏼁bℵi( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

⎛⎜⎝ ⎞⎟⎠,

nψjoj􏼐 􏼑
η

�
1

1 + η 1/nψj􏼐 􏼑aℵj􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

, 1 −
1

1 + η 1/nψj􏼐 􏼑bℵj􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(15)
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Let (1/nξi) � ti and (1/nψj) � ej; then, the above
equations can be transformed into

nξioi( 􏼁
c

�
1

1 + ctia
ℵ
i( 􏼁

(1/ℵ)
⎛⎝ ⎞⎠

(1/q)

, 1 −
1

1 + ctib
ℵ
i( 􏼁

(1/ℵ)
⎛⎝ ⎞⎠

(1/q)

⎛⎜⎝ ⎞⎟⎠,

nψjoj􏼐 􏼑
η

�
1

1 + ηeja
ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

, 1 −
1

1 + ηejb
ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(16)

4us, (nξioi)
c⊗(nψjoj)

η � (((1/ (1+ (ctia
ℵ
i +

ηeja
ℵ
j )(1/ℵ)))) (1/q),(1 − (1/(1+ (ctib

ℵ
i +ηejb

ℵ
j )(1/ℵ))))(1/q)),

⊕
n

i�1
⊕
n

j�i
nξioi( 􏼁

c ⊗ nψjoj􏼐 􏼑
η

􏼐 􏼑 � 1 −
1

1 + 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,⎛⎜⎜⎜⎝

1

1 + 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎞⎟⎟⎟⎠,

2
n(n + 1)

⊕
n

i�1
⊕
n

j�i
nξioi( 􏼁

c ⊗ nψjoj􏼐 􏼑
η

􏼐 􏼑 � 1 −
1

1 + (2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,⎛⎜⎜⎜⎝

1

1 + (2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎞⎟⎟⎟⎠,

2
n(n + 1)

⊕
n

i�1
⊕
n

j�i
nξioi( 􏼁

c ⊗ nψjoj􏼐 􏼑
η

􏼐 􏼑􏼠 􏼡

(1/(c+η))

�

1

1 + (1/(c + η)) 1/(2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1 −
1

1 + ((1/(c + η)) 1/(2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

4en, the final result can be determined as

2
n(n + 1)

⊕
n

i�1
⊕
n

j�i
nξioi( 􏼁

c ⊗ nψjoj􏼐 􏼑
η

􏼐 􏼑􏼠 􏼡

(1/(c+η))

�

1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,

1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(18)
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4en, we need to prove that the aggregated result from
the q-ROFDPHM operator is still a q-ROFN.

Let μ
∧

� ((1/(1+ (n(n +1)/2(c +η))(1/ℵ)× (1/(􏽐
n
i�1,j�i (1/

(ctia
ℵ
i +ηeja

ℵ
j )))(1/ℵ)))))(1/q) and ]

∧
�(1− (1/(1+ (n(n+ 1) /

2(c+η))(1/ℵ)× (1/(􏽐
n
i�1,j�i(1/(ctib

ℵ
i +ηejb

ℵ
j )))(1/ℵ)))))(1/q);

then, we need to prove that (1) 0≤μ∧
q

≤1 and 0≤]
∧q
≤1 and (2)

0≤μ∧
q

+]
∧q
≤1.

Since (n(n + 1)/2(c + η))(1/ℵ) ≥ 0 and (􏽐
n
i�1,j�i(1/

(ctia
ℵ
i + ηeja

ℵ
j )))(1/ℵ) > 0, then (n(n + 1)/2(c + η))(1/ℵ)×

(1/(􏽐i� 1, j � in(1/(ctia
ℵ
i + ηeja

ℵ
j )))(1/ℵ))≥ 0.

4en, we can have

1 +
n(n + 1)

2(c + η)
􏼠 􏼡

(1/ℵ)

×
1

􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
≥ 1⟹0

≤
1

1 +(n(n + 1)/2(c + η))
(1/ℵ)

× 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

≤ 1.

(19)

4us, 0≤ μ∧
q

≤ 1. Similarly, it can be proven that
0≤ ]
∧q
≤ 1. It can be derived that 0≤ μ∧

q

+ ]
∧q
.

Because μq
i + ]q

i ≤ 1 and μq
j + ]q

j ≤ 1, then μq
i ≤ 1 − ]q

i and
μq

j ≤ 1 − ]q
j . 4us, ((1 − μq

i )/(μq
i ))≥ (]q

i /(1 − ]q
i )) and

((1 − μq

j)/(μq

j))≥ (]q

j/(1 − ]q

j)). It can be derived that ai ≥ bi

and aj ≥ bj. 4en, we have

􏽘

n

i�1,j�i

1
ctia
ℵ
i + ηeja

ℵ
j

⎛⎝ ⎞⎠

(1/ℵ)

≤ 􏽘
n

i�1,j�i

1
ctib
ℵ
i + ηejb

ℵ
j

⎛⎝ ⎞⎠

(1/ℵ)

⟹
1

􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)

≥
1

􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)

⟹1 +
n(n + 1)

2(c + η)
􏼠 􏼡

(1/ℵ)

×
1

􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)

≥ 1 +
n(n + 1)

2(c + η)
􏼠 􏼡

(1/ℵ)

×
1

􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
.

(20)

4us,

1

1 +(n(n + 1)/2(c + η))
(1/ℵ)

× 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

≤
1

1 +(n(n + 1)/2(c + η))
(1/ℵ)

× 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

.

(21)
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4en, we can have

μ
∧q

+ ]
∧q

�
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)×q

+ 1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)×q

� 1 +
1

1 +(n(n + 1)/2(c + η))
(1/ℵ)

× 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

−
1

1 +(n(n + 1)/2(c + η))
(1/ℵ)

× 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

≤ 1,

(22)

which completes the proof of 4eorem 1. □

Theorem 2 (idempotency). Suppose that there are a group of
q-ROFNs oi � (μi, ]i)(i � 1, 2, . . . , n) and the parameters c,

η≥ 0 and ℵ> 0. If oi � oj � o � (μ, ]), for i, j � 1, 2, . . . , n,
then we have

q − ROFDPHM o1, o2, . . . , on( 􏼁 �

1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,

1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (μ, ]) � o,

(23)

where ξi � ((1 + S(oi))/ 􏽐
n
k�1(1 + S(ok))), ψj � ((1 + S

(oj))/ 􏽐
n
k�1(1 + S(ok))), (μq

i /(1 − μq
i )) � (1/ai), (μq

j/(1−

μq
j)) � (1/aj), ((1 − ]q

i )/]q
i ) � (1/bi), ((1 − ]q

j)/]q
j) � (1/bj),

(1/nξi) � ti, and (1/nψj) � ej.

Proof. Since oi � oj � o � (μ, ]), for i, j � 1, 2, . . . , n, then
Sup(oi, oj) � 1.

4us, we have

ξi �
1 + S oi( 􏼁( 􏼁

􏽐
n
k�1 1 + S ok( 􏼁( 􏼁

� ψj �
1 + S oj􏼐 􏼑􏼐 􏼑

􏽐
n
k�1 1 + S ok( 􏼁( 􏼁

�
1
n

,

ti � ej � 1,

a
ℵ
i � a
ℵ
j �

1 − μq
i

μq

i

􏼠 􏼡

ℵ

�
1 − μq

j

μq

j

⎛⎝ ⎞⎠

ℵ

�
1 − μq

μq
􏼠 􏼡

ℵ

.

(24)

4en, it can be derived that
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􏽘

n

i�1,j�i

1
ctia
ℵ
i + ηeja

ℵ
j

⎛⎝ ⎞⎠

(1/ℵ)

� 􏽘
n

i�1,j�i

1
c 1 − μq( 􏼁/μq( 􏼁

ℵ
+ η 1 − μq( 􏼁/μq( 􏼁

ℵ
⎛⎝ ⎞⎠

(1/ℵ)

� 􏽘
n

i�1,j�i

1
(c + η) × 1 − μq( 􏼁/μq( 􏼁

ℵ
⎛⎝ ⎞⎠

(1/ℵ)

�
1

(c + η)
×

n(n + 1)

2
×

μq

1 − μq
􏼠 􏼡

ℵ
⎛⎝ ⎞⎠

(1/ℵ)

⇒
1

􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)

�
1

(1/(c + η)) ×(n(n + 1)/2) × μq/ 1 − μq
( 􏼁( 􏼁

ℵ
􏼐 􏼑

(1/ℵ)

�
1

(n(n + 1)/2(c + η)) × μq/ 1 − μq
( 􏼁( 􏼁

ℵ
􏼐 􏼑

(1/ℵ)
�

2(c + η)

n(n + 1)
×

1 − μq

μq
􏼠 􏼡

ℵ
⎛⎝ ⎞⎠

(1/ℵ)

⇒
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

�
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 2(c + η)/n(n + 1) × 1 − μq( 􏼁/μq( 􏼁
ℵ

􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

�
1

1 + 1 − μq( 􏼁/μq( 􏼁
􏼠 􏼡

(1/q)

� μ.

(25)

Similarly, (1/bi) � (1/bj) � ((1 − ]q

i )/]q

i ) � ((1 − ]q

j)/
]q

j) � ((1 − ] q)/] q). 4en, the NMD value of the q-
ROFDPHM operator can be derived as

1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

� 1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/(c + η) ]q/ 1 − ]q( )( )ℵ􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)
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� 1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ (n(n + 1)/2(c + η)) 1 − ]q( )/]q( )ℵ􏼐 􏼑
(1/ℵ)

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

� 1 −
1

1 + ]q/ 1 − ]q( )( )
􏼠 􏼡

(1/q)

� ].

