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In this manuscript, we study a nonlinear fractional-order predator-prey system while considering uncertainty in initial
values. We derive the feasibility region and the boundness of the solution. �e suggested model’s equilibrium points
and the basic reproduction number are calculated. �e stability of equilibrium points is presented. We use the metric
�xed point theory to study the existence and uniqueness results concerning the solution of the model. We use the
notion of UH-stability to show that the model is Ulam–Hyres type stable. To attain the approximate solution of the
proposed model, we construct a method that uses the fuzzy Laplace transform in collaboration with the ADM
(Adomian decomposition method). Finally, we simulate our theoretical results using MATLAB to show the dynamics
of the considered model.

1. Introduction

Amathematical model is a mathematical representation of a
process. �e di�erent phenomenon of the real world has
been modelled by DEs or by a system of DEs [1]. Various
techniques such Taylor series method, variational iteration
method, modi�ed variational iteration algorithms, and
homotopy perturbation method have been discussed to solve
di�erent models [2–5]. Here, we consider the simplest model
named as “Lotka–Volterra” or Predator-Prey, presented in-
dependently by “Lotka” in (1925) and “Volterra” in (1926) [6].
It refers to the relationship between predator and prey controls,
as well as the population development of both species. �e
model describes the evolution of a biological Predator-Prey
relationship through a system of two nonlinear DEs, gener-
alized to a more complex and realistic phenomenon [6–9].�e
general system for the dynamic phenomenon is as follows:

dP
dt
� Pθ(x, y),

dQ
dt

� Pθ(x, y),




(1)

where P(t) is the prey (rabbits), Q(t) is the predator (foxes)
population at a time t, θ(x, y) and θ(x, y) are its functions,
respectively. �e growth rate and the density at time t have a
direct relationship. �is is presumed that the populations
live in a community, where the age factor is not considered.
�e prey is abundant in natural resources, and the only
threat is the specialist predator, whose growth depends on
prey catches. For the preymodel, the rate of growth of prey is
presumed to be constant, and the particular rate of growth is
reduced by an amount equal to the population of the
predator [6]. �e proposed model of the classical order is
governed by
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dP

dt
� aP(t) − bP(t)Q(t); a, b> 0,

dQ

dt
� − cQ(t) + dP(t)Q(t); c, d> 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

From the 20th century, the subject of fractional-order
integrals and derivatives has a substantial effect on mod-
elling and simulation due to its nonlocal nature [10, 11]. It
is seen that models involving integrals and derivatives of
fractional order are more accurate, rather than classical
models because fractional operators have long memory and
heredity properties [12]. Das and Gupta [13] studied system
(2) under fractional differential equations with constant
coefficients [13]. Ahmad et al. [14] analyzed the human
liver model by using hybrid fractional operators [15].
Alderremy et al. [16] analyzed multi space-fractional
Gardner equation in [16]. For more applications of dif-
ferent fractional operators, see [17–20]. It should be noted
that, in many branches of mathematics, DEs have been
expanded to fill the study gape. Since we live an uncertain
environment, therefore, we cannot model any phenome-
non accurately. So, fuzzy operators are the best tools to
handle the uncertain situation. %erefore, classical calculus
is generalized to fractional and fuzzy Calculus, while DEs
are generalized to fractional and fuzzy DEs [21–23]. Fuzzy
DEs can model a physical phenomenon more accurately by
considering fuzziness or uncertainty in initial conditions.
To solve such problems, they utilized different techniques
[24, 25]. Recently, fuzzy DEs have been utilized to analyze
various models that occur in biology and physics
[15, 26, 27]. As in the classical model, the coefficients are
constant; therefore, we extend the model given in (2) to
fuzzy fractional-order operator with uncertain initial data.
For order, 0<ϖ≤ 1 and 0≤ ϱ≤ 1.

D
ϖ
t [􏽥p(t, ϱ)] � a􏽥p(t, ϱ) − b􏽥p(t, ϱ) 􏽥Q(t, ϱ),

D
ϖ
t [ 􏽥Q(t, ϱ)] � − c 􏽥Q(t, ϱ) + d􏽥p(t, ϱ) 􏽥Q(t, ϱ),

⎧⎨

⎩ (3)

where

􏽥p(t, ϱ) � 􏽥x0,

􏽥Q(t, ϱ) � 􏽥y0.
(4)

Here, Dϖt represents fractional derivative in the Caputo
sense, 􏽥p(t, ϱ) and 􏽥Q(t, ϱ) are fuzzy valued functions, and
􏽥x0 and 􏽥y0 are fuzzy numbers.

