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*is study examines viscoelastic fractional nanofluid flow through Darcy medium. Memory characteristics due to elasticity are
explored with noninteger time derivatives. *e unsteady motion of MHD flow is modeled by nonlinear differential equations.
Buoyancy forces are incorporated via convection parameters in the flow domain. Fractional relaxation time is considered to
control the propagation speed of temperature. A finite difference, along with finite element, a numerical algorithm has been
developed for the computation of governing flow equations. Friction coefficient, Sherwood numbers, and Nusselt numbers are
computed for the noninteger derivative model. Simulations revealed that noninteger numbers have congruous behavior for
concentration, temperature, and velocity fields. It is also noted that heat flux, δ1, and mass flux, δ2, numbers have contradictory
effects on the friction coefficient. Various flows, particularly in polymer industries and electrospinning for the production of
nanofibers, can be tackled in a comparable pattern.

1. Introduction

In this communication, we have described the transport of
momentum, heat, and concentration with the help of
mathematical relations. Mathematical relations are formu-
lated with constitutive expressions that handle fluxes of the
above-prescribed quantities [1]. Formulated equations,
remained helpful to analyze the transport of heat, diffusion
of chemical species, movement of geological flows, engi-
neering applications, meteorology, material science, and
medicines [2, 3]. Molecular contact and Brownian motion
[1] characterized the conductivity, diffusivity, and viscosity
for the nanofluid in the flow domain. Particularly, transfer of
heat is an analog of mass transfer in the constitutive ex-
pressions for fluxes. Fick’s law governs the diffusion in mass
transport, and Fourier’s law handles the conduction

mechanism in heat transfer. Here we have considered the
generalized Fourier and Fick laws to incorporate relaxation
times. Transport phenomena in Newtonian and non-
Newtonian flows can be seen in heat exchangers, thermal
devices, granular insulation, fiber technology, nuclear re-
positories, fermentation processes, geothermal extractions,
and the production of crude oil [4–11]. In the literature, the
transfer of heat and mass is widely reported by distinguished
researchers. For example, Salama et al. [12] discussed the
solution of a flow problem through porous media with flux
approximations. In this communication, the viscoelastic
fluid model of second grade is analyzed for the transport
mechanism with suspended nanoparticles. Viscoelastic
second-grade fluid model exhibits differential type nature.
For differential fluids, stress is expressed by an explicit
velocity gradient. Differential models describe the fluids in

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 3390478, 18 pages
https://doi.org/10.1155/2022/3390478

mailto:shoaib_tts@yahoo.com
https://orcid.org/0000-0001-5141-9838
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3390478


terms of their shear thickening and thinning effects, normal
stress effects, thixotropy exhibition, and nonlinear behavior
of creeping and yielding. Flow problems, which include
polymer suspensions and slurries, in fiber handling can be
discussed with a given mathematical model [13].

Governing flow equations with noninteger time deriv-
atives have been proven for useful analysis of viscoelastic
trends [14]. Nowadays, mathematical modeling with non-
integer derivatives have gained importance in various
branches of science. For example, valuable impact can be
seen in fluid mechanics. Moreover, the influence of non-
integer modeling is seen in viscoelasticity, control theory,
and electrochemistry [15–17]. Advancements in fractional
modeling are carried out with the passage of time and the
inclusion of new fractional derivatives in the literature, for
example, Yang’s fractional derivative, Atangana–Baleanu
derivatives, and Caputo derivatives [18, 19]. Both natural
and artificial systems can be analyzed in a better way via
noninteger time derivatives as they describe hereditary as-
pects of materials [20–24]. Simulations of anomalous
nonlinear models can be used to approximate experimental
data in a better way when compared to usual rheological
models [25–30].