(26)

4us, we have q − ROFDPHM(o1, o2, . . . , on) �

(μ, ]) � o, which completes the proof of 4eorem 2. □

Theorem 3 (boundedness). Suppose that there are a group of
q-ROFNs oi � (μi, ]i)(i � 1, 2, . . . , n) and the parameters c,

η≥ 0 and ℵ> 0. If ol � min(o1, o2, . . . , on) � (μl, ]l) and
oh � max(o1, o2, . . . , on) � (μh, ]h), then we have

ol ≤ q − ROFDPHM o1, o2, . . . , on( 􏼁≤ oh, (27)

where

ol �

1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,

1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

oh �

1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,

1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1
nξi

� ti,

1
nψj

� ej,

ξi �
1 + S oi( 􏼁( 􏼁

􏽐
n
k�1 1 + S ok( 􏼁( 􏼁

,

ψj �
1 + S oj􏼐 􏼑􏼐 􏼑

􏽐
n
k�1 1 + S ok( 􏼁( 􏼁

,

μq
i

1 − μq
i

�
1
ai

,

1 − ]q
i

]q
i

�
1
bi

.

(28)
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Proof. According to Definition 7, we have

nξioi � 1 −
1

1 + nξi μq

i / 1 − μq

i( 􏼁( 􏼁
ℵ

􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/q)

,
1

1 + nξi 1 − ]q

i( 􏼁/]q

i( 􏼁
ℵ

􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

nψjoj � 1 −
1

1 + nψj μq

j/ 1 − μq

j􏼐 􏼑􏼐 􏼑
ℵ

􏼒 􏼓
(1/ℵ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,
1

1 + nψj 1 − ]q
i( 􏼁/]q

i( 􏼁
ℵ

􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(29)

Since ol ≤ oi, then we have μi ≥ μl and ]i ≤ ]l.
4us, it can be derived that

μq

i ≥ μ
q

l⟹
1

1 − μq

i

≥
1

1 − μq

l

⟹
μq

i

1 − μq

i

≥
μq

l

1 − μq

l

⟹
1
ai

≥
1
al

⟹ ai ≤ al,

]i ≤ ]l⟹ 1 − ]q
i ≥ 1 − ]q

l ,
1
]q

i

≥
1
]q

l

⟹
1
bi

≥
1
bl

⟹ bi ≤ bl.

(30)

4en, we can have

nξioi � 1 −
1

1 + nξi 1/aℵi( 􏼁( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

,
1

1 + nξi 1/bℵi( 􏼁( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

⎛⎜⎝ ⎞⎟⎠

≥ 1 −
1

1 + nξi 1/aℵl􏼐 􏼑􏼐 􏼑
(1/ℵ)

⎛⎜⎝ ⎞⎟⎠

(1/q)

,
1

1 + nξi 1/bℵl􏼐 􏼑􏼐 􏼑
(1/ℵ)

⎛⎜⎝ ⎞⎟⎠

(1/q)

⎛⎜⎜⎝ ⎞⎟⎟⎠

⟹ nξioi( 􏼁
c

�
1

1 + c 1/nξi( 􏼁aℵi( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

, 1 −
1

1 + c 1/nξi( 􏼁bℵi( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

⎛⎜⎝ ⎞⎟⎠

≥
1

1 + c 1/nξi( 􏼁aℵl􏼐 􏼑
(1/ℵ)

⎛⎜⎝ ⎞⎟⎠

(1/q)

, 1 −
1

1 + c 1/nξi( 􏼁bℵl􏼐 􏼑
(1/ℵ)

⎛⎜⎝ ⎞⎟⎠

(1/q)

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(31)

Similarly, we have

nψjoj􏼐 􏼑
η

�
1

1 + η 1/nψj􏼐 􏼑aℵj􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

, 1 −
1

1 + η 1/nψj􏼐 􏼑bℵj􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≥
1

1 + η 1/nψj􏼐 􏼑aℵl􏼐 􏼑
(1/ℵ)

⎛⎜⎝ ⎞⎟⎠

(1/q)

, 1 −
1

1 + η 1/nψj􏼐 􏼑bℵl􏼐 􏼑
(1/ℵ)

⎛⎜⎝ ⎞⎟⎠

(1/q)

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(32)
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Since (1/nξi) � ti and (1/nψj) � ej, then we have

nξioi( 􏼁
c

�
1

1 + ctia
ℵ
i( 􏼁

(1/ℵ)
⎛⎝ ⎞⎠

(1/q)

, 1 −
1

1 + ctib
ℵ
i( 􏼁

1/ℵ
⎛⎝ ⎞⎠

(1/q)

⎛⎜⎝ ⎞⎟⎠

≥
1

1 + ctia
ℵ
l􏼐 􏼑

1/ℵ
⎛⎜⎝ ⎞⎟⎠

(1/q)

, 1 −
1

1 + ctib
ℵ
l􏼐 􏼑

1/ℵ
⎛⎜⎝ ⎞⎟⎠

(1/q)

⎛⎜⎜⎝ ⎞⎟⎟⎠

⟹ nψjoj􏼐 􏼑
η

�
1

1 + ηeja
ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

, 1 −
1

1 + ηejb
ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≥
1

1 + ηeja
ℵ
l􏼐 􏼑

(1/ℵ)
⎛⎜⎝ ⎞⎟⎠

(1/q)

, 1 −
1

1 + ηejb
ℵ
l􏼐 􏼑

(1/ℵ)
⎛⎜⎝ ⎞⎟⎠

(1/q)

⎛⎜⎜⎝ ⎞⎟⎟⎠,

nξioi( 􏼁
c ⊗ nψjoj􏼐 􏼑

η
�

1

1 + ctia
ℵ
i + ηeja

ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

, 1 −
1

1 + ctib
ℵ
i + ηejb

ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

≥
1

1 + ctia
ℵ
l + ηeja

ℵ
l􏼐 􏼑

(1/ℵ)
⎛⎜⎝ ⎞⎟⎠

(1/q)

, 1 −
1

1 + ctib
ℵ
l + ηejb

ℵ
l􏼐 􏼑

(1/ℵ)
⎛⎜⎝ ⎞⎟⎠

(1/q)

⎛⎜⎜⎝ ⎞⎟⎟⎠,

⊕
n

i�1
⊕
n

j�i
nξioi( 􏼁

c ⊗ nψjoj􏼐 􏼑
η

􏼐 􏼑 �

1 −
1

1 + 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1

1 + 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥

1 −
1

1 + 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
l􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1

1 + 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
l􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

2
n(n + 1)

⊕
n

i�1
⊕
n

j�i
nξioi( 􏼁

c ⊗ nψjoj􏼐 􏼑
η

􏼐 􏼑 �

1 −
1

1 + (2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1

1 + (2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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≥

1 −
1

1 + (2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
l􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1

1 + (2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
l􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

2
n(n + 1)

⊕
n

i�1
⊕
n

j�i
nξioi( 􏼁

c ⊗ nψjoj􏼐 􏼑
η

􏼐 􏼑􏼠 􏼡

(1/(c+η))

�

1

1 + (1/(c + η)) 1/(2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1 −
1

1 +((1/(c + η)) 1/(2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥

1

1 + (1/(c + η)) 1/(2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctia

ℵ
l + ηeja

ℵ
l􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1 −
1

1 +((1/(c + η)) 1/(2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctib

ℵ
l + ηejb

ℵ
l􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� ol.

(33)

Similarly, it can be proven that q − ROFDPHM
(o1, o2, . . . , on)≤ oh in the same way, which completes the
proof of 4eorem 3.

It can be noted that the proposed q-ROFDPHMoperator
uses the PA operator and Dombi operational laws to op-
timize the HM operator. Its significance can be listed as
follows. (1) It can alleviate negative influences of extreme
input values on the calculation results. (2) It shows strong
flexibility for computing input values. (3) It is capable of
capturing the complex interrelationships among criteria
values. (4) It can process the complex information structure

of q-ROFSs. Nevertheless, during the aggregation processes,
it does not consider the weight values of criteria, which is
very important in the MCDM contexts. To tackle this de-
ficiency, a novel q-rung orthopair fuzzy weighted Dombi
power Heronian mean (q-ROFWDPHM) operator is put
forward in the following part. □

Definition 11. Given a set of q-ROFNs oi � (μi, ]i)(i � 1, 2,

. . . , n), three parameters c, η≥ 0 and ℵ> 0, and the weight
values [ω1,ω2, . . . ,ωn] of q-ROFNs, then the q-
ROFWDPHM operator is defined as

q − ROFWDPHM o1, o2, . . . , on( 􏼁 �
2

n(n + 1)
⊕
n

i�1
⊕
n

j�i

nωi 1 + S oi( 􏼁( 􏼁

􏽐
n
k�1 ωk 1 + S ok( 􏼁( 􏼁

oi􏼠 􏼡

c

⊗
nωj 1 + S oj􏼐 􏼑􏼐 􏼑

􏽐
n
k�1 ωk 1 + S ok( 􏼁( 􏼁

oj
⎛⎝ ⎞⎠

η

⎛⎝ ⎞⎠

(1/(c+η))

.

(34)
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Theorem 4. Given a set of q-ROFNs oi � (μi, ]i)(i � 1, 2,

. . . , n), three parameters c, η≥ 0 and ℵ> 0, and the weight
values [ω1,ω2, . . . ,ωn] of q-ROFNs, then the aggregated result

obtained from the q-ROFWDPHM operator is still a q-ROFN,
which is

q − ROFWDPHM o1, o2, . . . , on( 􏼁 �

1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,

1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(35)

where ξi � ((1 + S(oi))/ 􏽐
n
k�1 ωk(1 + S(ok))), ψj � ((1+

S(oj))/ 􏽐
n
k�1 ωk(1 + S(ok))), (μq

i /(1 − μq

i )) � (1/ai),
(μq

j/1 − μq
j) � (1/aj), ((1 − ]q

i )/]q
i ) � (1/bi), ((1 − ]q

j)/]q
j) �

(1/bj), ti � (1/nωiξi), and ej � (1/nωjψj).