%e goal of this research is to look at the model under
consideration by including fuzziness in the initial values.%e
model’s basic dynamical features are studied. Fixed point
theory and nonlinear analysis are used to derive the exis-
tence and stability conclusions of model (3). LADM is used
to find the solution to the presented model. To demonstrate
the model’s dynamics, the obtained results are simulated for
various fractional-order values.

%e structure of the paper is as follows: Section 1 deals
with the introduction and motivation part of the paper.
Section 2 provides the basic concepts of fuzzy fractional
calculus. Section 3 deals with stability and feasibility of the

equilibrium points. Section 4 provides the existence and
uniqueness theory of the proposed model. Section 5 dis-
cusses the Ulam–Hyres stability via nonlinear functional
analysis. Section 6 gives the general procedure for the
solution of the considered model via fuzzy Laplace
transform. Section 7 demonstrates the model through 2D
and 3D simulations. Section 8 includes conclusion of the
manuscript.

2. Preliminaries

Definition 1 (see [28]). Consider a fuzzy set of real line, i.e.,
u: R⟶ [0, 1]. %en, u is called a fuzzy number if it fulfills
the following features:

(1) %e closure of the set a ∈ R, u(a)> 0{ } is compact
(2) u is upper semicontinuous on R

(3) u is convex (u(qa + (1 − q)b)≥ (u(a)∧u(b))∀
q ∈ [0, 1], a, b ∈ R)

(4) u is normal for some a0 ∈ R; u(a0) � 1)

Definition 2 (see [28]). If u is a fuzzy number, then the
parametric form is represented by [u(ϱ), u(ϱ)] such that
0≤ ϱ ≤ 1 and fulfills the properties which are given as
follows:

(1) u(ϱ) is bounded, left continuous, and increasing
function in (0, 1] and right continuous at 0

(2) u(ϱ) is bounded, right continuous, and decreasing in
(0, 1] and right continuous at 0

(3) u(ϱ)≤ u(ϱ)

Also, for crisp case, we have u(ϱ)≤ u(ϱ) � ϱ.

Definition 3 (see [25]). Let E contain all fuzzy numbers. We
take into consideration a mapping [: E × E⟶ R and take
g(ϱ)[g(ϱ), g(ϱ)] and b � (b (ϱ), b(ϱ)) as two fuzzy num-
bers. %e Hausdorff distance between g and b is presented as
follows:

[(g, b) � sup
ϱ∈[0,1]

max g(ϱ) − b(ϱ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, |g(ϱ) − b(ϱ)|􏼚 􏼛􏼔 􏼕. (5)

In E, the metric [ satisfies the properties which is given
as follows:

(1) [(g + υ, b + υ) � [(g, b)∀g, υ, b ∈ E
(2) [(gϱ, bϱ) � |ϱ|[(g, b)∀g, b ∈ E, ϱ ∈ R
(3) [(g + ξ, b + ς)≤ ρ(g, b) + [(ξ, ς)∀g, b, ξ, ς ∈ E
(4) (E, [) is a complete metric space

Definition 4 (see [28]). Let [: R⟶ E be a fuzzy set valued
function. %en, [ is called continuous, if for each
ε> 0∃δ > 0 and fixed value of ℘0 ∈ [ζ1, ζ2], the following
relation holds:

ρ [(℘), [ ℘0( 􏼁( 􏼁< ε; whenever ℘ − ℘0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< δ. (6)
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Definition 5 (see [28]). Let [ be a continuous fuzzy function
on [0, q]⊆R, then for 0<ϖ≤ 1, a fuzzy Riemann–Liouville
fractional integral is given by

I
ϖ

[(t) �
1

[(ϖ)
􏽚

t

0
(t − I)

ϖ− 1
[(ϖ)dI, whereI ∈ (0,∞).

(7)

Additionally, if [ ∈ LF[0, q]∩CF[0, q], where LF[0, q]

and CF[0, q] are the spaces that contains fuzzy Lebesgue
integrable functions and fuzzy continuous, respectively, then

I
ϖ

[(t)􏽨 􏽩ϱ � I
ϖ

[ϱ(t), I
ϖ

[ϱ(t)􏽨 􏽩, 0≤ ϱ≤ 1, (8)

where

I
ϖ

[ϱ(t) �
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1
[ϱ(t)dI, I ∈ (0,∞),

I
ϖΦϱ(t) �

1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1
[ϱ(t)dI, I ∈ (0,∞).