Porous medium flows occur in soil mechanics, ceramics,
and industrial andmineral processing.*e complexity of the
flow problem is increased with the presence of a porous
medium.*is is mainly due to the interface between packing
particles and fluid molecules. Darcy flow is analyzed by
various researchers. Nonlinear Darcy flow is examined by
Ervin et al. [31]. *e Lorentz force shows a significant role in
viscoelastic problems such as in MHD generators and
control theory. Magnetic field impacts can be seen in porous
medium flows that are encountered in metallurgical systems,
extrusion and penetration practices, etc. *e flow domain is
greatly influenced by convection as a transport mechanism,
is greatly changed by both buoyancy and gravitational forces.
Convection’s importance can be seen in boilers, nuclear
reactors, and heat exchangers. Zhou and Liang [32] dis-
cussed convection in unsteady flow problems.

*e industrial importance of nanofluids is significant in
lightweight materials production, the breakdown of organic
pollutants, and in the production of nanofibers [33, 34]. Here,
under consideration, flow is unidirectional through a channel
of infinite extent. By this configuration, fluid velocity and its
gradient are orthogonal to each other, which may lead to the
addition of a nonlinear convection term in the governing
equations.*ese flows aremostly observed in the long narrow
channels. Many microchannel flows are described by these
solutions, their superposition, and by the small perturbation
of these flows [35, 36]. Viscoelastic flows can also be used in
electrospinning for nanofibers production. Nanofibers are
formulated by an electric charged jet of polymer solution that
is of viscoelastic nature. An increase of yield stress along with
a viscoelastic jet causes a decrease in fluid elongation [37, 38].
*e structure of nanoparticles is between atomic and bulk.
*e possibility of nano particles’ inclusion is due to their
strong interaction with base fluid. Inclusion of these particles
effectively changes the characteristics of the base fluid. For
instance, nanoparticle suspension increases the thermal

conductivity of the base fluid. Wang and Zhang [39] analyzed
heat transfer in nanofluid flow. With the passage of time,
fractional nanofluid flows require more attention in literature.
Solutions to fractional flow problems are usually discussed
with integral transforms. But integral transforms are not
helpful for solving nonlinear coupled fractional equations.
Due to this, numerical solutions are proposed for flow
problems(see [40–43]). In this article, we have tackled the
problem with finite element and finite difference techniques
to solve the described fractional flow configuration.

Particularly in this communication, we have considered
modeling with noninteger derivatives of nanofluid flow. Due
to this, we have achieved more control over the flow sim-
ulations with the help of fractional derivatives when com-
pared with the classical mathematical flow models. Flux
conditions are imposed at y � 0, while quadratic variations
are observed at the fixed boundary. A Darcy flow medium is
observed with an applied magnetic field to the flow domain.
Moreover, here we have proposed a scheme with numerical
discretization to obtain the stable results of the coupled
nonlinear fractional equations. Space variable is discretized
by finite element while time variable is discretized by finite
difference scheme. *e influence of the involved physical
parameters is discussed appropriately. In Section 2, mod-
eling with noninteger time derivatives is discussed. *e flow
field is approximated by the proposed scheme in Section 3. A
numerical approximation of the flow problem is given in
Section 4. Finally, key results are given in Section 5.

2. Mathematical Description

In this study, we considered heat transfer in the MHD flow
of the nanoliquid with noninteger derivatives of time.
Modeling with noninteger derivatives helps to achieve more
control over the flow simulations when compared with the
classical models that contain ordinary derivatives. A
nanofluid is formed with nanoparticles and base liquid. *e
medium of fluid flowing is considered to be a Darcy porous
medium. Moreover, Neumann boundary conditions are
supposed to be in the heating domain. At the start, there is
no movement in the medium. At that time, the whole
configuration is at constant temperature θ0 and concen-
tration ϕ0. With the passage of time, disturbance in the
liquid is observed due to the lower domain. We consider the
velocity field to be a function of y and t only. *en we
consider

U � u(y, t)ex. (1)

For the Cauchy stress tensor, Rivlin–Ericksen tensors,
Darcy law and thermodynamic stability conditions of dif-
ferential type second grade fluid (see [21] and references
therein). *e fractional formalism of thermal and concen-
tration gradients can be seen in [45, 46].