Proof. Let ξi � ((1 + S(oi))/􏽐
n
k�1 ωk(1 + S(ok))) and

ψj � ((1 + S(oj))/􏽐
n
k�1 ωk(1 + S(ok))); then, equation (34)

can be transformed into

q − ROFWDPHM o1, o2, . . . , on( 􏼁 �
2

n(n + 1)
⊕
n

i�1
⊕
n

j�i
nωiξioi( 􏼁

c ⊗ nωjψjoj􏼐 􏼑
η

􏼠 􏼡

(1/(c+η))

. (36)

According to Definition 7, we have

nωiξioi � 1 −
1

1 + nωiξi μq
i / 1 − μq

i( 􏼁( 􏼁
ℵ

􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/q)

,
1

1 + nωiξi 1 − ]q
i( 􏼁/]q

i( 􏼁
ℵ

􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

nωjψjoj � 1 −
1

1 + nωjψj μq
j / 1 − μq

j􏼐 􏼑􏼐 􏼑
ℵ

􏼒 􏼓
(1/ℵ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,
1

1 + nωjψj 1 − ]q
j􏼐 􏼑/]q

j􏼐 􏼑
ℵ

􏼒 􏼓
(1/ℵ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(37)

Let (μq
i /(1 − μq

i )) � (1/ai), (μq
j/1 − μq

j) � (1/aj),
((1 − ]q

i )/]q
i ) � (1/bi), and ((1 − ]q

j)/]q
j) � (1/bj); then,

these equations can be transformed into

nωiξioi � 1 −
1

1 + nωiξi 1/aℵi( 􏼁( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

,
1

1 + nωiξi 1/bℵi( 􏼁( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

⎛⎜⎝ ⎞⎟⎠,

nωjψjoj � 1 −
1

1 + nωjψj 1/aℵj􏼐 􏼑􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,
1

1 + nωjψj 1/bℵj􏼐 􏼑􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(38)
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According to Definition 7, then we have

nωiξioi( 􏼁
c

�
1

1 + c 1/nωiξi( 􏼁aℵi( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

, 1 −
1

1 + c 1/nωiξi( 􏼁bℵi( 􏼁
(1/ℵ)

⎛⎝ ⎞⎠

(1/q)

⎛⎜⎝ ⎞⎟⎠,

nωjψjoj􏼐 􏼑
η

�
1

1 + η 1/nωjψj􏼐 􏼑aℵj􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

, 1 −
1

1 + η 1/nωjψj􏼐 􏼑bℵj􏼐 􏼑
(1/ℵ)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(39)

Let ti � (1/nωiξi) and ej � (1/nωjψj); then, the above
two equations can be transformed into

nωiξioi( 􏼁
c

�
1

1 + ctia
ℵ
i( 􏼁

(1/ℵ)
⎛⎝ ⎞⎠

(1/q)

, 1 −
1

1 + ctib
ℵ
i( 􏼁

(1/ℵ)
⎛⎝ ⎞⎠

(1/q)

⎛⎜⎝ ⎞⎟⎠,

nωjψjoj􏼐 􏼑
η

�
1

1 + ηeja
ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

, 1 −
1

1 + ηejb
ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

nωiξioi( 􏼁
c ⊗ nωjψjoj􏼐 􏼑

η
�

1

1 + ctia
ℵ
i + ηeja

ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

, 1 −
1

1 + ctib
ℵ
i + ηejb

ℵ
j􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

⊕
n

i�1
⊕
n

j�i
nωiξioi( 􏼁

c ⊗ nωjψjoj􏼐 􏼑
η

�

1 −
1

1 + 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1

1 + 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

2
n(n + 1)

⊕
n

i�1
⊕
n

j�i
nωiξioi( 􏼁

c ⊗ nωjψjoj􏼐 􏼑
η

�

1 −
1

1 + (2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1

1 + (2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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n(n + 1)

⊕
n

i�1
⊕
n

j�i
nωiξioi( 􏼁

c ⊗ nωjψjoj􏼐 􏼑
η

􏼠 􏼡

(1/(c+η))

�

1

1 + (1/(c + η)) 1/ (2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctia

ℵ
i + ηeja

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)

,

1 −
1

1 + (1/(c + η)) 1/(2/n(n + 1)) 􏽐
n
i�1,j�i 1/ ctib

ℵ
i + ηejb

ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/q)
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1 −
1
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n
i�1,j�i 1/ ctib

ℵ
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ℵ
j􏼐 􏼑􏼐 􏼑􏼐 􏼑
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.

(40)

4e process for proving that the aggregation result of the
q-ROFWDPHM operator is a q-ROFN is the same as that of
4eorem 1. 4us, it is omitted here.

4e proposed q-ROFWDPHM operator also owns the
features of idempotency and boundedness as the proposed
q-ROFDPHM operator. 4eir proof processes are similar to
those of 4eorems 2 and 3. Due to the limited space, the
proof processes are omitted here. □

4. q-Rung Orthopair Fuzzy Dombi Power
Geometric Heronian Mean Operators

In this section, we use the PA operator, Dombi operational
laws for q-ROFNs, and geometric HM operator to develop a
novel q-ROFDPGHM operator and its weighted form.4en,
the features are discussed.

Definition 12. Given a set of q-ROFNs
oi � (μi, ]i)(i � 1, 2, . . . , n) and three parameters c, η≥ 0 and
ℵ> 0, then the q-ROFDPGHM operator is defined as

q − ROFDPGHM o1, o2, . . . , on( 􏼁 �
1

c + η
⊗
n

i�1
⊗
n

j�i
co

n 1+S oi( )( )/ 􏽘

n

k�1
1 + S ok( 􏼁( 􏼁⎛⎝ ⎞⎠

i ⊕ηo

n 1+S oj( 􏼁( 􏼁/ 􏽘

n

k�1
1 + S ok( 􏼁( 􏼁⎛⎝ ⎞⎠

j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2/n(n+1))

. (41)

Based on the Dombi operational laws of q-ROFNs and
GHM operator, a theorem is derived.

Theorem 5. Given n q-ROFNs oi � (μi, ]i)(i � 1, 2, . . . , n)

and the parameters c, η≥ 0 and ℵ> 0, then the
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aggregated result derived from equation (41) is still a q-
ROFN, which is

q − ROFDPGHM o1, o2, . . . , on( 􏼁 �
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n
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􏼒 􏼓
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(42)

where ξi � ((1 + S(oi))/ 􏽐
n
k�1(1 + S(ok))), ψj � ((1+

S(oj))/ 􏽐
n
k�1(1 + S(ok))), ai � ((1 − μq

i )/μq
i ), aj �

((1 − μq
j)/μq

j), bi � (]q
i /(1 − ]q

i )), bj � (]q
j/(1 − ]q

j)),
ti � (1/nξi), and ej � (1/nψj).

Be proof process of this theorem is similar to that of
Beorem 1. Bus, it is omitted here.

Be proposed q-ROFDPGHM operator also owns the
features of idempotency and boundedness as the proposed
q-ROFDPHM operator. Beir proof processes are similar to
those of Beorems 2 and 3. Due to the limited space, the proof
processes are omitted here.

Similar to the proposed q-ROFDPHM operator, the
q-ROFDPGHM also does not consider the weight values of
criteria. To tackle this deficiency, a new q-rung orthopair
fuzzy weighted Dombi power geometric Heronian mean
(q-ROFWDPGHM) operator is put forward in the following
part.

Definition 13. Given a set of q-ROFNs
oi � (μi, ]i)(i � 1, 2, . . . , n), three parameters c, η≥ 0 and
ℵ> 0, and the weight values [ω1,ω2, . . . ,ωn] of q-ROFNs,
then the q-ROFWDPGHM operator is defined as

q − ROFWDPGHM o1, o2, . . . , on( 􏼁 �
1

c + η
⊗
n

i�1
⊗
n

j�i
co

nωi 1+S oi( )( )/ 􏽘

n
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(2/n(n+1))

.

(43)

Based on the Dombi operational laws of q-ROFNs and
GHM operator, a theorem is derived.

Theorem 6. Given a set of q-ROFNs oi � (μi, ]i)(i � 1, 2,

. . . , n), the parameters c, η≥ 0 and ℵ> 0, and the weight

values [ω1,ω2, . . . ,ωn] of q-ROFNs, then the aggregated re-
sult that is obtained from equation (43) is still a q-ROFN,
which is

q − ROFWDPGHM o1, o2, . . . , on( 􏼁 �

1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
i�1,j�i 1/cti 1/aℵi( 􏼁 + ηej 1/aℵj􏼐 􏼑􏼐 􏼑􏼐 􏼑
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􏼒 􏼓
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,

1
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(44)
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where ξi � ((1 + S(oi))/ 􏽐
n
k�1 ωk(1 + S(ok))), ψj � ((1+

S(oj))/ 􏽐
n
k�1 ωk(1 + S(ok))), ti � (1/nωiξi), ej � (1/nωjψj),

ai � ((1 − μq
i )/μq

i ), aj � ((1 − μq
j)/μq

j), bi � (]q
i /(1 − ]q

i )),
and bj � (]q

j /(1 − ]q
j)).

Proof. 4e proof process is similar to that of 4eorem 1.
4us, it is omitted here.