(9)

Definition 6 (see [28]). Consider a fuzzy function
[ ∈ LF[0, b]∩CF[0, b] with parametric form [ � [[ϱ(t),

[ϱ(t)], 0≤ ϱ≤ 1, then the Caputo fuzzy fractional-order
derivative is presented by

D
ϖ

[ t0( 􏼁􏽨 􏽩ϱ � D
ϖ

[ϱ t0( 􏼁, D
ϖ

[ϱ t0( 􏼁􏽨 􏽩, 0<ϖ≤ 1, (10)

where

D
ϖ

[ϱ t0( 􏼁 �
1
Γ(j − ϖ)

􏽚
t

0
(t − I)

j− ϖ− 1 dj

dIj
[ϱ(I)dI􏼢 􏼣

t�t0

,

D
ϖ

[ϱ t0( 􏼁 �
1
Γ(j − ϖ)

􏽚
t

0
(t − I)

j− ϖ− 1 dj

dIj
[ϱ(I)dI􏼢 􏼣

t�t0

,

(11)

so that the right side integration converges and j is bracket
function of ϖ.

Definition 7 (see [28]).%e fuzzy Laplace transform (LT) for
continuous and fuzzy Reimann-integrable function [ on
[0,∞) is defined as follows:

L[[(ς)] � 􏽚
∞

0
[(ς) · e

− sςdς. (12)

Using parametric form of [(ς), we have for 0≤ ϱ ≤ 1:

􏽚
∞

0
[(ς, ϱ) · e

− sςdς � 􏽚
∞

0
[(ς, ϱ) · e

− sςdς, 􏽚
∞

0
[(ς, ϱ) · e

− sςdς􏼔 􏼕.

(13)

Hence,

L[[(ς, ϱ)] � L[(ς, ϱ), L[(ς, ϱ)􏽨 􏽩. (14)

Theorem 1 (see [21]). 4e LTof Caputo fractional derivative
of [(t) is presented as follows:

L D
ϖ

[(t)􏼐 􏼑􏽨 􏽩 � s
ϖL[[(t)] − s

ϖ− 1
[[(0)]. (15)

3. Feasibility and Stability Analysis

In this part, the feasibility and stability of the points of
equilibrium will be discussed. To discuss the model’s
boundedness and feasibility, we have the following the-
orem.

Theorem 2. 4e solution of the proposed model is bound to
the feasible region given by

T � (􏽥P, 􏽥Q) ∈ R2
+: 0≤G(t)≤

a − c

b − d
􏼚 􏼛. (16)

Proof. By adding both equation of (2) and considering
G(t) � 􏽥P(t) + 􏽥Q(t), one gets

dG(t)

dt
� a􏽥P(t) − c 􏽥Q(t) − b􏽥P(t) 􏽥Q(t) + d􏽥P(t) 􏽥Q(t)

≤ a − c − (b − d)(􏽥P + 􏽥Q)

≤ a − c − (b − d(G(t))),

dG(t)

dt
+(b − d)G(t)≤ a − c.

(17)

On using simple integration, we have

G(t)≤
a − c

b − d
+ C exp(− (b − d)t). (18)

%is implies that t⟶∞, G(t)≤ (a − c/b − d). Conse-
quently, the result is obtained. □

For stability, the equilibrium points for (3) must be
found as

D
ϖ
t (􏽥P � 0(t)) � 0,

D
ϖ
t ( 􏽥Q � 0(t)) � 0.

(19)

We have two points of equilibrium which are as follows:
E0 � ((c/d), 0) if 􏽥Q � 0 and E0 � (0, (a/b)) if 􏽥P � 0.

Theorem 3. 4e reproduction number for (1) is R0 � − 1.

Proof. To find the reproduction number, consider 2nd

equation of (1) as X � I,

D
ϖ
t (X) � D

ϖ
t (I) � − c 􏽥Q(t) + d􏽥P(t) 􏽥Q(t); c, d> 0,

D
ϖ
t (X) � F − V.

(20)

such that F � d􏽥P(t) 􏽥Q(t), V � − c􏽥Q(t) where V and F rep-
resent the linear and nonlinear terms, respectively. %e next
step is to determine the next generation matrix FV− 1,
where

Mathematical Problems in Engineering 3



F �
z

zy
(d􏽥P(t) 􏽥Q(t))􏼢 􏼣 � [d􏽥P(t)],

V �
z

z 􏽥Q
(− c􏽥Q(t))􏼢 􏼣 � [− c],

V
− 1

�
− 1
c

􏼔 􏼕,

(21)

then

FV
− 1

�
d􏽥P(t))

− c
􏼢 􏼣. (22)

%e leading eigen value is equal to R0 at free equilibrium
point E0 � (c/d, 0) in FV− 1, which can be computed as

ρ FV
− 1

􏼐 􏼑
E0

�
dc

− dc
􏼢 􏼣. (23)

Similarly, we can compute the reproduction number for
1st equation of (1). Hence, R0 � − 1. □ □

Theorem 4. If R0 < 1, then free equilibrium points of (1) are
locally asymptotically stable.