Here is a brief description of the mathematical modeling.
In order to formulate an energy equation with Caputo
fractional derivative α including nanoparticles, consider the
classical energy equation for incompressible fluid of the
Buongiorno article (see [46]).
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where q, Jp denote fluxes of energy and diffusion and for
definition (see [46]). Temperature and concentration
propagation of infinite order can be seen with q, Jp in
Buongiorno article (see [46]). We can overcome this situ-
ation with the introduction of fractional relaxation times
using reference [45], so we define q, Jp as
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Finally, governing present flow equations are
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where S stands for the Cauchy tensor of stress for fluid of
second grade (see [21]), r is the Darcy resistance of porous
medium (see [21]), and b denotes body force.

*e pressure gradient is assumed to be negligible.

2.1. Governing Equations. *e equations that modeled the
flow problem along with their conditions are given here.
Continuity (8) will reduce to identity with velocity given in
(1). After some mathematical simplifications, modeled
equations reduce to
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2.1.1. Flow Problem Conditions. Here we are considering the
flow in a channel separated by a distance L. At the start, the
whole flow configuration is still with constant temperature
θ0 and constant concentration ϕ0. Flow is generated by the
movement of the domain at y � 0, while the pressure
gradient is assumed to be zero in that case. For temperature
and concentration, domain at y � 0 is connected to a source,
and the change in temperature is also changing with time,
while in the domain at y � L, only temperature changes with
time. *e case for concentration is similar. Flow conditions
are given as
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]2

L
4t
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(18)

A complete description of the flow domain is identified
via equations (12)–(18).

2.1.2. Skin Friction Coefficients. Friction among fluid and
solid boundaries is of great importance in the analysis of flow
domains bounded by solid boundaries. Coefficients of
friction are mathematically defined as
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2, (19)

where shear stress at the wall is
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2.1.3. Nusselt Numbers. Change of temperature at y � 0 and
y � L are determined by the dimensionless, Nusselt number.
Present flow domain, Nusselt numbers are given as

Nu1 �
− L(zθ/zy)y�L
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, (21)

where θs1
is constant temperature, at y � L. At y � 0, the

Nusselt number is given by
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here θs2
is the temperature, at y � 0.

2.1.4. Mass Transfer Nusselt Numbers. Change of concen-
tration at y � 0 and y � L is determined by mass transfer
Nusselt, Sherwood numbers. *e present flow domain and
Sherwood numbers are given as
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the Sherwood number is given by
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here ϕs2
is the concentration at y � 0.

2.1.5. Problem in Nondimensionalization. We have defined
the following dimensionless quantities to make mathe-
matical problem (12)–(18) as nondimensionalized.
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and problem conditions are given by
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Moreover, the dimensionless coefficients of friction,
Nusselt, and mass transfer Nusselt numbers are defined by
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3. Numerical Discretization Scheme

Numerical discretization of the flow problems (26) and (27)
is presented here. *e finite difference scheme(FDS) is used
to discretize the fractional time derivative as given by
[15, 21, 43], while the derivative with respect to space
variable is discretized with the finite element scheme(FES)
proposed in [15, 21].*e well-posedness of the flow problem
can be checked in appropriate spaces [43]. Precisely, we note
no ill-posedness in the defined flow problem.

Functional spaces are incorporated in the discretization
of the model (26) and (27).