4e proposed q-ROFWDPGHM operator also has the
features of idempotency and boundedness as the proposed
q-ROFDPHM operator. 4eir proof processes are similar to
those of 4eorems 2 and 3. Due to the limited space, the
proof processes are omitted here. □

5. MULTIMOORA Method for q-Rung
Orthopair Fuzzy Sets

In this section, the MULTIMOORA method is improved for
processing the MCDM problems with the q-ROFS informa-
tion. 4ere usually exist the interrelationships among the
criteria in the MCDM problems. Moreover, there may be
extreme criteria values in theMCDMproblems. To tackle these
two problems, we use the proposed q-ROFWDPHM and q-
ROFWDPGHM operators to modify the MULTIMOORA
method.

5.1. ProblemDescription. Let us suppose that there exists an
MCDM problem consisting of m alternatives
x1, x2, . . . , xm􏼈 􏼉 and n criteria a1, a2, . . . , an􏼈 􏼉. 4e weight
values of criteria are denoted as [ω1,ω2, . . . ,ωn], where
􏽐

n
j�1 ωj � 1 and 0≤ωj ≤ 1. 4e decision matrix (DM) R �

(oij)m×n corresponding to this MCDM problem consists of
the evaluation information from experts. 4e element oij

denotes the evaluation information of alternative xi with

respect to criterion aj. In this MCDM problem, experts use
the flexible q-ROFNs for expressing the evaluation infor-
mation of alternative xi with respect to criterion aj, namely,
oij � (μij, ]ij). Here, the criteria are divided into two dif-
ferent categories: benefit-type criteria and cost-type criteria.

Before processing DM R � (oij)m×n, equation (45) is
used to transform the values of cost-type criteria for deriving
the transformed DM 􏽥R � (􏽥oij)m×n:

􏽥oij �
μij, ]ij􏼐 􏼑, for benefit − type criterion a,

]ij, μij􏼐 􏼑, for cost − type criterion aj.

⎧⎪⎨

⎪⎩
(45)

5.2. q-Rung Orthopair Fuzzy MULTIMOORA Method.
According to the above problem description, we introduce the
q-ROFWDPHM and q-ROFWDPGHM operators to improve
the original MULTIMOORA method so as to propose a novel
q-rung orthopair fuzzy MULTIMOORA (q-ROF-MULTI-
MOORA) method. Similar to the original MULTIMOORA
method [53], the q-ROF-MULTMOORA method is also
composed of three components, which are the q-rung
orthopair fuzzy RS (q-ROF-RS) component, q-rung orthopair
fuzzy RP (q-ROF-RP) component, and q-rung orthopair fuzzy
FMF (q-ROF-FMF) component, respectively. Based on the
transformed DM 􏽥R � (􏽥oij)m×n, these three components
compute the ranking values of alternatives as follows.

5.2.1. q-ROF-RS Component. In this component, the q-
ROFWDPHM operator is applied to aggregate the evalua-
tion information of each alternative xi with respect to its n

criteria. 4erefore, using (34), the aggregated criteria value
of alternative xi can be computed as

fi1 �
2

n(n + 1)
⊕
n

h�1
⊕
n

g�h

nωh 1 + S 􏽥oih( 􏼁( 􏼁

􏽐
n
k�1 ωk 1 + S 􏽥oik( 􏼁( 􏼁

􏽥oih􏼠 􏼡

c

⊗
nωg 1 + S 􏽥oig􏼐 􏼑􏼐 􏼑

􏽐
n
k�1 ωk 1 + S 􏽥oik( 􏼁( 􏼁

􏽥oig
⎛⎝ ⎞⎠

η

⎛⎝ ⎞⎠

(1/c+η)

, (46)

where S(􏽥oik) � 􏽐
n
l�1,l≠ k Sup(􏽥oik, 􏽥oil) and Sup(􏽥oik, 􏽥oil) �

1 − d(􏽥oik, 􏽥oil).
Since the aggregated value is a q-ROFN, then the score

function in Definition 2 is used to derive the crisp ranking
value of alternative xi as

fi1 � s fi1( 􏼁 � s
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1
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(47)
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where ξih � ((1 + S(􏽥oih))/􏽐
n
k�1 ωk(1 + S(􏽥oik))), ψig � ((1+

S(􏽥oig))/􏽐
n
k�1 ωk(1 + S(􏽥oik))), (μq

ih/(1 − μq

ih)) � (1/aih),
(μq

ig/1 − μq
ig) � (1/aig), (1 − ]q

ih/]
q

ih) � (1/bih), ((1 − ]q
ig)/

]q

ig) � (1/big), tih � (1/nωhξih), and eig � (1/nωgψig).
4e alternative with larger ranking value is better. Hence,

all the alternatives can be ranked according to the
descending order of their ranking values.

5.2.2. q-ROF-RP Component. In this component, the ref-
erence point of each criterion is first derived as

ρj � argmaxm
i�1 s 􏽥oij􏼐 􏼑, (j � 1, 2, . . . , n). (48)

In the second step, Definition 4 is applied to compute the
distance between the evaluation information of alternative xi

with respect to each criterion and the reference point of the
same criterion as

εij � d 􏽥oij, ρj􏼐 􏼑. (49)

It can be known that εij is a real value and εij ≥ 0.
Considering the interrelationships among criteria, the
ranking value of alternative xi is computed by aggregating
the criteria distances of alternative xi as

fi2 �
2

n(n + 1)
􏽘

n

h�1
􏽘

n

g�h

nωh 1 + S εih( 􏼁( 􏼁

􏽐
n
k�1 ωk 1 + S εik( 􏼁( 􏼁

εih􏼠 􏼡

c

×
nωg 1 + S εig􏼐 􏼑􏼐 􏼑

􏽐
n
k�1 ωk 1 + S εik( 􏼁( 􏼁

εig
⎛⎝ ⎞⎠

η

⎛⎝ ⎞⎠

(1/(c+η))

, (50)

where S(εik) � 􏽐
n
l�1,l≠ k Sup(εik, εil) and Sup(εik, εil) � 1−

|εik − εil|.
In this component, the alternative with smaller ranking

value is better. 4us, all the alternatives should be ranked
according to the ascending order of their ranking values.

5.2.3. q-ROF-FMF Component. In this component, the
proposed q-ROFWDPGHM operator is applied to aggregate
the evaluation information of each alternative xi with respect
to its n criteria. 4us, using equation (43), the aggregated
criteria value of alternative xi can be computed as

fi3 �
1

c + η
⊗
n

h�1
⊗
n

g�h
c􏽥o

nωh 1+S 􏽥oih( )( )/ 􏽘

n

k�1
ωk 1 + S 􏽥oik( 􏼁( 􏼁⎛⎝ ⎞⎠

ih ⊕η􏽥o

nωg 1+S 􏽥oig( 􏼁( 􏼁/ 􏽘

n

k�1
ωk 1 + S 􏽥oik( 􏼁( 􏼁⎛⎝ ⎞⎠

ig

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2/n(n+1))

, (51)

where S(􏽥oik) � 􏽐
n
l�1,l≠ k Sup(􏽥oik, 􏽥oil) and Sup(􏽥oik, 􏽥oil) � 1−

d(􏽥oik, 􏽥oil).
Since the aggregated value is a q-ROFN, then the score

function in Definition 2 is used to derive the crisp ranking
value of alternative xi as

fi3 � s fi3( 􏼁 � s

1 −
1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
h�1,g�h 1/ctih 1/aℵih( 􏼁 + ηeig 1/aℵig􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

,

1

1 +(n(n + 1)/2(c + η))(1/ℵ) × 1/ 􏽐
n
h�1,g�h 1/ctih 1/bℵih( 􏼁 + ηeig 1/bℵig􏼐 􏼑􏼐 􏼑􏼐 􏼑

(1/ℵ)
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (52)

where ξih � ((1 + S(􏽥oih))/􏽐
n
k�1 ωk(1 + S(􏽥oik))), ψig � ((1+

S(􏽥oig))/􏽐
n
k�1 ωk(1 + S(􏽥oik))), aih � ((1 − μq

ih)/μq

ih), aig �

(1 − μq
ig/μ

q
ig), bih � (]q

ih/(1 − ]q

ih)), big � (]q
ig/(1 − ]q

ig)),
tih � (1/nωhξih), and eig � (1/nωgψig).

In this component, the alternative with larger ranking
value is better. Hence, all the alternatives can be ranked
according to the descending order of their ranking values.

