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The prefabricated construction industry has entered a new stage of development with the support of national policies. In order to
solve the optimal scheduling problem of transportation vehicles in urban multi-prefabricated component factories, in this study,
the aggregation optimization algorithm is introduced, and a new hybrid optimization algorithm is designed and improved, that is,
the improved hybrid difference firefly algorithm (IHDFA). On the basis of fully considering the transportation cost and road
traffic impedance, the prefabricated component factory constructs a linear programming model with the shortest transportation
path and the lowest comprehensive cost as the main goal to reasonably plan the driving arrangement of transportation vehicles.
Finally, the IHDFA algorithm is applied to a specific example and compared with the genetic algorithm, firefly algorithm,
differential evolution algorithm, particle swarm algorithm, and hybrid differential firefly algorithm. The results show that the
IHDFA proposed in this study effectively reduces the comprehensive transportation cost of prefabricated components, which

verifies the practicability and effectiveness of the optimization model and algorithm.

1. Introduction

With further development in China’s reform and opening-up
policy, rapid urbanization, sustainable development of the
construction industry, and improved living environment with
enhanced life standard have become increasingly prominent
[1]. The construction industry is one of the most important
industries in China and plays a major role in promoting the
steady growth of the national economy [2]. However, con-
ventional cast-in-place or masonry structures are still the
main modes of urban housing construction in China, which
have various disadvantages including high energy con-
sumption, increased pollution, low production efficiency,
several safety concerns, long construction period, and inad-
equate use of technology [3]. The existing construction mode
has been unable to meet the requirements of modern ur-
banization development, green energy conservation, and
environmental protection proposed by the government [1].
Prefabricated buildings have benefits of low energy

consumption, environmental protection, convenience, and a
high degree of industrialization, which is the inevitable trend
in the development of the global construction industry; this
has developed to a relatively mature stage in Europe, the
United States, and other developed countries [4]. However,
the development of prefabricated buildings in China is rel-
atively slow, and there is a lack of appropriate industry
standards and building systems suitable for China’s local
conditions. A significant gap still exists in building indus-
trialization [5, 6]. Recently, the Chinese government has
started to issue and formulate a series of policies, such as
guidelines for the development of prefabricated buildings, the
13th five-year plan of action for prefabricated buildings, and
building evaluation standards. These policies are aimed at
guiding and implementing the assembly building construc-
tion mode for upgrading the construction industry [3]. In
2016, the State Council proposed that in the next ten years,
approximately 30% of new construction should be pre-
fabricated buildings in China. In 2020, the newly started
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assembly buildings in China were 630 million square meters,
increasing 50% over 2019, accounting for 20.5% of the newly
built building area. It is anticipated that by 2025, assembly
building will account for more than 50% of newly constructed
buildings [1].

Prefabrication is a construction process in which pre-
fabricated concrete components are produced in factories
and then transported to construction sites through large
vehicles. The prefabricated components are erected in place
by assembly technology for connection point construction
[7]. The transportation of prefabricated building compo-
nents is mainly the transportation of bulk goods. The
transportation of components adopts the self-supporting
distribution mode of prefabrication factory, in which the
transportation cost is approximately 50-60% of the logistics
cost, and the high transportation cost is one of the main
reasons restricting the development of prefabricated
buildings [8, 9]. At present, the scheduling scheme of
prefabricated components mainly depends on the experi-
ence of managers and lacks a scientific and efficient man-
agement model [10]. When the number of prefabricated
construction sites is large and the demand for prefabricated
components is substantially high, it is difficult to ensure the
timely arrival of prefabricated components and effective
control of transportation costs by relying on personal ex-
perience. To effectively reduce the inventory and logistics
costs, improve the supply chain environment of pre-
fabricated components, and achieve environmental benefits,
it is necessary to establish several prefabricated component
factories in cities, scientifically and reasonably plan the
component transportation service scope according to the
transportation distance, and then use artificial intelligence
algorithms for a scheduling scheme as an effective method of
highly unifying social and economic benefits [11, 12].

Prefabricated components will produce a large amount
of transportation energy consumption in the process of
transportation services. According to the annual report
released by the European Environment Agency, 72% of the
energy consumption of the global transportation sector
comes from road vehicles [13, 14]. Therefore, ways to reduce
transportation energy consumption in the process of
component transportation are a significantly important role
in the development of “green buildings” [15, 16]. The pre-
fabricated components for the prefabricated buildings must
be produced in strict accordance with the production plan
[17]. Otherwise, it will lead to significant delays in the
construction schedule and huge economic losses. In addi-
tion, the construction sites have very strict requirements for
the delivery time of components; therefore, it is necessary to
impose monetary penalties on the delivery vehicles in ad-
vance and delayed arrival, to urge the prefabricated com-
ponent factory for delivering on time, and ensure that the
prefabricated buildings are constructed as per schedule
according to the production plan [18].

The rest of the article is organized as follows: first, a
detailed review of the vehicle routing problem with a time
window (VRPTW) is presented in Section 2. Then, we in-
troduce the problems, symbols, and variables to be con-
sidered in the experiment in Section 3 and provide the
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necessary mathematical expressions. The heuristic
method and experimental results are discussed in Sections 4
and 5, respectively. Finally, conclusions are provided in
Section 6.

2. Literature Review

The vehicle routing problem (VRP) is a classical combi-
natorial optimization problem widely employed in several
fields [19, 20]. In 1959, American scholars Dantzing and
others described the VPR as having multiple transport ve-
hicles, and several loading, and unloading points. Through
proper planning of the transport vehicles, the problem can
be described as passing through the loading and unloading
points in a certain order on the premise of meeting a series of
constraints (load, demand, transportation time, etc.) and
achieve certain goals, such as the minimum or maximum
distance, time, and cost [15, 21]. In an actual transportation
process, the distribution of several goods needs to have
specific time requirements to complete the transportation
service between the earliest and latest time specified by
customers, thus forming a time window [22, 23]. Therefore,
the transportation vehicle routing problem becomes a
VRPTW [24, 25].