We point out that L2(Ω), square-integrable space of
functions on Ω � (0, 1) along with L2, norm and inner
space product. Further,Hp(Ω) stands for the Sobolev space,
with p> 0, Hp
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Hp(Ω) and C∞0 (Ω) represents infinite differentiable con-
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3.1. Approximations using FDS. Fractional time derivative in
(26) and (27) is discretized by FDS. *e interval of time,
[0, tf] is partitioned by time step τ ≔ tf/m so that tk ≔ kτ,
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3.2. Approximations using FES. In this section, the FES
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*e defined elements Ωi of width h are constant, i.e.,
h ≔ 2/n ≔ yi+1 − yi. Considering subspace of finite dimension
Vh

0(Ω)􏽮 􏽯
h> 0 of H1

0(Ω) and Vh
1(Ω)􏽮 􏽯

h> 0 of H1
1(Ω)

V
h
0(Ω) ≔ ϕ ∈H1

0(Ω)ϕΩi
∈ Pr Ωi( 􏼁,∀i � 1, 2, . . . , n􏽮 􏽯,

V
h
1(Ω) ≔ ϕ ∈H1

1(Ω)ϕΩi
∈ Pr Ωi( 􏼁,∀i � 1, 2, . . . , n􏽮 􏽯,

(45)

Pr(Ωi) is the Lagrange polynomial space of degree less or
equal to r over Ωi with i � 1, 2, . . . , n. Also, we note that
Vh(Ω) � Vh

0(Ω) × Vh
1(Ω) × Vh

1(Ω).
*e weak form of the flow model (26) and (27) can be

taken as.
Weak form: We need to find (u, θ, ϕ) ∈ C1([0, T];

H(Ω)) such that
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(1 + ϵ)
z

zt
(u, v) + 1 + c

z

zt
􏼠 􏼡〈u, v〉 +(λ + Ha)(u, v) − λ1 + λ2θ( 􏼁θ, v( 􏼁 � 0,

PrLα
t (θ, ζ) +〈θ, ζ〉 − PrQα

t (θ, ζ) Nb
zθ
zy

zϕ
zy

, ζ􏼠 􏼡 + Nt
zθ
zy

􏼠 􏼡

2

, ζ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � − δ1t, ζ(0)( 􏼁,

ScL
β
t (ϕ,ψ) +〈ϕ,ψ〉 +

Nt

Nb
􏼒 􏼓〈θ,ψ〉 � − δ1t − δ2t,ψ(0)( 􏼁,

u(y, 0) �, θ(y, 0) � 0 �
zθ
zt

(y, 0), andϕ(y, 0) � 0 �
zϕ
zt

(y, 0),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

for all (v, ζ,ψ) ∈ H(Ω). Weak form (46) is used to incorporate, discrete weak
form, at t � tk, 0< k<m

Find uh ·, tk+1( 􏼁, θ ·, tk+1( 􏼁,ϕ ·, tk+1( 􏼁( 􏼁 ∈ Vh
(Ω)s.t.∀(v, ς, ϕ) ∈ Vh

(Ω)

(1 + ϵ)
z

zt
uh y, tk+1( 􏼁, v( 􏼁 + 1 + c

z

zt
􏼠 􏼡〈uh y, tk+1( 􏼁( 􏼁, v〉 +(λ + Ha) uh y, tk+1( 􏼁, v( 􏼁

− λ1 + λ2θh y, tk+1( 􏼁( 􏼁θh y, tk+1( 􏼁, v( 􏼁 � 0,

PrLα
t θh y, tk+1( 􏼁, ζ( 􏼁 +〈θh y, tk+1( 􏼁, ζ〉 − PrNbQ

α
t

zθh y, tk+1( 􏼁

zy

zϕh y, tk+1( 􏼁

zy
, ζ􏼠 􏼡

− PrNtQ
α
t

zθh y, tk+1( 􏼁

zy
􏼠 􏼡

2

, ζ⎛⎝ ⎞⎠ � − δ1t, ζ(0)( 􏼁,

ScL
β
t ϕh y, tk+1( 􏼁,ψ( 􏼁 +〈ϕh y, tk+1( 􏼁,ψ〉 +

Nt

Nb
〈θh y, tk+1( 􏼁,ψ〉 � − δ1t − δ2t,ψ(0)( 􏼁,

u
0
h(y) � 0, θ0h(y) � 0 � θ1h(y), ϕ0h(y) � 0 � ϕ1h(y),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

where u0
h(·) � uh(·, t0), θ1h(·) � θh(·, t1), ϕ1h(·) � ϕh(·, t1),

θ0h(·) � θ(·, t0), and ϕ0h(·) � ϕ(·, t0). *e numerical solution
(uh, θh, ϕh) to (47) is given as
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uh y, tk+1( 􏼁 � 􏽘