After obtaining the ranking values of all the alternatives
from these three components, we need to fuse them for
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deriving the final ranking values. In the original MULTI-
MOORA method, the dominance theory is usually used to
aggregate three ranking orders for deriving the final ranking
order. However, it is incapable of handling massive oper-
ations resulting from its cumbersome pairwise comparison
processes [54]. For the purpose of overcoming the deficiency
of dominancy theory, the HM operator is put forward for
integrating the ranking values of alternatives obtained from
three components of the proposed q-ROF-MULTIMOORA
method. 4e HM operator owns the advantage of capturing
the interrelationships hiding behind input values. After-
wards, by using the ranking values obtained from equations
(47)–(52), here a new DM is constructed, where the three
components of the q-ROF-MULTIMOORA method are
regarded as criteria of alternatives: q-ROF-RS component
(c1), q-ROF-RP component (c2), and q-ROF-FMF compo-
nent (c3). Hence, the new DM M is constructed as

M �

c1 c2 c3

x1

x2

⋮

xm

f11 f12 f13

f21 f22 f23

⋮ ⋮ ⋮

fm1 fm2 fm3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (53)

where x1, x2, . . . , xm􏼈 􏼉 denotes the set of alternatives and
c1, c2, c3􏼈 􏼉 denotes the set of criteria. 4e element fiy(y �

1, 2, 3) in the DM M denotes the ranking value of the al-
ternative xi with respect to the criterion cy. Let
χ � χ1, χ2, χ3􏼈 􏼉 be the weight values of criteria c1, c2, c3􏼈 􏼉,
satisfying 0≤ χy ≤ 1 and 􏽐

3
y�1 χy � 1. In general, the weight

values of criteria are set to χ1 � χ2 � χ3 � (1/3). For the DM
M, the ranking values of each alternative with respect to
three criteria should be aggregated for determining the final
ranking values. However, the ranking values fiy(y � 1, 2, 3)

show different dimensions because they are obtained from
the different components. For the purpose of making them
dimensionless, all the ranking values fiy(y � 1, 2, 3) are
normalized as

􏽥fiy �

fiy − min1≤i≤mfiy

max1≤i≤mfiy − min1≤i≤mfiy

, for benefit − type criterion cy,

max1≤i≤mfiy − fiy

max1≤i≤mfiy − min1≤i≤mfiy

, for cost − type criterion cy,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(54)

where 1≤ i≤m and 1≤y≤ 3.
Afterwards, the weighted HM operator [55] is used to

aggregate the normalized ranking values 􏽥fiy of each alter-
native xi with respect to three criteria for deriving the final
ranking value of this alternative as

Fi �
2

3(3 + 1)
􏽘

3

h�1
􏽘

3

g�h

χh
􏽥fih􏼐 􏼑

c
χg

􏽥fig􏼐 􏼑
η⎛⎝ ⎞⎠

(1/(c+η))

. (55)

4e alternative with larger final ranking value is better.
Hence, all the alternatives can be ranked based on the
descending order of their final ranking values.

5.3. Decision-Making Procedure. Based on the discussion
and results in Section 5.2, the decision-making procedure of
the proposed q-ROF-MULTIMOORA method is summa-
rized using the following 7 steps.

Step 1: all the evaluation information is collected for
constructing DM R � (oij)m×n � (μij, ]ij)m×n. At the
same time, the values of the parameters q, c, η, and ℵ
should be provided.

Step 2: to transform the criteria values of each alter-
native with respect to cost-type criteria, (45) is used to
transform DM R � (oij)m×n into DM 􏽥R � (􏽥oij)m×n.

Step 3: for the transformed DM 􏽥R � (􏽥oij)m×n, (47) is
applied to compute the ranking value fi1 of each al-
ternative xi with respect to the q-ROF-RS component.
4e alternatives can be ranked according to the
descending order of their ranking values.

Step 4: for the transformed DM 􏽥R � (􏽥oij)m×n, (50) is
applied to compute the ranking value fi2 of each al-
ternative xi with respect to the q-ROF-RP component.
4e alternatives can be ranked according to the as-
cending order of their ranking values.

Step 5: for the transformed DM 􏽥R � (􏽥oij)m×n, (52) is
applied to compute the ranking value fi3 of each al-
ternative xi with respect to the q-ROF-FMF compo-
nent. 4e alternatives can be ranked according to the
descending order of their ranking values.
Step 6: based on the ranking values of alternatives
obtained from three components in Steps 3–5, a new
DM M � (fiy)m×3 is constructed. Afterwards, (54) is
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applied to transform DM M � (fiy)m×3 into
􏽥M � (􏽥fiy)m×3.
Step 7: in the final step, (55) is used to aggregate the
ranking values of alternatives with respect to three
components of the q-ROF-MULTIMOORA method
for deriving the final ranking values. 4en, all the al-
ternatives are ranked according to the descending order
of their final ranking values.

4e above steps are also shown in Figure 1.
4e q-ROF-MULTIMOORA method is a combination

of PA operator, Dombi operational laws, AHM, GHM, and
MULTIMOORA. It shows the following advantages:

(1) It has the ability of alleviating negative influences
of extreme criteria values on the decision results,
which makes the decision results more stable and
robust.

(2) It shows strong flexibility when computing the cri-
teria values due to the Dombi operational laws of q-
ROFNs.

(3) 4e HM and GHM operators are capable of cap-
turing the complex interrelationships hiding behind
the criteria values. Moreover, the MULTIMOORA
method integrates the ranking values obtained from
three components for deriving the final ranking
values. 4us, the decision results of the q-ROF-
MULTIMOORA method are more reasonable and
effective.

6. IllustrativeExampleandComparisonAnalysis

In this section, a practical case concerning the evaluation of
security algorithm is shown to illustrate the decision-
making procedure of the proposed q-ROF-MULTI-
MOORA method. Afterwards, the influences of the pa-
rameters on the decision results are analyzed. Finally, the
proposed q-ROF-MULTIMOORA method is compared
with the original MULTIMOORA method for processing
q-ROFNs.

6.1. Decision Process Using the q-ROF-MULTIMOORA
Method. In this section, a real case concerning the evaluation
of security algorithms is provided to illustrate the decision
procedure of the proposed q-ROF-MULTIMOORA method.

Example 1. With the quick development of Internet ap-
plications, more and more user data are stored online.
Hackers frequently attack the Internet applications for
obtaining the privacy data. To protect users’ privacy data,
various security algorithms have been designed and
implemented. However, these security algorithms show
different features. How to choose the suitable security al-
gorithm is a big challenge for organizations since multiple
criteria should be considered. Here, we try to formulate the
process of evaluating the security algorithms and selecting a
suitable one as a classical MCDM problem. Suppose orga-
nization plans to evaluate 5 candidates of security algorithms
and select the suitable one by considering 6 criteria: function

(c1), reliability (c2), usability (c3), performance (c4), porta-
bility (c5), and complexity (c6). Hence, an MCDM problem
composed of 5 security algorithms x1, x2, x3, x4, x5􏼈 􏼉 and 6
criteria c1, c2, c3, c4, c5, c6􏼈 􏼉 can be constructed. According to
the real requirements for building the security system, the
organization sets the weights of criteria as
ω � (0.10, 0.15, 0.35, 0.20, 0.10, 0.10). 4e technical panel of
this organization uses the q-ROFNs to evaluate these five
security algorithms with respect to their criteria. All the q-
ROFNs are collected to form the DM
R � (oij)5×6 � (μij, ]ij)5×6, as shown in Table 2.

Step 1: the values of the parameters c, η, andℵ are set to
1 and the value of the parameter q is set to 3.
Step 2: the first five criteria are benefit-type criteria,
while the maintenance cost is cost-type criteria. Hence,
(45) is used to transform DM R � (oij)5×6 in Table 2
into DM 􏽥R � (􏽥oij)5×6 as depicted in Table 3.
Step 3: for the transformed DM 􏽥R � (􏽥oij)5×6, (47) is
applied to compute the ranking value fi1 of each se-
curity algorithm xi with respect to the q-ROF-RS
component as

f11 � 0.036,

f21 � 0.027,

f31 � 0.033,

f41 � 0.111,

f51 � 0.047.

(56)

Hence, these security algorithms can be ranked as
x4≻x5≻x1≻x3≻x2.
Step 4: for the transformed DM 􏽥R � (􏽥oij)5×6, (50) is
applied to compute the ranking value fi2 of each se-
curity algorithm xi with respect to the q-ROF-RP
component as

f12 � 0.179,

f22 � 0.225,

f32 � 0.213,

f42 � 0.031,

f52 � 0.229.

(57)

Hence, these security algorithms can be ranked as
x4≻x1≻x3≻x2≻x5.
Step 5: for the transformed DM 􏽥R � (􏽥oij)5×6, (52) is
applied to compute the ranking value fi3 of each se-
curity algorithm xi with respect to the q-ROF-FMF
component as

f13 � − 0.004,

f23 � − 0.018,

f33 � 0.007,

f43 � − 0.001,

f53 � − 0.035.

(58)
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Hence, these security algorithms can be ranked as
x3≻x4≻x1≻x2≻x5.
Step 6: based on the ranking values of security algo-
rithms obtained from three components in Steps 3–5, a
new DM M � (fiy)m×3 is formed. Afterwards, (54) is
applied to transform the DM M � (fiy)m×3 into 􏽥M �

(􏽥fiy)m×3 as

􏽥M �

0.107 0.253 0.738

0.000 0.020 0.405

0.071 0.081 1.000

1.000 1.000 0.810

0.238 0.000 0.000

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (59)

Step 7: in the final step, equation (55) is used to ag-
gregate the ranking values of five security algorithms
with respect to three components for deriving the final
ranking values as

F1 � 0.130,

F2 � 0.057,

F3 � 0.147,

F4 � 0.313,

F5 � 0.032.

(60)

4en, the final ranking order of these security algorithms
is x4≻x3≻x1≻x2≻x5. 4us, the security algorithm x4 is the

Collect all the evaluation
information to construct the

DMR

Use eq. (6) to transform the
DMR into the DMR~ 

Use the q-ROF-RP component
to compute the ranking value

of each alternative

Use the q-ROF-FMF component
to compute the ranking value of

each alternative

Use the q-ROF-RS component
to compute the ranking value

of each alternative

Use the above ranking
values to construct a

new DMM

Use eq. (10) to
transform the DMM

into the DMM~

Use eq. (11) to aggregate the
ranking values of alternatives for
deriving their final ranking values

Rank all the alternatives
according to their final

ranking values

Start

End

Figure 1: 4e frame diagram of the proposed method.
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suitable one for the organization when building the security
system.

6.2. Influences of the Parameters on the Ranking Results.
In this section, the influences of the parameters on the
ranking results are discussed.