Considering the vehicle optimal scheduling problem with
time windows in urban multidistribution centers, the swarm
intelligence optimization algorithm has certain benefits in
solving such problems and provides new ideas and methods
for optimal scheduling problems. Recently, scholars have
made various explorations [26, 27]. Several researchers
designed and improved an intelligent water drop algorithm
[28]. The application example shows that the improved al-
gorithm can effectively reduce the cost of such green vehicle
problems, thus reducing the carbon emissions of vehicles in
the transportation process and achieving the purpose of re-
ducing the environmental pollution. Chang et al. proposed a
discrete differential evolution algorithm to fully consider
resource constraints and designed a local search method
based on exchange and a continuous work penalty mecha-
nism to obtain the globally optimal solution [29]. Ren et al.
proposed an adaptive genetic algorithm, which uses a user-
defined crossover operator to address the mathematical
model. They demonstrated the influence of road character-
istics and distance on the optimal allocation path through
simulation [12]. Rosi¢ et al. proposed an adaptive firefly
differential evolution (AHFADE) algorithm based on the
firefly differential evolution algorithm to solve the maximum-
likelihood estimation problem effectively. The simulation
results were compared with the existing algorithms, and it was
observed that the proposed AHFADE algorithm had strong
robustness in a high noise environment [30]. Tung et al.
proposed a heuristic program composed of construction and
advanced phases to solve vehicle routing and scheduling
problems. The experimental results showed that the proposed
heuristic algorithm has good performance in terms of solu-
tion quality and computing time [22]. Mohamed et al. pro-
posed two new mutation strategies based on differential
evolution algorithm, which enhanced the exploration and
convergence ability of the algorithm [31]. Cheng et al.
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proposed a new variation of DE to reduce the variation
strategy of randomness in search direction and improve the
search capability of the algorithm [32].

In summary, the existing research mainly focuses on
algorithm improvement and other aspects to carry out related
research. It has a deep theoretical foundation, but the fol-
lowing deficiencies still exist: (1) owing to the particularity and
complexity of prefabricated components in the transportation
process, existing research focuses on the “one-to-many”
network transportation mode in which one prefabricated
component factory serves multiple construction sites; little
attention has been paid to the distribution relationship be-
tween multiple factories and construction sites; (2) only the
cost of waiting for unloading and penalty cost of not meeting
the time window requirements are considered. The increased
cost due to urban traffic congestion and environmental,
climate, and human factors is ignored; (3) currently, several
researchers are working on the vehicle routing problem with
soft and hard time window constraints, energy consumption
cost, traffic jam, and other factors; however, there are rela-
tively few investigations on comprehensive optimization
problems that combine the two for multiobjective research.

Considering the shortcomings, this study aims at in-
vestigating the actual supply-demand relationship between
the construction sites and prefabricated component facto-
ries. In this study, the urban multi-prefabricated component
factory was considered the research object. The research
contents include are as follows:

(1) To achieve the goal of reducing energy consumption
and total cost as goal, through qualitative and
quantitative analysis considering the soft time
window, energy consumption, and urban road traffic
impedance, this study established a model of vehicle
transportation cost, energy consumption, and total
cost. In addition, a multiobjective mathematical
model of vehicle transportation scheduling scheme
based on vehicle transportation cost, waiting time
cost, and delay penalty cost was established.

(2) The multiobjective aggregation optimization simpli-
fied the complex problem, and the traditional DE and
FA are effectively combined. On this basis, an im-
proved hybrid difference firefly algorithm (IHDFA)
was proposed to solve the objective function.

(3) The results are compared with other heuristic al-
gorithms to provide the lowest cost transportation
vehicle scheduling scheme for the prefabricated
component factories. Through an example applica-
tion, the practicability and superiority of the IHDFA
are verified, and an effective solution and scientific
basis are provided for the optimal scheduling of
prefabricated component vehicles for the relation-
ship of urban complex network.

Compared with the existing research, this study mainly
has the following two innovations and contributions. (1)
Content Innovation. This study focuses on the transportation
optimization model of multi-prefabricated component
factories in the city; secondly, in the analysis process,

according to the road traffic flow and other data, the road
resistance function is added, which can simulate the real
situation of the transportation process of prefabricated
components; finally, an intelligent optimization algorithm is
designed and improved to solve the problem. (2) Method
Innovation. For the problem that the standard firefly algo-
rithm is easy to fall into local optimization, on this basis, the
difference mechanism is introduced to enhance and
maintain the diversity of the population; the following and
adjacent search mechanism is introduced in the solution
process to effectively ensure the local optimization ability of
the algorithm; finally, the spiral search mechanism is in-
troduced to better balance the global detection ability and
local search ability of the algorithm.

The structure of this article is as follows: Section 3 de-
scribes the transportation of prefabricated components,
determines the research object, and establishes the objective
function on the basis of the minimum comprehensive cost;
Section 4 describes and designs the experimental method of
this research; in Section 5, the case in the actual project is
simulated, and the experimental results are analyzed and
discussed; Section 6 draws the main research conclusions.

3. Problem Description and Assumptions

3.1. Problem Description. Several prefabricated component
factories are built around the city to satisfy the increasing
supply-demand of prefabricated components on construc-
tion sites. The specific problems are described as follows:

(i) The number of prefabricated component factories in
the cityisa={1,2, 3, .. ., A}, which is responsible for
providing prefabricated component production and
transportation services for the construction site j = {1,
2,3, ..., N}, and the distance and demand are known.