Nh

p�1
up tk+1( 􏼁W

p

0h(y), y ∈ Ω,

θh y, tk+1( 􏼁 � 􏽘

Nh

l�1
θl tk+1( 􏼁W

l
1h(y), y ∈ Ω,

ϕh y, tk+1( 􏼁 � 􏽘

Nh

l�1
ϕl tk+1( 􏼁W

l
1h(y), y ∈ Ω,

(48)

where W0h � W
p

0h|p � 1, 2, . . . , N0h􏽮 􏽯 defines a basis,
Vh

0(Ω) along with N0h ≔ dim(Vh
0), W1h � Wl

1h|l �􏼈

1, 2, . . . , N1h} forms a basis ofVh
1(Ω) with N1h ≔ dim(Vh

1)

and (up, θl, ϕl) are yet to be determined. Further, consid-
ering v as W

q

0h for various values of q as q � 1, 2, . . . , N0h, ζ ,
and ψ, Wm

1h for various values of m as m � 1, 2, . . . , N1h,
consequently we obtain the following nonlinear algebraic
system of equations:

(1 + ϵ)Ah
0

d

dt
Uh􏼂 􏼃 + τBh

0 1 + c
d

dt
􏼠 􏼡 Uh􏼂 􏼃 + τ(λ + Ha)M

h
0Uh + τλ1M

h
0Θh + τλ2Θh tk( 􏼁M

h
0Θh � 0,

PrAh
1L

α
k+1 Θh􏼂 􏼃 + τBh

1Θh − τPrNbΦh tk( 􏼁C
h
1Q

α
k+1 Θh􏼂 􏼃 − τPrNtθh tk( 􏼁C

h
1Q

α
k+1 Θh􏼂 􏼃 � − δ1tI,

ScA
h
1L

β
k+1 Φh􏼂 􏼃 + τBh

1Φh + τ
Nt

Nb
B

h
1Θh � − δ1t − δ2t( 􏼁I,

U0
h � 0,Θ0

h � 0 � Θ1
h,Φ0

h � 0 � Φ1
h,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

where for all p, q � 1, 2, . . . , N0h and l, m � 1, 2, . . . , N1h.

Uh( 􏼁p ≔ up, Θh( 􏼁l ≔ θl, Φh( 􏼁l ≔ ϕl,

A
h
0􏼐 􏼑

qp
≔ W

p

0h, W
q

0h􏼐 􏼑, B
h
0􏼐 􏼑

qp
≔ 〈Wp

0h, W
q

0h〉, M
h
0􏼐 􏼑

qp
≔ W

p

0h, W
q

0h􏼐 􏼑,

A
h
1􏼐 􏼑

lm
≔ W

l
1h, W

m
1h􏼐 􏼑, B

h
1􏼐 􏼑

lm
≔ 〈Wl

1h, W
m
1h〉, C

h
1􏼐 􏼑

lm
≔ 〈Wl

1h, W
m
1h〉(I)m ≔ (1, 0, 0, . . . , 0)

†
.

(50)

*e system of algebraic equations, (50) has been com-
puted by Newton’s method. Linear Lagrange elements have
been applied to get matrices in the defined system (50).

3.3.ConvergenceofProposedScheme. Here we have given the
validation of the proposed numerical scheme so that one can
confidently perform simulations of real scenarios. A com-
parison of numerical and theoretical error estimates is
presented here. We postulate the proposed mathematical
model will satisfy the given error estimates.