6.2.1. Influence of the Parameter q on the Final Ranking
Results. 4e influence of the parameter q on the final
ranking results of the q-ROF-MULTIMOORA method is
first discussed. In this case, the parameters c � η � ℵ � 1.
For the transformed DM R � (oij)5×6 in Table 2, the ranking
results of security algorithms are shown in Table 4 and
Figure 2 when the value of the parameter q varies.

From Table 4, it can be known that the ranking results of
security algorithms are different when the value of q varies.
When q � 1, the ranking result of security algorithms is
x4≻x1≻x3≻x2≻x5. When q � 2, the ranking result of security
algorithms is x4≻x2≻x1≻x3≻x5. When q � 3 or q � 5, the
ranking results of security algorithms are x4≻x3≻x1≻x2≻x5.
Although the ranking result of security algorithms changes
when the value of the parameter q varies, the most suitable
security algorithm keeps unchanged, namely, x4. When
q � 1, then q-ROFNs reduce to IFNs. When q � 2, then q-
ROFNs reduce to PFNs. How to determine the reasonable
value of q depends on the evaluation information provided
by the expert. 4e smallest value of the parameter q should
satisfy μq + ]q ≤ 1. For instance, if the evaluation information
given by the expert is (0.9, 0.9), then the smallest value of the
parameter q should be 7 so that 0.97 + 0.97 < 1.

6.2.2. Influences of the Parameters c and η on the Ranking
Results. 4e influences of the parameters c and η on the
ranking results of the q-ROF-MULTIMOORA method are
analyzed in this part. In this case, the parameters ℵ � 1 and
q � 3. For DM R � (oij)5×6 in Table 2, the ranking results of
security algorithms are shown in Table 5 and Figure 3 when
the values of the parameters c and η vary.

From Table 5, it can be seen that the ranking result
obtained from the q-ROF-MULTIMOORA method is al-
ways x4≻x3≻x1≻x2≻x5 except when c � 0 and η � 1.
Nevertheless, the most suitable security algorithm is always
x4. When c � 0 and η � 1, the ranking result of security
algorithms changes into x4≻x1≻x3≻x5≻x2. 4us, the
ranking result obtained from the q-ROF-MULTIMOORA
method is not sensitive to the values of these two parameters.
In other words, the q-ROF-MULTIMOORA method is
robust and effective.

6.2.3. Influence of the Parameter ℵ on the Ranking Results.
4e influence of the parameter ℵ on the ranking results of
the q-ROF-MULTIMOORAmethod is analyzed in this part.
In this case, the parameters c � η � 1 and q � 3. For DM
R � (oij)5×6 in Table 2, the ranking results of security al-
gorithms are listed in Table 6 and Figure 4 when the value of
the parameter ℵ varies.

From Table 6, it can be seen that the ranking result
obtained from the q-ROF-MULTIMOORA method slightly
changes when the value of the parameterℵ varies. When the
value of the parameter ℵ is set to ℵ � 1, then the ranking
result of security algorithms is x4≻x3≻x1≻x2≻x5. When the
value of the parameter ℵ is set to a value in the integer set
2, 3, . . . , 10{ }, then the ranking result of security algorithms
is changed into x4≻x1≻x3≻x5≻x2. However, the most
suitable security algorithm always keeps unchanged, namely,
x4 nomatter how the value of the parameterℵ varies. Hence,
the ranking result that is obtained from the q-ROF-MUL-
TIMOORA method is relatively stable. Because of the
Dombi operational laws for q-ROFNs, the q-ROF-MUL-
TIMOORA method has high flexibility by providing the
parameterℵ. Experts can adjust the value of the parameterℵ
according to the actual situation of MCDM problems.

6.3. Comparative Analysis. For the proposed q-ROF-
MULTIMOORA method, it applies the PA operator to al-
leviate the negative influence of extreme values on the
ranking results and integrates the AHM and GHM operators
to handle the interrelationships hiding behind criteria
values. For the purpose of verifying the effectiveness of the q-
ROF-MULTIMOORA method, it is compared with the
original MULTIMOORA method [32, 56] for handling the
q-ROFNs. Different from the q-ROF-MULTIMOORA
method, the original MULTIMOORA method does not
contain the PA operator to solve the problem of extreme
values and also does not integrate the AHM and GHM
operators to handle the interrelationships among criteria
values. Hence, it is a suitable way for comparing the q-ROF-
MULTIMOORA method with the original MULTIMOORA
method. For the purpose of conducting this comparative
analysis, an example of evaluating blockchain platforms is
given.

Example 2. 4e blockchain technology has the ability to
solve the problems resulting from our increasingly con-
nected society and tackle real-world business concerns. It
has been broadly applied to many fields such as distributed

Table 2: 4e q-rung orthopair fuzzy DM.

c1 c2 c3 c4 c5 c6

x1 (0.1,0.2) (0.3,0.3) (0.5,0.3) (0.6,0.3) (0.2,0.1) (0.1,0.1)
x2 (0.3,0.2) (0.1,0.1) (0.5,0.1) (0.4,0.5) (0.3,0.2) (0.6,0.1)
x3 (0.6,0.1) (0.2,0.2) (0.4,0.3) (0.2,0.4) (0.3,0.2) (0.1,0.2)
x4 (0.2,0.5) (0.1,0.3) (0.7,0.1) (0.8,0.1) (0.4,0.3) (0.3,0.3)
x5 (0.4,0.4) (0.4,0.5) (0.5,0.2) (0.1,0.4) (0.3,0.4) (0.4,0.4)

Table 3: 4e transformed q-rung orthopair fuzzy DM.

c1 c2 c3 c4 c5 c6

x1 (0.1,.02) (0.3,0.3) (0.5,0.3) (0.6,0.3) (0.2,0.1) (0.1,0.1)
x2 (0.3,0.2) (0.1,0.1) (0.5,0.1) (0.4,0.5) (0.3,0.2) (0.1,0.6)
x3 (0.6,0.1) (0.2,0.2) (0.4,0.3) (0.2,0.4) (0.3,0.2) (0.2,0.1)
x4 (0.2,0.5) (0.1,0.3) (0.7,0.1) (0.8,0.1) (0.4,0.3) (0.3,0.3)
x5 (0.4,0.4) (0.4,0.5) (0.5,0.2) (0.1,0.4) (0.3,0.4) (0.4,0.4)
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cloud storage and health care, as well as payment and
transfers. To benefit from the blockchain technology, or-
ganizations across the globe try to introduce the blockchain
technology for building their own decentralized systems.
4e blockchain platforms are a good solution, which help
organizations to facilitate the development and deployment
of decentralized systems. Suppose that an organization
wants to evaluate five blockchain platforms with respect to
five criteria: usability, performance, scalability, security, and
cost. 4erefore, evaluating these five blockchain platforms
can be formulated as an MCDM composed of blockchain
platforms x1, x2, x3, x4, x5􏼈 􏼉 with respect to criteria
c1, c2, c3, c4, c5􏼈 􏼉. 4e weights of criteria are set to

ω � (0.10, 0.25, 0.35, 0.2, 0.1). 4e transformed DM
R � (oij)5×5 � (μij, ]ij)5×5 is given in Table 7.

4e original MULTIMOORA method and q-ROF-
MULTIMOORA method are applied to process the trans-
formed q-rung orthopair fuzzy DM in Table 7. Because of the
limited space, the computation processes are omitted here
and the ranking results of different methods are provided in
Table 8.

In Table 8, the ranking results obtained from the q-ROF-
MULTIMOORAmethod and original method are provided.
Moreover, the ranking results obtained from the three
components of q-ROF-MULTIMOORA and original
method are also given. From Table 8, it can be noted that the

Table 4: Ranking results of the q-ROF-MULTIMOORA method when the value of q varies.

Final ranking values of security algorithms Ranking results
q � 1 F1 � 0.210, F2 � 0.096, F3 � 0.192, F4 � 0.333, and F5 � 0.000 x4≻x1≻x3≻x2≻x5
q � 2 F1 � 0.093, F2 � 0.191, F3 � 0.069, F4 � 0.312, and F5 � 0.043 x4≻x2≻x1≻x3≻x5
q � 3 F1 � 0.130, F2 � 0.057, F3 � 0.147, F4 � 0.313, and F5 � 0.032 x4≻x3≻x1≻x2≻x5
q � 5 F1 � 0.136, F2 � 0.019, F3 � 0.142, F4 � 0.302, and F5 � 0.014 x4≻x3≻x1≻x2≻x5
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Figure 2: Ranking results of the q-ROF-MULTIMOORA method when the value of q varies.

Table 5: Ranking results of the q-ROF-MULTIMOORA method when the values of c and η vary.