Proof. Proof is obvious. □

4. Existence Theory

Here, we will establish the existence theory for the model by
using fixed point theory. Let us take into consideration the
right hand sides of the given system as follows:

Ψ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ)) � a􏽥P(t, ϱ) − 􏽥P(t, ϱ)􏽥Q(t, ϱ),

Ξ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ)) � − c 􏽥Q(t, ϱ) + d􏽥P(t, ϱ)􏽥Q(t, ϱ).
(24)

%us, the given system (3) can be written as follows: for
0<ϖ≤ 1 and 0≤ ϱ≤ 1,

D
ϖ
t [􏽥P(t, ϱ)] � Ψ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ)),

D
ϖ
t [ 􏽥Q(t, ϱ)] � Ξ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ)),

⎧⎨

⎩ (25)

where
􏽥P(0, ϱ) � 􏽥x0,

􏽥Q(0, ϱ) � 􏽥y0.
(26)

On using the corresponding integral Ir, we have

􏽥P(t, ϱ) � 􏽥P(0, ϱ) +
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Ψ(I, 􏽥P(I, ϱ), 􏽥Q(I, ϱ))dI,

􏽥Q(t, ϱ) � 􏽥Q(0, ϱ) +
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Ξ(I, 􏽥P(I, ϱ), 􏽥Q(I, ϱ))dI.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(27)

We denote Banach space as B � B1 × B2 under the fuzzy
norm as follows:

‖(􏽥P(t, ϱ), 􏽥Q(t, ϱ))‖ � max
t∈[0,T]

[|􏽥P(t, ϱ) + 􏽥Q(t, ϱ)|]. (28)

%en, we reach

􏽥ℵ(t, ϱ) � 􏽥ℵ0(t, ϱ) +
1
Γϖ

􏽚
t

0
(t − I)

ϖ− 1Θ(I, 􏽥S(I, ϱ))dI,

(29)

where 􏽥S(t, ϱ) �
􏽥P(t, ϱ)
􏽥Q(t, ϱ)

􏽥S0(t, ϱ) �
􏽥P(0, ϱ)
􏽥Q(0, ϱ)􏼨􏼨 and

Θ(t, 􏽥S(t, ϱ)) �
Ψ(s, 􏽥P(s, ϱ), 􏽥Q(s, ϱ))
Ξ(s, 􏽥P(s, ϱ), 􏽥Q(s, ϱ))􏼨 .

We take some assumption on nonlinear function
Θ: B⟶ B as follows.

C-1 . For each 􏽥S1(t, ϱ), 􏽥S2(t, ϱ) ∈ B∃KS > 0 such that

Θ t, 􏽥S1(t, ϱ) − Θ t, 􏽥S2(t, ϱ)􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤KS
􏽥S1(t, ϱ) − 􏽥S2(t, ϱ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(30)

C-2 . %ere exist constants MS > 0 and NS > 0 such that

|Θ(t, 􏽥S(t, ϱ))|≤MS|􏽥S(t, ϱ)| + NS. (31)

Theorem 5. Let assumption C-2 holds, then model (25)
possesses at least one solution.

Proof. Let us consider a closed and convex fuzzy set
A � 􏽥S(t, ϱ) ∈ B: ‖􏽥S(t, ϱ)‖≤ r􏽮 􏽯 ⊂ B. Let us define a map-
ping ψ: A⟶ A such that

ψ(􏽥S(t, ϱ)) � 􏽥S0(t, ϱ) +
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Θ(I, 􏽥S(I, ϱ))dI.

(32)

For any 􏽥S(t, ϱ) ∈ U, we have

‖ψ(􏽥S(t, ϱ))‖ � max
t∈[0,T]

􏽥S0(t, ϱ) +
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Θ(I, 􏽥S(I, ϱ))dI
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽥S0(t, ϱ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1
|Θ(I, 􏽥S(I, ϱ))|dI

≤ 􏽥S0(t, ϱ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1
MS|

􏽥S(t, ϱ)| + NS􏽨 􏽩dI

≤ 􏽥S0(t, ϱ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
ϱϖ

Γ(ϖ + 1)
MS|􏽥S(t, ϱ)| + NS􏽨 􏽩.