(ii) The number of vehicles available for deployment in

the prefabricated component factory is K; (j=1, 2, 3,

... N). The demand for components in each

transportation site is G; (j=1, 2, 3, ..., N). The

required weight of ingredients for each construction

site is greater than the maximum carrying capacity

of each vehicle, and the time of delivery needed

window is (ET;, LT;). If the arrival time of transport

vehicles is not within the time window, they will be
subject to certain economic penalties.

(iii) According to the order requirements of different
construction sites, the prefabricated component
factory assigns vehicles to transport prefabricated
components from the factory to the designated lo-
cation. The prefabricated component factory needs to
make careful consideration and a reasonable decision
on the transportation vehicles, transportation se-
quence, and transportation scheme.

Under the constraints of maximum load capacity and
on-site delivery demand, the inclusive transportation cost
(including transportation, waiting for unloading, and pen-
alty costs) of prefabricated components in all prefabrication
plants is minimized.



In the research of road impedance function, the road
resistance function model proposed by the Federal Highway
Administration (FHWA)—Bureau of Public Roads (BPR)—
is a conventional method [33]. In the transportation and
distribution of prefabricated components, the road im-
pedance function is expressed as follows:

t=t0[1+a-(%)], (1)

where t is the travel time of the road segment (min); ¢, is the
travel time of the road section when the traffic volume is zero
(min); m is the amount of motor vehicle traffic in the driving
section (vehicle/h); n is the actual capacity of motor vehicles
on the road section (vehicles/h); and « and f are undeter-
mined parameters, considered 0.15 and 4, respectively [33].

In the transportation of prefabricated components, the
conventional time calculation method (t=d/s) does not
apply to the traffic conditions for some large cities where
vehicles drive on urban trunk roads, and the streets are
equipped with isolation facilities for motor and nonmotor
vehicles. Therefore, the impedance function ignores the
interference of nonmotor to motor vehicles, which is con-
sistent with the actual situation of urban road mass
transportation.

3.2. Problem Assumptions. To facilitate the research problem
and the establishment and solution of the model, the fol-
lowing assumptions were considered:

(1) The prefabricated component factory has a certain
number of transport vehicles of uniform specifica-
tions and models, with carrying capacity Q. The
number of vehicles available for deployment can
meet the transportation requirements of all con-
struction site.

(2) The prefabricated components are all manufactured
in advance, and all transport vehicles can be loaded
directly.

(3) The prefabricated components are distributed
according to the selected route, and there is no loss of
prefabricated components during transportation.

(4) All construction sites require different types and
quantities of components G;.

(5) The impact of traffic impedance on delivery time
during component transportation is considered
while ignoring unforeseen factors such as weather,
environment, and manufacturing factors.

(6) To ensure the continuity of transportation vehi-
cles, the vehicles immediately return to the original
road after unloading and continue the next round
of transportation. The parameters involved in the
proposed model are described in Table 1.

3.3. Parameter Derivation. According to the transportation
process of prefabricated components, a brief description of
the transportation process of prefabricated components on a
construction site is given. The prefabricated component
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factory a has K, transportation vehicles that can be deployed
to carry out k™ component transportation on the con-
struction site j according to the formulated plan [34]. The
time node process of prefabricated component vehicle
transportation is shown in Figure 1:

According to the transportation process of prefabricated
components, the above parameters are deduced as follows:

(1) The time AT, when the k™ vehicle of factory a
arrives at the construction site j is expressed as

ATajk = STujk +t. (2)

(2) If the arrival time of the k' transport vehicle at the
construction site j is earlier than the departure time
of the (k-1)* transport vehicle, it needs to wait. The
waiting time is as follows:

WT = x0 - (DT gy — AT = UT o),
J . 1 (DT, — AT, 3 ~UT,;)>0  (3)
ak —
0 (DT, = AT = UT, ;) <0,

When DT, —AT,3—UT, > 0, it indicates that
when the k™ vehicle arrives at the construction site j,
the (k-1)™ vehicle has not been unloaded, and the
waiting time for unloading is DTpjx.1—A T,j—UTgji,
whereas when DT, 1 - AT, - UT, <0, the (k-1)™
vehicle has already left the construction site, and the
waiting time for unloading is zero.

(3) The constraint time ET,j for the K delivery service
exceeding the soft time window can be expressed as
follows:

yhe (ET; = AT,;) AT, <ET;

ET,; =10 ET;< AT, ; <LT;,
vl (AT — LT;) AT, 3 >LT;
S R
jsAlaje <Ll

(4)

When AT, > LT, AT, <ET;, it indicates that the
time when the transport vehicle arrives at the re-
quired construction site AT, does not meet the
constraints of soft time window (ET}, LT;) and the
prefabricated component factory bears the economic
penalties because of the delivery delay; when
ET;< AT, <LT, it indicates that the time when the
transport vehicle arrives at the required construction
site. AT, meets the constraints of the soft time
window (ET}, LT;) and the prefabricated component
factory does not bear the economic penalty caused by
the delay in transportation.

(4) The time when the k™ transport vehicle returns to the
factory can be expressed as

RT, . = DT, +1t". (5)
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TABLE 1: Parameters for the model.