Final ranking values of security algorithms Ranking results
c � 1 and η � 0 F1 � 0.094, F2 � 0.038, F3 � 0.118, F4 � 0.307, and F5 � 0.021 x4≻x3≻x1≻x2≻x5
c � 1 and η � 0.5 F1 � 0.112, F2 � 0.041, F3 � 0.131, F4 � 0.312, and F5 � 0.024 x4≻x3≻x1≻x2≻x5
c � 1 and η � 1 F1 � 0.130, F2 � 0.057, F3 � 0.147, F4 � 0.313, and F5 � 0.032 x4≻x3≻x1≻x2≻x5
c � 1 and η � 2 F1 � 0.151, F2 � 0.070, F3 � 0.187, F4 � 0.310, and F5 � 0.044 x4≻x3≻x1≻x2≻x5
c � 1 and η � 3 F1 � 0.174, F2 � 0.082, F3 � 0.215, F4 � 0.312, and F5 � 0.051 x4≻x3≻x1≻x2≻x5
c � 1 and η � 4 F1 � 0.185, F2 � 0.086, F3 � 0.235, F4 � 0.315, and F5 � 0.055 x4≻x3≻x1≻x2≻x5
c � 0 and η � 1 F1 � 0.197, F2 � 0.003, F3 � 0.170, F4 � 0.333, and F5 � 0.070 x4≻x1≻x3≻x5≻x2
c � 0.5 and η � 1 F1 � 0.139, F2 � 0.043, F3 � 0.155, F4 � 0.308, and F5 � 0.024 x4≻x3≻x1≻x2≻x5
c � 2 and η � 1 F1 � 0.144, F2 � 0.073, F3 � 0.184, F4 � 0.313, F5 � 0.047 x4≻x3≻x1≻x2≻x5
c � 3 and η � 1 F1 � 0.162, F2 � 0.093, F3 � 0.213, F4 � 0.317, and F5 � 0.051 x4≻x3≻x1≻x2≻x5
c � 4 and η � 1 F1 � 0.181, F2 � 0.106, F3 � 0.233, F4 � 0.318, and F5 � 0.054 x4≻x3≻x1≻x2≻x5
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ranking results obtained from the q-ROF-MULTIMOORA
method and original MULTIMOORA method are different.
Moreover, the ranking result obtained from the q-ROF-RS
component of the q-ROF-MULTIMOORA method is dif-
ferent from that obtained from the RS component of the
original MULTIMOORA method, so do the ranking results
of other two components in the q-ROF-MULTIMOORA
method and original MULTIMOORA method. 4e reasons
are analyzed as follows:

(1) In the process of evaluating blockchain platforms,
there are the interrelationships hiding behind the
criteria values. 4e q-ROF-MULTIMOORA method
has been equipped with the AHM and GHM op-
erators to process the interrelationships, while the

original MULTIMOORA method is unable to pro-
cess the hiding interrelationships.

(2) For the q-rung orthopair fuzzy DM R, there exists
relatively great difference among criteria values. 4e
q-ROF-MULTIMOORA method is integrated with
the PA operator to alleviate the negative impact of
extreme criteria values on the ranking results, while
the original MULTIMOORA method ignores this
case.

From the above analysis, it can be noted that the q-ROF-
MULTIMOORA method performs better than the original
MUTLIMOORA method because the q-ROF-MULTI-
MOORA method derives more robust and reasonable
ranking results.
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Figure 3: Ranking results of the q-ROF-MULTIMOORA method when the values of c and η vary.

Table 6: Ranking results of the q-ROF-MULTIMOORA method when the value of ℵ varies.

Final ranking values of security algorithms Ranking results
ℵ � 1 F1 � 0.130, F2 � 0.057, F3 � 0.147, F4 � 0.313, and F5 � 0.032 x4≻x3≻x1≻x2≻x5
ℵ � 2 F1 � 0.153, F2 � 0.003, F3 � 0.150, F4 � 0.297, and F5 � 0.027 x4≻x1≻x3≻x5≻x2
ℵ � 3 F1 � 0.170, F2 � 0.003, F3 � 0.154, F4 � 0.296, and F5 � 0.054 x4≻x1≻x3≻x5≻x2
ℵ � 4 F1 � 0.172, F2 � 0.003, F3 � 0.151, F4 � 0.291, and F5 � 0.063 x4≻x1≻x3≻x5≻x2
ℵ � 5 F1 � 0.173, F2 � 0.003, F3 � 0.149, F4 � 0.286, and F5 � 0.065 x4≻x1≻x3≻x5≻x2
ℵ � 6 F1 � 0.173, F2 � 0.003, F3 � 0.147, F4 � 0.285, and F5 � 0.067 x4≻x1≻x3≻x5≻x2
ℵ � 7 F1 � 0.173, F2 � 0.003, F3 � 0.145, F4 � 0.283, and F5 � 0.066 x4≻x1≻x3≻x5≻x2
ℵ � 8 F1 � 0.174, F2 � 0.003, F3 � 0.145, F4 � 0.283, and F5 � 0.066 x4≻x1≻x3≻x5≻x2
ℵ � 9 F1 � 0.174, F2 � 0.003, F3 � 0.144, F4 � 0.282, and F5 � 0.067 x4≻x1≻x3≻x5≻x2
ℵ � 10 F1 � 0.174, F2 � 0.003, F3 � 0.142, F4 � 0.282, and F5 � 0.067 x4≻x1≻x3≻x5≻x2
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7. Conclusions

To solve the security algorithms’ evaluation problem, we
propose an efficient q-ROF-MULTIMOORA method in this
paper. Our contributions are listed as follows:

(1) We combine the PA operator, Dombi operational
laws, and AHM and GHM operators to design the q-
ROFDPHM, q-ROFWDPHM, q-ROFDPGHM, and
q-ROFWDPGHM operators to aggregate q-ROFNs.

(2) 4e proposed q-ROFWDPHM and q-
ROFWDPGHM operators are applied to modify the
original MULTIMOORA method for proposing a
novel q-ROF-MULTIMOORA method.

(3) A practical case of evaluating five security algorithms
is given to show the decision procedure of the q-
ROF-MULTIMOORAmethod.4e influences of the
parameters on the ranking results are analyzed.

(4) To validate the effectiveness of the proposed q-ROF-
MULTIMOORA method, a new example of evalu-
ating blockchain platforms is given.

4e proposed methods also have some limitations:

(1) the q-ROFSs model, the uncertain information uses
only three characteristic functions and does not have
the characteristic function that denotes the degree of
abstinence. 4is limitation can be removed by in-
troducing the concept of T-spherical fuzzy sets,
which was proposed by Mahmood et al. [57]. It has
been studied by many scholars [58,59].

(2) 4e weights of attributes are directly given in this
study. It ignores the objective significance. 4e
method combining the objective weights and sub-
jective weights should be considered in the future.

(3) In the proposed q-ROF-MULTIMOORA method,
the q-ROFDPHM and q-ROFDPGHM operators do
not consider the interaction between the member-
ship degree and the nonmembership degree of q-
ROFSs, which will produce unreasonable aggregated
results.

4e proposed q-ROF-MULTIMOORA method has some
potential applications. In the future research plan, we intend to
apply the proposed method into the sustainable supplier se-
lection [60]. According to the third limitationmentioned in the
above paragraph, the idea of interaction operational rules [61]
will be used to improve the proposed method.
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Table 7: 4e transformed q-rung orthopair fuzzy DM for evalu-
ating blockchain platforms.

c1 c2 c3 c4 c5

x1 (0.5,0.1) (0.5,0.1) (0.6,0.1) (0.8,0.1) (0.5,0.3)
x2 (0.1,0.2) (0.2,0.2) (0.3,0.4) (0.4,0.1) (0.2,0.2)
x3 (0.3,0.1) (0.2,0.4) (0.5,0.3) (0.5,0.4) (0.3,0.1)
x4 (0.4,0.2) (0.7,0.2) (0.6,0.1) (0.5,0.1) (0.7,0.2)
x5 (0.5,0.4) (0.2,0.1) (0.2,0.4) (0.3,0.5) (0.2,0.4)

Table 8: Ranking results of five blockchain platforms when using
different methods.

Decision method Ranking results
1 RS component [32] x1≻x4≻x3≻x2≻x5
2 RP component [32] x1≻x4≻x3≻x2≻x5
3 FMF component [32] x4≻x1≻x3≻x2≻x5
4 4e original MULTIMOORA [32] x1≻x4≻x3≻x2≻x5
5 q-ROF-RS component x4≻x1≻x3≻x5≻x2
6 q-ROF-RP component x4≻x1≻x3≻x2≻x5
7 q-ROF-FMF component x1≻x4≻x3≻x2≻x5
8 q-ROF-MULTIMOORA x4≻x1≻x3≻x2≻x5
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Figure 4: Ranking results of the q-ROF-MULTIMOORA method
when the value of ℵ varies.

Mathematical Problems in Engineering 27



References

[1] L. Zhao, W. Zhao, A. Hawbani et al., “Novel online sequential
learning-based adaptive routing for edge software-defined
vehicular networks,” IEEE Transactions on Wireless Com-
munications, vol. 20, no. 5, pp. 2991–3004, 2021.

[2] M. Lin, C. Huang, Z. Xu, and R. Chen, “Evaluating IoT
platforms using integrated probabilistic linguistic MCDM
method,” IEEE Internet of Bings Journal, vol. 7, no. 11,
pp. 11195–11208, 2020.

[3] L. Zhao, Z. Bi, M. Lin, A. Hawbani, J. Shi, and Y. Guan, “An
intelligent fuzzy-based routing scheme for software-defined
vehicular networks,” Computer Networks, vol. 187, Article ID
107837, 2021.

[4] J. Liu, S. Zheng, G. Xu, and M. Lin, “Cross-domain sentiment
aware word embeddings for review sentiment analysis,” In-
ternational Journal of Machine Learning and Cybernetics,
vol. 12, no. 2, pp. 343–354, 2021.

[5] M. Abdel-Basset, Y. Zhou, M. Mohamed, and V. Chang, “A
group decision making framework based on neutrosophic
VIKOR approach for e-government website evaluation,”
Journal of Intelligent and Fuzzy Systems, vol. 34, no. 6,
pp. 4213–4224, 2018.

[6] W. Wang, Z. Huang, and L. Wang, “ISAT: an intelligent web
service selection approach for improving reliability via two-
phase decisions,” Information Sciences, vol. 433-434,
pp. 255–273, 2018.

[7] D. N. S. Ravi Kumar and S. Barani, “Data dissemination
model using epidemic and transmission-segment- based
geographic routing protocol: a new perspective in vehicular ad
hoc networks,” International Journal of Intelligent Computing
and Cybernetics, vol. 14, no. 2, pp. 287–301, 2021.