(33)

%e last relation shows that ‖ψ(􏽥S(t, ϱ))‖≤ r. From the
last inequality, we have ψ(U) ⊂ U. It follows that ψ is
bounded operator. Next, the next step is to show that the
operator ψ is completely continuous. For this let
ϕ1, ϕ2 ∈ [0, T] such that ϕ1 <ϕ2, then
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ψ(􏽥S(t, ϱ)) ϕ2( 􏼁 − ψ(􏽥S(t, ϱ)) ϕ1( 􏼁
����

���� � |
1
Γ(ϖ)

􏽚
ϕ2

0
ϕ2 − I( 􏼁

ϖ− 1Θ(I, 􏽥S(I, ϱ))dI

−
1
Γ(ϖ)

􏽚
ϕ1

0
ϕ1 − I( 􏼁

ϖ− 1Θ(I, 􏽥S(I, ϱ))dI|≤ ϕϖ2 − ϕϖ1􏽨 􏽩
MS| 􏽦S, ϱ(t, ϱ)| + NS􏽨 􏽩

Γ(ϖ + 1)
.

(34)

%e last inequality implies that

ψ(􏽥S(t, ϱ)) ϕ2( 􏼁 − ψ(􏽥S(t, ϱ)) ϕ1( 􏼁
����

����⟶ 0 asϕ2⟶ ϕ1.
(35)□

Theorem 6. Suppose that C-1 holds, then the considered
model (25) possesses the unique solution if ϱϖKS < Γ(ϖ + 1).

Proof. Let 􏽥S1(t, ϱ), 􏽥S2(t, ϱ) ∈ B, then

ψ 􏽥S1(t, ϱ)􏼐 􏼑 − ψ 􏽥S2(t, ϱ)􏼐 􏼑
�����

����� � max
t∈[0,T]

|
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Θ I, 􏽥S1(I, ϱ)􏼐 􏼑dI

−
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Θ I, 􏽥S2(I, ϱ)􏼐 􏼑dI|≤
ϱϖ

Γ(ϖ + 1)
KS

􏽥S1(t, ϱ) − 􏽥S2(t, ϱ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(36)

%is implies that ‖ψ( 􏽥S1(t, ϱ)) − ψ( 􏽥S2 (t, ϱ))‖≤ (ϱϖ/Γ
(ϖ + 1))KS| 􏽧S1(t, ϱ) − 􏽧S2(t, ϱ)|. Hence, ψ fulfills the con-
traction condition. %us, by “Banach fixed point theorem”
system (25) possesses the unique solution. □

5. Ulam–Hyres Stability

We take a small alteration ϕ ∈ C[0, T] such that ϕ(0) � 0
depends only on the solution ψ( 􏽧S1(t, ϱ)) as follows:

(i) |ϕ(t)|≤ ], for ]> 0
(ii) Dϖt ψ(􏽥S(t, ϱ)) � Ψ(t,ψ(􏽥S(t, ϱ)) + ϕ(t))

Lemma 1. 4e solution of the perturbed problem

D
ϖ
t ψ(􏽥S(t, ϱ)) � Ψ(t,ψ(􏽥S(t, ϱ)) + ϕ(t)),

ψ(􏽥S(0, ϱ)) � ψ 􏽥S(0,ϱ)􏼐 􏼑,
(37)

fulfills the relation which is given as follows:

(􏽥S(t, ϱ)) − (􏽥S(0)(t, ϱ)) +
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Ψ(I, (􏽥S(t,I)))dI􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
T
ϖ

Γ(ϖ + 1)
] � ΩT,ϖ].

(38)

Proof. %e proof is straightaway. □

Theorem 7. Assuming (C − 2) along with (38), the solution
of equation (37) is UH-stable. 4us, the numerical results of
the model being considered are UH-stable if
Δ � (Tθ/Γ(ϖ + 1))KΨ < 1.

Proof. Let 􏽥S(t, ϱ) ∈ C be the solution of equation (37) and
􏽥S(t, ϱ) ∈ C be the unique solution of equation (3), then

|􏽥S(t.ϱ) − 􏽥S(t, ϱ)| � 􏽥S(t, ϱ) − 􏽥S0(t, ϱ) +
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Ψ(I, 􏽥S(I, ϱ)dI􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽥S(t, ϱ) − 􏽥S0(t, ϱ) +
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Ψ(I, 􏽥S(I, ϱ))dI􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Ψ(I, 􏽥S(I))dI −
1
Γ(ϖ)

􏽚
t

0
(t − I)

ϖ− 1Ψ(I, 􏽥S(I, ϱ))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ΩT,ϖ] + Δ‖􏽥S(t, ϱ) − 􏽥S(t, ϱ)‖.