Parameters Definition

i Number of transport vehicles, i=1,2,3, .., M

j Number of the construction sites, j=1,2,3, .., N

a Number of the prefabricated component factories, a=1,2,3, ..., A

k k™ delivery service

Dy Distance between factory a and construction site j

K; Number of times construction site j needs to be transported

K, Number of vehicles allocated by factory a

(ET;, LT)) Time window constraint set by construction site j

STajk Departure time of the k™ transport vehicle sent from prefabricated component factory a to construction site j
LTajk Loading time of the k™ transport vehicle sent from prefabricated component factory a to construction site j
UTojk Unloading time of the k'™ transport vehicle sent from prefabricated component factory a to construction site j
DTk Departure time of the k'™ transport vehicle sent from prefabricated component factory a to construction site j
RTok Return time of the k™ transport vehicle sent from prefabricated component factory a to construction site j
tt Transportation time and return time from prefabricated component factory a to construction site j

A, A2, A3, 14, A5

Ay is the unit fixed cost, A, is the unit delivery cost when transported with a full load, A; is the unit delivery cost of empty
return, A4 is the cost coefficient of unit waiting time for unloading, and As is the unit penalty cost coeflicient

xik Calculation coefficient of the k™ delivery vehicle of factory a waiting for unloading at consumer j
i Calculation coefficient of k™ delivery service of consumer j waiting for factory a

-o—% DTa)k:S Ta]k+ t+ WTuijr UTa].k -5—%
v
R Tujk L Tajk S Ta ajk WTajk UTa]k D Ta]k
S
hhbhbh II N
N
N

EEEEE

=y
e © \ > IR N
X §la
Prefabrication Plant Construction Site

A <

ol

RT, =DT, +t

e

Ficure 1: Flowchart of the dispatch time node of prefabricated component vehicles.

3.4. Mathematical Model

3.4.1. Decision Variables. x: when the k™ component
transportation of the construction site j is delivered by the
vehicle i of the prefabricated component factory a, x=1;
otherwise, x=0.

3.4.2. Objective Function

(i) Transportation cost

Transportation cost (C,) indicates the cost incurred
by the vehicle for delivering the components to the
required site and returning to the factory. It mainly
comprises a series of direct costs incurred due to
vehicle transportation, such as vehicle loss, trans-
portation labor costs, vehicle depreciation, and

vehicle energy consumption. It can be divided into
fixed and variable costs as follows:
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(ii) Time cost of waiting for unloading

After the arrival of the transport vehicle at the re-
quired site, waiting in line to unload the prefabricated
component (C w ) results in waste of resources, such
as idle personnel and vehicles, and may cause failure
in meeting the time requirements of other con-
struction sites and the loss of reputation. Therefore,
certain monetary penalties should be imposed. The
waiting time cost is expressed as follows:
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(iii) Penalty cost
Early arrival of transport vehicles may disrupt the
planning and arrangement of the construction site.
The delay of transportation vehicles will lead to the
delay of construction progress, so the prefabricated
component factory needs to accept the economic

Min(C) =C, +C,,

+Cps
>

A K, N K; A K, N K
Min(C) =1, - ) xt (bt d) Y Y NN 6D,

a=li=1 j=1k=1 a=1i=1 j=1k=1

3.4.3. Restrictions.
ST gjks1 = STaj| 2 LT g (10)
K,21, K, € Z, (11)
K, N K; 4

>y 2.5 Z Kj (12)

Equation (10) indicates that the departure time of two
adjacent vehicles is greater than the loading time of the
transportation to ensure that the vehicle is loaded; equation
(11) provides that at least one vehicle is available for de-
ployment in the prefabricated component factory, and
equation (12) indicates that the carrying capacity of all
vehicles delivered can meet the needs of all construction
sites.

4. Experimental Method

4.1. Division of Experimental Phases. The vehicle scheduling
problem of multiple prefabricated component factories in
the city has complex network relationships as well as several
influencing factors and requires a large degree of calculation.
For simplification, the transportation problem of multiple
prefabricated component factories was transformed into the
transportation problem of a single prefabricated component
factory, thereby reducing the difficulty of solving the model.
To achieve this goal, the concept of merge optimization
algorithm (MOA), namely “target aggregation, target solving
and target optimization,” was used in this study.

The hybrid algorithm for optimal scheduling proposed
in this study can be divided into two stages: In the first stage,
the idea of “aggregation” was employed to cluster the
prefabricated component factories and construction sites
according to their distances. It was divided into the nearest
prefabricated component factory to complete the trans-
portation of prefabricated components so that the complex
multidepot vehicle routing problem with time window

+
&
M>
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claim of the construction party, that is, penalty cost
(Cp), which is given as

A K, N K «
Cp=As- ) Y ¥ ¥ x;"ET,. (8)
a=1i=1 j=1k=1

Therefore, the objective function undertaken by the
prefabricated component factory can be expressed as
follows:

K K.

a
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<

a

iK o, O

l
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A
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a=11i

M=z

a=1i=1
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=
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(MDVRPTW) can be decomposed into multiple instances of
relatively simple single depot vehicle routing problem with
time window (SDVRPTW) to achieve the simplification of
the model. In the second stage, based on the IHDFA to solve
the combined single prefabricated component factory
transportation problem, the departure time and trans-
portation cost of each prefabricated component factory were
determined and the optimal global solution set of the
MDVRPTW model, which significantly reduces the solution
time and improves the efficiency of the algorithm, was
obtained. The hybrid optimization algorithm solution is
shown in Figure 2.