[8] Y. Pan, M. Lin, Z. Wu, H. Zhang, and Z. Xu, “Caching-aware
garbage collection to improve performance and lifetime for
NAND flash SSDs,” IEEE Transactions on Consumer Elec-
tronics, vol. 67, no. 2, pp. 141–148, 2021.

[9] L. Zhao, H. X. Li, N. Lin, M. W. Lin, C. L. Fan, and J. L. Shi,
“Intelligent content caching strategy in autonomous driving
toward 6G,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[10] A. Nazir, R. N. Mir, and S. Qureshi, “Exploring compression
and parallelization techniques for distribution of deep neural
networks over Edge-Fog continuum - a review,” International
Journal of Intelligent Computing and Cybernetics, vol. 13,
no. 3, pp. 331–364, 2020.

[11] L. Ning, Y. Ali, H. Ke, S. Nazir, and Z. Huanli, “A hybrid
MCDM approach of selecting lightweight cryptographic ci-
pher based on ISO and NIST lightweight cryptography se-
curity requirements for internet of health things,” IEEE
Access, vol. 8, pp. 220165–220187, 2020.

[12] C. Huang, M. Lin, and Z. Xu, “Pythagorean fuzzy MULTI-
MOORA method based on distance measure and score
function: its application in multicriteria decision making
process,” Knowledge and Information Systems, vol. 62, no. 11,
pp. 4373–4406, 2020.

[13] M. Lin, Z. Xu, Y. Zhai, and Z. Yao, “Multi-attribute group
decision-making under probabilistic uncertain linguistic
environment,” Journal of the Operational Research Society,
vol. 69, no. 2, pp. 157–170, 2018.

[14] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[15] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87–96, 1986.

[16] R. R. Yager and A. M. Abbasov, “Pythagorean membership
grades, complex numbers, and decision making,” Interna-
tional Journal of Intelligent Systems, vol. 28, no. 5, pp. 436–
452, 2013.

[17] R. R. Yager, “Generalized orthopair fuzzy sets,” IEEE
Transactions on Fuzzy Systems, vol. 25, no. 5, pp. 1222–1230,
2017.

[18] H. Wang, Y. Ju, and P. Liu, “Multi-attribute group decision-
making methods based on q-rung orthopair fuzzy linguistic
sets,” International Journal of Intelligent Systems, vol. 34,
no. 6, pp. 1129–1157, 2019.

[19] M. Lin, X. Li, and L. Chen, “Linguisticq-rung orthopair fuzzy
sets and their interactional partitioned Heronian mean ag-
gregation operators,” International Journal of Intelligent
Systems, vol. 35, no. 2, pp. 217–249, 2020.

[20] M.W. Lin, J. H.Wei, Z. S. Xu, and R. Q. Chen, “Multiattribute
group decision-making based on linguistic Pythagorean fuzzy
interaction partitioned Bonferroni mean aggregation opera-
tors,” Complexity, vol. 2018, Article ID 9531064, 24 pages,
2018.

[21] Z. Yang, L. Zhang, and T. Li, “Group decision making with
incomplete interval-valued q-rung orthopair fuzzy preference
relations,” International Journal of Intelligent Systems, vol. 36,
no. 12, pp. 7274–7308, 2021.

[22] H. Z. Zhao, “Multiattribute decision-making method with
intuitionistic fuzzy Archimedean Bonferroni means,” Math-
ematical Problems in Engineering, vol. 2021, Article ID
5559270, 24 pages, 2021.

[23] W. Yang and Y. Pang, “New q-rung orthopair fuzzy parti-
tioned Bonferroni mean operators and their application in
multiple attribute decision making,” International Journal of
Intelligent Systems, vol. 34, no. 3, pp. 439–476, 2019.

[24] Z. Yang, M. Lin, Y. Li, W. Zhou, and B. Xu, “Assessment and
selection of smart agriculture solutions using an information
error-based Pythagorean fuzzy cloud algorithm,” Interna-
tional Journal of Intelligent Systems, vol. 36, no. 11,
pp. 6387–6418, 2021.

[25] G. Wei, C. Wei, J. Wang, H. Gao, and Y. Wei, “Some q-rung
orthopair fuzzy maclaurin symmetric mean operators and
their applications to potential evaluation of emerging tech-
nology commercialization,” International Journal of Intelli-
gent Systems, vol. 34, no. 1, pp. 50–81, 2019.

[26] P. D. Liu, S. M. Chen, and P. Wang, “Multiple-attribute group
decision-making based on q-rung orthopair fuzzy power
maclaurin symmetric mean operators,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 50, no. 10,
pp. 3741–3756, 2020.

[27] J. Wang, G. Wei, J. Lu et al., “Some q -rung orthopair fuzzy
Hamy mean operators in multiple attribute decision-making
and their application to enterprise resource planning systems
selection,” International Journal of Intelligent Systems, vol. 34,
no. 10, pp. 2429–2458, 2019.

[28] D. Liang, Y. Zhang, and W. Cao, “q -Rung orthopair fuzzy
Choquet integral aggregation and its application in hetero-
geneous multicriteria two-sided matching decision making,”
International Journal of Intelligent Systems, vol. 34, no. 12,
pp. 3275–3301, 2019.

[29] X. Q. Xu, J. L. Xie, N. Yue, and H. H. Wang, “Probabilistic
uncertain linguistic TODIMmethod based on the generalized
Choquet integral and its application,” International Journal of
Intelligent Computing and Cybernetics, vol. 14, no. 2,
pp. 122–144, 2021.

[30] P. Liu, P. Wang, and W. Pedrycz, “Consistency- and con-
sensus-based group decision-making method with

28 Mathematical Problems in Engineering



incomplete probabilistic linguistic preference relations,” IEEE
Transactions on Fuzzy Systems, vol. 29, no. 9, pp. 2565–2579,
2021.

[31] P. Wang, P. Liu, and F. Chiclana, “Multi-stage consistency
optimization algorithm for decision making with incomplete
probabilistic linguistic preference relation,” Information Sci-
ences, vol. 556, pp. 361–388, 2021.

[32] W. K. M. Brauers and E. K. Zavadskas, “Project management
by multimoora as an instrument for transition economies/
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based on linguistic intuitionistic fuzzy numbers for dealing
with multi-attribute group decision making,” Applied Soft
Computing, vol. 62, pp. 395–422, 2018.

[51] N. Jan, M. Aslam, K. Ullah, T. Mahmood, and J. Wang, “An
approach towards decision making and shortest path prob-
lems using the concepts of interval-valued Pythagorean fuzzy
information,” International Journal of Intelligent Systems,
vol. 34, no. 10, pp. 2403–2428, 2019.

[52] H. Li, L. Lv, F. Li, L. Wang, and Q. Xia, “A novel approach to
emergency risk assessment using FMEA with extended
MULTIMOORA method under interval-valued Pythagorean
fuzzy environment,” International Journal of Intelligent
Computing and Cybernetics, vol. 13, no. 1, pp. 41–65, 2020.

[53] C. Zhang, Q. Hu, S. Zeng, and W. Su, “IOWLAD-based
MCDM model for the site assessment of a household waste
processing plant under a Pythagorean fuzzy environment,”
Environmental Impact Assessment Review, vol. 89, Article ID
106579, 2021.

[54] M. Afzaal, M. Usman, and A. Fong, “Tourismmobile app with
aspect-based sentiment classification framework for tourist
reviews,” IEEE Transactions on Consumer Electronics, vol. 65,
no. 2, pp. 233–242, 2019.

[55] K. Bai, X. Zhu, J. Wang, and R. Zhang, “Power partitioned
Heronian mean operators for q -rung orthopair uncertain
linguistic sets with their application to multiattribute group
decision making,” International Journal of Intelligent Systems,
vol. 35, no. 1, pp. 3–37, 2020.

[56] W. K. M. Brauers and E. K. Zavadskas, “Multimoora opti-
mization used to decide on a bank loan to buy property,”
Technological and Economic Development of Economy, vol. 17,
no. 1, pp. 174–188, 2011.

[57] T. Mahmood, K. Ullah, Q. Khan, and N. Jan, “An approach
toward decision-making and medical diagnosis problems
using the concept of spherical fuzzy sets,” Neural Computing
& Applications, vol. 31, no. 11, pp. 7041–7053, 2019.

[58] L. Zedam, N. Jan, E. Rak, T. Mahmood, and K. Ullah, “An
approach towards decision-making and shortest path prob-
lems based on T-spherical fuzzy information,” International
Journal of Fuzzy Systems, vol. 22, no. 5, pp. 1521–1534, 2020.

[59] K. Ullah, H. Garg, T. Mahmood, N. Jan, and Z. Ali, “Cor-
relation coefficients for T-spherical fuzzy sets and their ap-
plications in clustering and multi-attribute decision making,”
Soft Computing, vol. 24, no. 3, pp. 1647–1659, 2020.

Mathematical Problems in Engineering 29



[60] Z. Ayag, “A comparison study of fuzzy-based multiple-criteria
decision-making methods to evaluating green concept al-
ternatives in a new product development environment,” In-
ternational Journal of Intelligent Computing and Cybernetics,
vol. 14, no. 3, pp. 412–438, 2021.

[61] L. Wang and H. Garg, “Algorithm for multiple attribute
decision-making with interactive Archimedean norm oper-
ations under Pythagorean fuzzy uncertainty,” International
Journal of Computational Intelligence Systems, vol. 14, no. 1,
pp. 503–527, 2021.

30 Mathematical Problems in Engineering