(39)

From (39), we get

‖􏽥S(t, ϱ) − 􏽥S(t, ϱ)‖≤
ΩT,ϖ

1 − Δ
]. (40)

Hence, we infer from (39) that the solution of (38) is UH-
stable. Consequently, the model (3) is UH-stable.

□
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6. Derivation of General Procedure for Solution

Here, we derive an algorithm for the solution of the pro-
posed model by fuzzy LADM. Consider system (3) with
initial conditions as follows:

D
ϖ
t [􏽥P(t, ϱ)] � Ψ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ)),

D
ϖ
t [ 􏽥Q(t, ϱ)] � Ξ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ)),

⎧⎨

⎩ (41)

where
􏽥P(0, ϱ) � 􏽥x0 � P(0, ϱ), P(0, ϱ)( 􏼁,

􏽥Q(0, ϱ) � 􏽧y0 � Q(0, ϱ), Q(0, ϱ)􏼐 􏼑.
(42)

%en, we reach

L D
ϖ
t [􏽥P(t, ϱ)]􏽨 􏽩 � L[Ψ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ))],

L D
ϖ
t [ 􏽥Q(t, ϱ)]􏽨 􏽩 � L[Ξ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ))],

s
ϖL[􏽥P(t, ϱ)] � s

ϖ− 1􏽥P(0, ϱ) + L[Ψ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ))],

s
ϖL[􏽥Q(t, ϱ)] � s

ϖ− 1 􏽥Q(0, ϱ) + L[Ξ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ))],

L[􏽥P(t, ϱ)] �
1
s

􏽥P(0, ϱ) +
1
s
ϖ L[Ψ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ))],

L[ 􏽥Q(t, ϱ)] �
1
s

􏽥Q(0, ϱ) +
1
s
ϖ L[Ξ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ))].

(43)

%e infinite series solution is presented as follows:

􏽥P(t, ϱ) � 􏽘
∞

k�0

􏽥Pk(t, ϱ),

􏽥Q(t, ϱ) � 􏽘

∞

k�0

􏽥Qk(t, ϱ),

􏽥P(t, ϱ) 􏽥Q(t, ϱ) � 􏽘

∞

k�0

􏽥Pk(t, ϱ) 􏽘

∞

k�0

􏽥Qk(t, ϱ).

(44)

%us, we reach

L[􏽥P(t, ϱ)] �
1
s

􏽥P(0, ϱ) +
1
s
ϖ L Ψ t, 􏽘

∞

k�0

􏽥Pk(t, ϱ), 􏽘
∞

k�0

􏽥Qk(t, ϱ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

L[ 􏽥Q(t, ϱ)] �
1
s

􏽥Q(0, ϱ) +
1
s
ϖ L Ξ t, 􏽘

∞

k�0

􏽥Pk(t, ϱ), 􏽘

∞

k�0

􏽥Qk(t, ϱ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(45)

Comparison of terms on both sides gives

L P0(t, ϱ)􏼂 􏼃 �
1
s

P(0, ϱ),

L P0(t, ϱ)􏼂 􏼃 �
1
s

P(0, ϱ),

L Q0(t, ϱ)􏽨 􏽩 �
1
s

Q(0, ϱ),

L Q0(t, ϱ)􏽨 􏽩 �
1
s

Q(0, ϱ),

L P1(t, ϱ)􏼂 􏼃 �
1
s
ϖ L Ψ t, P0(t, ϱ), Q0(t, ϱ)􏼐 􏼑􏽨 􏽩,

L P1(t, ϱ)􏼂 􏼃 �
1
s
ϖ L Ψ t, P0(t, ϱ), Q0(t, ϱ)( 􏼁􏽨 􏽩,

L Q1(t, ϱ)􏽨 􏽩 �
1
s
ϖ L Ξ t, P0(t, ϱ), Q0(t, ϱ)􏼐 􏼑􏽨 􏽩,

L Q1(t, ϱ)􏽨 􏽩 �
1
s
ϖ L Ξ t, P0(t, ϱ), Q0(t, ϱ)( 􏼁􏽨 􏽩,

⋮

L Pn+1(t, ϱ)􏼂 􏼃 �
1
s
ϖ L Ψ t, Pn(t, ϱ), Q

n
(t, ϱ)􏼐 􏼑􏽨 􏽩,

L Pn+1(t, ϱ)􏼂 􏼃 �
1
s
ϖ L Ψ t, Pn(t, ϱ), Qn(t, ϱ)( 􏼁􏽨 􏽩,

L Q
n+1(t, ϱ)􏽨 􏽩 �

1
s
ϖ L Ξ t, Pn(t, ϱ), Q

n
(t, ϱ)􏼐 􏼑􏽨 􏽩,

L Qn+1(t, ϱ)􏽨 􏽩 �
1
s
ϖ L Ξ t, Pn(t, ϱ), Qn(t, ϱ)( 􏼁􏽨 􏽩.