4.2. Merge Optimization Algorithm. Several scattered con-
struction sites were merged into the transportation scope of a
prefabrication component factory through the idea of ag-
gregation. That is, MDVRPTW was converted to SDVRPTW,
which realized the simplification of complex issues. However,
the distance difference between certain construction sites and
multiple prefabrication factories was not evident in actual
problems. Therefore, it was impossible to judge which factory
should deliver the components through a short distance.
Therefore, the marginal coefficient (L;) concept was intro-
duced, which is the ratio of the distance between the con-
struction site and nearest prefabrication factory to the
distance between the construction site and the next nearest
prefabrication factory. When the marginal coeflicient was
small, indicating that the distance to a prefabrication factory
has evident benefits, the construction site was directly divided
into the transportation scope of the prefabrication factory. In
contrast, when the marginal coefficient was large, it indicates
that the gap between the two was not evident; the construction
site was included in a set of edge points. Therefore, the edge
threshold (¢) was introduced and considered the boundary
and employed as the dividing standard. If the edge coefficient
was less than the threshold, it was directly divided into the
nearest factory. Otherwise, it was combined with edge points.
The aggregation optimization algorithm implementation
flowchart is presented in Figure 3.
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MDVRPTW
{(j=1,2,3....N}
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Objective
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FIGURE 2: Schematic illustration of hybrid optimization algorithm solution.
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FIGURE 3: Implementation flowchart of MOA.

The specific design procedure of the MOA was as
follows.

Step 1. Calculate the distance between each construction site
and the prefabricated component factory to form a distance
matrix D=1{d; [i=1,2,3, ..., N;j=1,2,3, ..., M}.

Step 2. Calculate the edge coefficient L; = d;;\/d;j», where j,
and j, are the prefabricated component factories closest and
next to the construction site, respectively.

Step 3. Set as the edge value threshold (¢), if L; < ¢, the
construction site i is considered the nonedge point of the
factory j;. Otherwise, construction site i is considered the
edge point of the factories j; and jj,,

Step 4. The nonedge points are divided into the service
scope of the nearest prefabricated component factory in
turn to form the construction site point set M ={1, 2, 3,

.., m}, and m is allocated to the nearest prefabrication
factory.

Step 5. The construction site of each edge is constructed as
the set of edge points N=1{1, 2, 3, .., n}. First, the nonedge
point set is divided. After the nonedge construction site is
allocated nearby, the distance between each edge point and
the construction site in the finished nonedge point collection
M is calculated in turn.

Step 6. Compare each distance value, and divide the original
nonedge point to the nearest edge point set M to complete
the division of the required construction site.



4.3. Firefly Algorithm. The firefly algorithm (FA) is based
on the movement of fireflies in nature. It is a meta-heuristic
algorithm proposed by Professor Xin-She YANG of
Cambridge University in 2008 [35]. The algorithm is
mainly based on the following characteristic to achieve
optimization: “In the entire search space, individual fireflies
with high absolute brightness attract fireflies with low
absolute brightness.” It is an intelligent heuristic optimi-
zation algorithm based on group search. It has the char-
acteristics of high calculation efliciency, few setting
parameters, high optimization precision, and fast con-
vergence speed. The specific parameters are expressed as
follows:

(1) The relative brightness of firefly i to j can be de-
scribed as a monotonically decreasing exponential
function of the distance as follows:

(r,-]-) =1 e VT,

I (13)

i

where I; is the original light intensity at the source
(i.e., at the distance r=0) and is the light absorption
coefficient and r;; represents the space distance from
firefly i to j.

(2) The light attraction coeflicient between individual
fireflies can be defined as ;.

—yr?
Bij(rij) = Bo-e ",

where 4 is the original light attractiveness at r=0.

(14)

(3) For two fireflies x; and, these can be updated as
follows:

X (t+1) = x,(8) + By - (x;(5) — x; (1))
+ «- (rand - 0.5),

(15)

where x; (f) and x; (¢) indicate the positions of fireflies
i and j in the t generation, respectively; a is the step
size; and rand is a random number uniformly dis-
tributed in [0, 1].

In the present study, we considered 3y =1, a € [0, 1], and
y=1[36].

4.4. Differential Evolution. Differential evolution (DE) is
an optimization algorithm based on population evolu-
tion. It first generates an initial population with a scale of
NP (number of individuals in the population) and spatial
dimension of D. The individual is x;=[x; 1, Xi2, X; 3 -
x;], wherei=1,2,3,..,NPandj=1,2,3,..., D[37,38].
The DE algorithm mainly comprises the following three
steps.

4.4.1. Mutation Process. The mutation operator plays a vital
role in the evolution process. Three individuals X,;(G),
X,»2(G), and X,5(G) are randomly selected from the DE
population. The mutant individuals are presented in
equation (16) as follows:

Mathematical Problems in Engineering

Vi(G+1)=X,,(G)+Fx(X,,(G) - X,5(G)), (16)
where V; (G+1) is the mutated individual, X; (G) represents
the ™ individual in the G generation population, ry, 7,
r3€{1,2,3,..., NP} and i#r # r,#r; and F is the scaling
factor between [0, 1] [39].

4.4.2. Crossover Process. The G generation population {X;
(G)} and its mutated intermediate {V; (G+1)} were crossed
among individuals. The individual after the crossover can be
defined as follows:

Vi (G+1) ifrand[0,1]<CRorj = jrand
X,;(G)

>

otherwise

Uij(G+1):{

(17)

wherej=1,2,3,...,D, Dis the dimension of space, rand [0, 1] is
a random number uniformly distributed in [0, 1], the crossover
rate CRe [0, 1] is a predefined rate, and jrand is a randomly
generated integer in [0, D]. Thus, if and only if rand [0, 1] < CR
or j = jrand, then the binomial crossover operator copies the j™
variable of mutant vector V; (G+1) to its corresponding element
in the trial vector U; (G+1). Otherwise, the parameter is
inherited from the related target vector X; (G) [30].

4.4.3. Selection Process. The selection operation determines
the evolutionary direction of the entire population, and the
greedy strategy is used to select the individuals entering the
next generation. By comparing the fitness values of U; (G+1)
and X; (G), the smaller individuals are selected as the off-
spring for the next generation operation. Otherwise, X; (G)
will remain until U; (G+1) becomes the new individual for
the next generation. Therefore, the selection operator can be
defined as follows:

U;(G+1) h(U;(G+1))<h(X;(G))

X;(G) 1)

X, (G+1) =
{ otherwise

where X; (G+1) is the target vector selected for the next
generation and h(x) is the fitness function. The algorithm
was repeated until the termination criterion is satisfied.

4.5. Improved Firefly Algorithm with Mixed-Difference
Evolution. In the conventional firefly algorithm, the firefly
will move toward the brightest firefly in the vicinity and
effectively develop the search space. However, it creates
confusion in the search direction and is unable to retain the
information of the optimal location; thus, the ability of
global optimization and local search needs to be improved.
Therefore, based on the conventional firefly algorithm, a
different mechanism was introduced. A variety of im-
provement strategies were adopted to enhance the firefly
algorithm to solve large-scale optimization problems more
effectively.

4.5.1. Improvement Strategy

(i) Differential mechanism of population leader
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In the conventional FA, the optimization mainly
depends on the firefly following the search of other
fireflies. Although this updated mechanism can play
an optimization effect, it cannot save the optimal
solution of each generation, and the objective
function will rise in the experiment. Because dif-
ferent fireflies follow different individuals, the
search direction of the algorithm is often confused
and can easily fall into the local optimum when
solving large-scale problems. Therefore, the leader
difference mechanism was introduced into the
conventional FA to maintain the optimization
ability of the algorithm and increase the conver-
gence speed. The individuals with the mutation can
be expressed as follows:

Vi(G+1)=Xq (G)+F

(19)
X (XrZ (G) - Xr3 (G))’
where Xj..; (G) is the best individual of G generation
and X,; (G) and X,, (G) are two individuals ran-
domly selected from DE population.

(ii) Following and approaching search mechanism

. X;(G) +Bi; - (Xpest (G) = X;(G)) + - (rand - 0.5)  S(fit;) <7
(O X0 By (X;(G)~X;(G)) +a- (rand 0.5 otherwise’

where X; (G), Xpest (G), and X; (G) represent the best
and brightest individuals corresponding to i and j
individuals in the G™ generation population, re-
spectively. rand is a random number uniformly
distributed in [0, 1], and B;; represents the attraction
between individual fireflies.

(iii) Individual spiral search mechanism

X5(G) = { Xf (G) + (2 x rand — 1) x ™™ x sin (277 x rand) rand (0, 1) <0.5

X;(G)

where ™" and sin(27 x rand) represent the ran-

domness of the search step and direction,
respectively.

(iv) Selection process

Combining (ii) and (iii), by comparing the fitness
values of Xls (G) and X¥ (G), the smaller individual
is selected as the offspring for the next generation
operation. Otherwise, the original individual Xf (G)
is specified as the next generation new individual,
and the procedure is repeated until the termination
condition is met. Therefore, the selection process
can be defined as follows:

In the conventional FA, all individuals follow the
brightest one nearby to search, and the brightness of
firefly individuals decreases with an increase in
distance. The firefly generation moves to the poor
individual and cannot effectively use the optimal
population information for evolution, resulting in
population degradation. Therefore, based on (i),
introducing the following and approaching search
mechanism can effectively avoid the population
degradation of firefly individuals in the evolutionary
process. First, the fitness values were normalized as
follows:

fit; — min ( fit)
max (fit) — min (fit)’

S(fit,) = (20)

where fit; is the fitness value of the current indi-
vidual. Provided follow-up and adjacent search
probability »=0.5, when S(fit;) <r, it indicates that
the fitness value of the individual is small, and the
follow-up optimal individual search will be per-
formed. Otherwise, it will follow the adjacent
brightest individual search, the firefly individual
after the updated location can be expressed as
follows:

(21)

To ensure that the algorithm can effectively develop
the local search space, the individual spiral search
mechanism was introduced to obtain an effective
search of the surrounding space. The individual
spiral search mechanism is as follows:

, (22)
otherwise
X3(G) k(X (G))<h(xF(G
X;(G+1) = (@ (’())<(’()). (23)
Xf (G) otherwise

4.5.2. Algorithm Design Process. In order to better under-
stand the details of the IHDFA, the design steps and flow of
an improved hybrid difference firefly algorithm are shown in
Figures 4 and 5. The operations of different populations are
located in the iterative cycle of the algorithm, and the time
complexity takes the individual as the basic unit. Therefore,
the final time complexity is the product of the time com-
plexity of population operation and the time complexity of
algorithm iteration. In the process of the algorithm design,
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Algorithm: ITHDFA

Begin
Step I: Initialization. Set G = 1; Define. y, a, [, F; CR,NP
// G represents the number of iterations
/v, 0, l, F, CR are algorithm parameters
// NP represents the number of individuals in the population
Step 2: Randomly initialize the population

Step 3: While G < Max Generation

Step 4: end while
Step 5: Output
End.

fori=1:NP
I/i = Xbest +FX (Xrl _XrZ)
end for i
fori=1: NP
V. (G rand[0,11< CR or j = jrand
U, (6)- ., (G) [0,1] ' J=J
’ X, ,(G) otherwise
U.(G hU.(G) S h(X.(G
X,(G) = (G) U, (0) ( (@)
X, (G) otherwise
end for i
fori=1: NP
YF(G X (G)+ B, x(X,,,(G) =X, (G))+ax(rand =0.5) S(fit,)<r
F(G)= X,(G)+ B, x(X (G)~ X,(G)) +ax(rand =0.5) otherwise
if rand < 0.5
X (G)= X" (G)+(2xrand —1)x ™ xsin(2z x rand)
end if
X (GH):{Xi (G) WX (G)) <h(X;(G))
X ,.F (G) otherwise
end for i

FIGURE 4: Design steps of the ITHDFA.

the time complexity of the algorithm is compared and
analyzed. Among them, the time complexity of the IHDFA is
the same as that of the GA, FA and HDFA; compared with
DE and PSO algorithms, the IHDFA has higher running
time cost, but the optimization effect is much better than DE
and PSO algorithms. The time complexity is shown in
Table 2.