(46)
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Taking inverse Laplace transform, we get

P0(t, ϱ) � P(0, ϱ),

P0(t, ϱ) � P(0, ϱ),

Q0(t, ϱ) � Q(0, ϱ),

Q0(t, ϱ) � Q(0, ϱ),

P1(t, ϱ) � L− 1 1
s
ϖ L Ψ t, P0(t, ϱ), Q0(t, ϱ)􏼐 􏼑􏽨 􏽩􏼔 􏼕,

P1(t, ϱ) � L− 1 1
s
ϖ L Ψ t, P0(t, ϱ), Q0(t, ϱ)( 􏼁􏽨 􏽩􏼔 􏼕,

Q1(t, ϱ) � L− 1 1
s
ϖ L Ξ t, P0(t, ϱ), Q0(t, ϱ)􏼐 􏼑􏽨 􏽩􏼔 􏼕,

Q1(t, ϱ) � L− 1 1
s
ϖ L Ξ t, P0(t, ϱ), Q0(t, ϱ)( 􏼁􏽨 􏽩􏼔 􏼕,

⋮

Pn+1(t, ϱ) � L− 1 1
s
ϖ L Ψ t, Pn(t, ϱ), Q

n
(t, ϱ)􏼐 􏼑􏽨 􏽩􏼔 􏼕,

Pn+1(t, ϱ) � L− 1 1
s
ϖ L Ψ t, Pn(t, ϱ), Qn(t, ϱ)( 􏼁􏽨 􏽩􏼔 􏼕,

Q
n+1(t, ϱ) � L− 1 1

s
ϖ L Ξ t, Pn(t, ϱ), Q

n
(t, ϱ)􏼐 􏼑􏽨 􏽩􏼔 􏼕,

Qn+1(t, ϱ) � L− 1 1
s
ϖ L Ξ t, Pn(t, ϱ), Qn(t, ϱ)( 􏼁􏽨 􏽩􏼔 􏼕.

(47)

%erefore, we get

P(t, ϱ) � P0(t, ϱ) + x1(t, ϱ) + · · · ,

P(t, ϱ) � P0(t, ϱ) + P1(t, ϱ) + · · · ,

Q(t, ϱ) � Q0(t, ϱ) + Q1(t, ϱ) + · · · ,

Q(t, ϱ) � Q0(t, ϱ) + Q1(t, ϱ) + · · · .

(48)

7. Results and Simulations

In this part, we illustrate the proposed method through
simulations; consider the system above under some specific
values of parameters as follows:

D
ϖ
t [􏽥P(t, ϱ)] � a􏽥P(t, ϱ) − b􏽥P(t, ϱ)􏽥Q(t, ϱ),

D
ϖ
t [􏽥Q(t, ϱ)] � Ξ(t, 􏽥P(t, ϱ), 􏽥Q(t, ϱ)),

⎧⎨

⎩ (49)

where
􏽥P(0, ϱ) � (ϱ − 1, 1 − ϱ),
􏽥Q(0, ϱ) � (ϱ − 1, 1 − ϱ).

(50)

After applying the proposed method, we get

P0(t, ϱ) � P(0, ϱ) � ϱ − 1,

P0(t, ϱ) � P(0, ϱ) � 1 − ϱ,

Q0(t, ϱ) � Q(0, ϱ) � ϱ − 1,

Q0(t, ϱ) � Q(0, ϱ) � 1 − ϱ.

(51)

Similarly, the next terms are computed as

P1(t, ϱ) � L− 1 1
s
ϖ L Ψ t, P0(t, ϱ), Q0(t, ϱ)􏼐 􏼑􏽨 􏽩 � L− 1 1

s
ϖ L aP0(t, ϱ) − bP0(t, ϱ)Q0(t, ϱ)􏽨 􏽩􏼔􏼔

� L− 1 1
s
ϖ L a(ϱ − 1) − b(ϱ − 1)

2
􏽨 􏽩 � a(ϱ − 1) − b(ϱ − 1)

2
􏽨 􏽩

t
ϖ

Γ(ϖ + 1)
.􏼢 (52)