5. Experimental Results and Analysis

This research example is programmed with MATLAB 2019
software and analyzed on the PC side with 3.60 GHz pro-
cessor, 16GB RAM and Windows 10 operating system. In
order to prove the effectiveness and superiority of the
IHDFA proposed in this study, three groups of case pa-
rameters are selected for simulation, and the experimental
results are compared with GA, FA, DE, PSO, and HDFA.

5.1. Experimental Data and Parameter Settings. Taking the
component transportation of 3 prefabricated component
factories in Xi’an and 12 construction sites around them as
an example, a Baidu map was employed to determine the
location of the prefabricated component factory and con-
struction site. To understand the construction site’s demand
for materials and acceptable time window constraints, the
distance between the prefabricated component factory and
construction site is shown in Table 3. The demand of the
construction site component, quantity, and time window
constraints on transport vehicles are presented in Table 4.
According to the on-site investigation, the startup cost was
A1 =350 yuan per vehicle, the unit transportation cost when
fully loaded was A, =4.8 yuan/km, the unit transportation
cost when returning with zero loads was A3 = 3.5 yuan/km,
the coeflicient for the cost of waiting time for unloading of
the prefabricated component factory was A, =2.5, and the
unit penalty cost coefficient was A5 =8 as agreed by both
parties. The earliest time permitted for delivery at each
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F1GURE 5: Design flowchart of the improved mixed-difference firefly algorithm.
TaBLE 2: Time complexity analysis.
Time complexity GA DE FA PSO HDFA IHDFA
Algorithm iteration o(G) o(G) O(G) o(G) O(G) O(G)
Calculate fitness value O(n) O(n) O(n) O(n) O(n) O(n)
Population regeneration O(n) O(n) o(n?) O(n) o(n?) o)
Individual screening o(n?) O(n) — — O(n) O(n)
Total time complexity o(n*G) o(n-G) O(n*G) O(n-G) O(n*G) O(n*G)
TasLE 3: Distance between the prefabricated component factory and the construction site D,; (km).

D, i=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11 j=12
a=1 18.0 214 25.0 15.0 38 42.5 31.6 30.0 46.0 54.8 85.4 72.8
a=2 45.0 37.5 18.0 18.0 335 12.5 20.0 31.0 45.0 60.5 90.0 71.0
a=3 67.0 46.0 81.4 61.8 96.0 80.5 50.0 40.5 25.0 12.5 20.0 11.3

construction site was 9:00, and the earliest time for the
prefabrication factory to be loaded was 8:00. The transport
vehicle was a semitrailer with a maximum load capacity of
Q=25 tons. The number of vehicles in each factory was six,
and the departure interval was 25 min.

5.2. Multidepot Vehicle Routing Problem with Time Window
Aggregation Optimization. Using the MDVRP aggregation
optimization algorithm, 12 known construction sites were
allocated to the transportation services of three prefabri-
cation plants, as shown in Table 5. In order to more
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TABLE 4: Requirement information of prefabricated construction site components.

j Product type G Component weight Carrying capacity K; UTgjk Time window
j=1 Precast column 52 2.2 11 6 30 (14:30, 17:30)
j=2 Precast beam 42 1.8 13 4 20 (14:00, 17:00)
j=3 Precast exterior wall 44 3.2 7 7 20 (14:00, 17:30)
j=4 Precast interior wall 56 2.4 10 6 25 (14:30, 17:00)
j=5 Precast floor 42 2.6 9 5 20 (14:00, 17:30)
j=6 Precast exterior wall 40 3.2 7 7 20 (14:30, 17:00)
j=7 Precast column 48 2.2 11 5 25 (14:30, 17:00)
j=8 Precast beam 44 1.8 13 4 20 (14:00, 17:30)
j=9 Precast exterior wall 46 32 7 8 20 (14:30, 17:00)
j=10 Precast interior wall 42 2.4 10 5 20 (14:00, 17:30)
j=11 Precast floor 35 2.6 9 5 20 (14:30, 17:00)
j=12 Precast column 48 2.2 11 5 25 (14:30, 17:00)

TABLE 5: Aggregation optimization and layout of prefabricated component factory and construction site.

a Demand aggregation optimization 2K
a=1 j=1(6) i=2(4) =4 (6) =8 (4) 20
a=2 i=3(7) i=5(5) i=6(7) i=7(5) 24
a=3 i=9(8) =10 (5) j=11(5) j=12 (5) 23
TaBLE 6: Round-trip time of component transportation between the prefabricated factory and the construction site.
Nontraffic impedance (min) Traffic impedance (min)
a j Dgj (km) Traffic flow Transportation #, Return ¢, Transportation ¢ Return ¢/
©» @ Gy @ G @ @O @ G G 0 aG) )
1 18.0 3750 20 20 22 18 18 20 22 21 24 20 19 22
a=1 2 214 3650 23 23 26 21 21 23 26 25 28 24 23 26
B 4 15.0 3780 16 16 18 15 15 16 18 18 20 17 16 18
8 30.0 3450 33 33 36 30 30 33 35 34 39 32 32 35
3 18.0 3655 20 20 22 18 18 20 22 21 24 20 19 22
a=2 5 33.5 3750 37 37 40 34 34 37 41 39 45 37 36 41
B 6 12.5 3450 14 14 15 13 13 14 15 14 16 14 13 15
7 20.0 3780 22 22 24 20 20 22 24 23 27 22 21 24
9 25.0 3550 27 27 30 25 25 27 30 29 33 27 26 30
_3 10 12.5 3560 14 14 15 13 13 14 15 14 16 14 13 15
a= 11 20.0 3450 22 22 24 20 20 22 24 23 26 22 21 24
12 11.3 3360 12 12 14 11 11 12 13 13 15 12 12 13
. Total Cost Convergence Curve (i)
2.15 X10°. e
2.1 H
2.05
2L
é 1.95
=
2 1.9
1.85
1.8
1.75
1.7 1 1 1 1 1 1 1 1 1 ]
0 20 40 60 80 100 120 140 160 180 200
Number of Iterations
— GA FA —— HDFA
—— DE — PSO IHDFA