We can obtain other terms of the series, i.e.,
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Figure 2: Graphical presentation of approximate fuzzy solution for specie Q̃(t) up to three terms at various uncertainty and fractional
orders for problem (49). Here, the lower and upper cut of y represents the lower and upper solution of Q̃(t).
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Figure 1: Graphical presentation of approximate fuzzy solution for specie P̃(t) up to three terms at various uncertainty and fractional orders
for problem (49). Here, the lower and upper cut of x represents the lower and upper solution of P̃(t).
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P1(t, ϱ) � a(1 − ϱ) − b(1 − ϱ)2[ ]
tϖ

Γ(ϖ + 1)
,

Q1(t, ϱ) � d(ϱ − 1)2 − c(ϱ − 1)[ ]
tϖ

Γ(ϖ + 1)
,

Q1(t, ϱ) � d(1 − ϱ)2 − c(1 − ϱ)[ ]
tϖ

Γ(ϖ + 1)
,

P2(t, ϱ) � av1
t2ϖ

Γ(2ϖ + 1)
− bv1v3
Γ(2ϖ + 1)
Γ2(ϖ + 1)

t3ϖ

Γ(3ϖ + 1)
,

P2(t, ϱ) � av2
t2ϖ

Γ(2ϖ + 1)
− bv2v4
Γ(2ϖ + 1)
Γ2(ϖ + 1)

t3ϖ

Γ(3ϖ + 1)
,

Q2(t, ϱ) � − cv3
t2ϖ

Γ(2ϖ + 1)
+ dv1v3
Γ(2ϖ + 1)
Γ2(ϖ + 1)

t3ϖ

Γ(3ϖ + 1)
,

Q2(t, ϱ) � − cv4
t2ϖ

Γ(2ϖ + 1)
+ dv2v4
Γ(2ϖ + 1)
Γ2(ϖ + 1)

t3ϖ

Γ(3ϖ + 1)
,

(53)

and so on. �e unknown terms in the above equations are
given as

v1 � a(ϱ − 1) − b(ϱ − 1)2,

v2 � a(1 − ϱ) − b(1 − ϱ)
2,

v3 � d(ϱ − 1)2 − c(ϱ − 1),

v4 � d(1 − ϱ)
2 − c(1 − ϱ).

(54)

Now, we simulate our obtained results to investigate the
dynamics of the proposed model for the uncertain initial
conditions. In Figures 1 and 2, we plot the fuzzy approximate
results up to three terms for the given examples under two
di�erent uncertainty values as follows:

We displayed the approximate fuzzy solutions for the
considered model for particular fuzzy initial conditions and
at the given uncertainty against di�erent fractional orders in
Figures 1 and 2. �e fuzzy fractional derivative produced
global dynamics of the interaction of the two species under
fuzzy concept that under taking some values for uncertainty
ϱ � 0.5, 0.9. Increasing the uncertainty, the dynamics of
interaction is also a�ected as shown in Figures 1 and 2. Such
situation is natural andmay be observed in daily life. Next, in
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Figure 4: 3D presentation of approximate fuzzy solution for specie Q̃(t) up to three terms at various uncertainty and fractional orders for
problem (49). Here, the lower and upper cut of y represents the lower and upper solution of Q̃(t).
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Figure 3: 3D presentation of approximate fuzzy solution for specie P̃(t) up to three terms at various uncertainty and fractional orders for
problem (49). Here, the lower and upper cut of x represents the lower and upper solution of P̃(t).

Mathematical Problems in Engineering 9



Figure 3 and Figure 4, we attempt on 3D plots of fuzzy
solutions for first three terms as follows: by surfaces plots
given in Figures 3 and 4, we have graphed the solutions for
different fractional order over the interval [0, 1] of uncer-
tainty for the given problem 15.

8. Conclusion

In this research, we have used a fuzzy fractional derivative in
Caputo sense to extend the fractional predator-prey model.
We have discussed the equilibrium points and their stability.
Using metric fixed point theory, we were able to derive the
existence and uniqueness results for the nonlinear fuzzy
fractional predator-prey model. We have shown that the
proposed model is HU stable through nonlinear functional
analysis. Besides, we have developed a general algorithm for
obtaining an approximate solution to the proposed model
using an efficient method (fuzzy LADM). If we replace [ϱ −

1, 1 − ϱ] � 1 in the obtained numerical results, then we
recover the results obtained in the fractional-order model.
%us, our proposed model is the generalization of the
fractional model of the predator-prey system. Finally, we
simulated numerical results for different fractional order and
0.5 and 0.9 uncertainty values via MATLAB. From figures,
we have found that fractional calculus can be combined with
the fuzzy theory and thus glorify the global dynamics of
species interaction.
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