FIGUure 6: Comparison of simulation convergence (i).
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FIGUre 8: Comparison of simulation convergence (iii).

accurately verify the superiority of the IHDFA, three groups
of different cases are selected for simulation analysis: (i) the
actual traffic capacity on the transportation section is
4000pcu/h, the load speed v; =55km/h, and the no-load
speed v, =60km/h; (ii) the actual traffic capacity on the
transportation section is 4500pcu/h, the load speed v,
=55km/h, and the no-load speed v, =60 km/h; and (iii) the
actual traffic capacity on the transportation section is
4000 pcu h, the load speed v; =50km/h, and the no-load
speed v, = 55Km/h. The round-trip time of component
transportation between the prefabricated component factory
and the construction site can be calculated by formula (1), as
shown in Table 6.

5.3. Experimental Results and Comparison. According to the
experimental simulation, the total cost iteration conver-
gence simulation results are shown in Figures 6-8. In case
(i), the IHDFA is iterated 119 times, and the optimal total
transportation cost is 17468.38 yuan. In case (ii), the
IHDFA has 121 iterations and the total optimal trans-
portation cost is 17148.38 yuan; and in case (iii), the
IHDFA has 195 iterations and the total optimal trans-
portation cost is 18146.88 yuan. In the three groups of
simulation experiments, the IHDFA has higher solution
accuracy and faster convergence speed than FA, DE, GA,
PSO, and HDFA, followed by HDFA and FA, and PSO is
the worst.



Mathematical Problems in Engineering

14

. Cost distribution based on multiple algorithms (i)

24000

20000

16000

12000

8000

4000

1500 B30,
1500 Aeppq

1500 Sunrep

1505 uoneodsuey,

1505 [B30],

1505 Ae[a (1

1505 Sunrepm

1505 uoneyodsuery,

1505 [BJO],
1500 Aefa(q

3500 Sunrem

1505 uoneodsuey,

1802 —NUO.H

1505 Ae[a(1

1500 Sunrepm

1505 uoneyodsuery,

1500 [eJ0],
1500 Aep(q

1500 Sunrepm

1505 uonejrodsuery,

1500 [eJO,
1500 Ae[2(1

3500 Sunrem

1505 uonejrodsuery,

M a

W a=2

=3

M oa

FiGure 9: Comparative analysis of target cost data (i).

Cost distribution based on multiple algorithms (ii)
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In cases (i), (ii), and (iii) through experimental simu-
lation, it can be clearly seen that the total target cost of the
IHDFA proposed in this study is the lowest compared with
GA, DE, FA, PSO, and HDFA. In addition, in the same case,
the vehicle transportation cost and vehicle waiting cost
solved by different heuristic algorithms remain basically
unchanged, and the delay penalty cost of transportation
vehicles changes greatly. In practical engineering applica-
tion, through the IHDFA. The algorithm is applied to select
the optimal transportation vehicle scheduling scheme to
minimize the waiting time of transportation vehicles on the
premise of meeting the time window requirements of the
construction site. The comparative analysis of target cost
data is shown in Figures 9-11.

The comprehensive comparison shows that the con-
ventional FA was slightly better than the IHDFA in terms of
running time and convergence speed. For selecting the
optimal value, the output cost of the IHDFA was lower, and
the transportation cost, waiting time, and delay time were
reduced. In the transportation management of prefabricated
components in urban multi-prefabrication component
factories, reducing the transportation cost of prefabricated
components is the primary goal of managers. Therefore, in
the face of the ever-expanding scale of prefabricated
buildings, the production management department can use
the models and methods proposed in this study to effectively
perform component transportation optimization.

6. Conclusion

First, the clustering optimization algorithm was introduced to
simplify the complex network transportation relationship.
Second, based on the conventional the FA and DE algorithm,
the IHDFA was proposed to solve the optimal scheduling
problem of prefabricated components in multi-prefabrication
component factories. Compared with the conventional algo-
rithms, the proposed algorithm has the following advantages:

(1) In the process of initial population evolution, the
differential mechanism was introduced to enhance
and maintain its diversity.

(2) In the process of solving, the following and near
search mechanism was introduced so that some
individuals follow the optimal individual search, and
the other individuals follow the near particular in-
vestigation, which effectively ensures the local op-
timization performance of the algorithm.

(3) The spiral search mechanism was applied to select
the individual according to the arbitrary rules to
spiral search around itself to ensure the global op-
timization of the algorithm. Finally, the appropriate
individual will enter the next generation to better
balance the algorithm’s global detection and local
search abilities.

The numerical results show that the IHDFA has certain
advantages in searching global optimal solution, stability, and
robustness compared with GA, DE, FA, PSO, and HDFA.
Based on the performance and practicability of the IHDFA, it
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provides a good solution in solving optimal scheduling. Since
the parameters of the algorithm are determined according to
the relevant literature, a single set of parameters and data are
used for example solution and analysis, which will have a
certain impact on the random selection of the path. Next, the
setting of parameters needs further research to achieve better
convergence through parameter adjustment.
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