ζh tk( 􏼁 − ζex tk( 􏼁
����

����L2(Ω)
≤D1 h

r+1
+ τα􏼐 􏼑,

ζh tk( 􏼁 − ζex tk( 􏼁
����

����H1(Ω)
≤D2 h

r
+ τα( 􏼁,

(51)

here constants D1 > 0 andD2 > 0 are not dependent of h, step
size, and τ (see [43]).

*eoretical and numerical error estimates are compared
with the induction of source terms Ffab1 in the momentum
equation, Ffab2 in the energy equation, and Ffab3 in the
concentration equation of model (26) to obtain an exact
fabricated solution.
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Pr
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z
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zt
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2θ
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z
α

zt
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zθ
zy

zϕ
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+ Nt
zθ
zy

􏼠 􏼡

2
⎛⎝ ⎞⎠ + Ffab2(y, t),

Sc
z

zt
1 + δ4

z
β

zt
β􏼠 􏼡ϕ �

z
2ϕ

zy
2 +

Nt

Nb
􏼒 􏼓

z
2θ

zy
2 + Ffab3(y, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(52)

with given conditions. *e fabricated solutions completely
satisfied the given equations, uex(y, t), θex(y, t), and
ϕex(y, t) along with conditions. For the validation of the
proposed scheme, we have inserted Ffab1, Ffab2, and Ffab3 in
the system (50). Error curves have been plotted and they are
shown in Figures 1(a), 1(b), and 2.

Errors are presented in norms on log scales of H1(Ω)

and L2(Ω) for different values of h.*e slopes of error curves
are nearly equal to 2 in the case of H1(Ω) and 3 in case of
L2(Ω). *eoretically, in 3.15 and 3.16, Lagrange polynomials
are of degrees r + 1 and r, respectively. In the proposed
scheme we have incorporated a second-degree Lagrange
polynomial, so exact values must be equal to 2 in case of
H1(Ω) and 3 in case of L2(Ω). *is shows the agreement
between theoretical and numerical error estimates. So, the
proposed scheme (50), is convergent and can efficiently
handle real simulations of proposed model (26). *e error
estimates for velocity, temperature, and concentration are
given in Tables 1 and 2.

4. Approximate Simulated Results

*is section deals with the results of the velocity field,
temperature field, and concentration of nanofluid with
nonlinear convection and flux conditions using MATLAB
R2017a. Brownian phenomena of motion and thermopho-
resis are analyzed while evaluating this study. Fluid is
flowing through the Darcy porous medium. Flow and
magnetic fields are orthogonal. *e proposed algorithm is
employed for numerical solutions of governing nonlinear
fractional equations. Discretization of time and space var-
iables is carried out by FDS and FES, respectively. We an-
alyze the characteristics of physical numbers on flow field
generation. Transfer of heat and mass are also discussed for
various pertinent numbers. Variations of flow quantities
with the variation of different nondimensional numbers help
to understand the problem. Simulated results are seen over
intervals of time [0, 2], and [0,

�
2

√
]. Figure 3, is used for

demonstration of velocity behavior with the variation of
0< α< 1. It is observed that for higher values of α, velocity
increases (see Figure 3(a)). However, this occurrence is
hereditary in character and cannot be considered to be other
variations of pertinent parameters.

Change in velocity with the variation of 0.1≤Ha≤ 3, and
0.1≤ c≤ 0.8 are plotted in Figure 3(b). *e plot showed that
a decrease in velocity is noted for higher values of Ha and

opposite behavior is obtained for the viscoelastic parameter,
c. As Ha increases, Lorentz force decreases, which slows
down fluid motion. As a result, velocity decreases for higher
values of Ha. Porosity parameter 0≤ λ≤ 7 and convection
number 0.1≤ λ1 ≤ 3.5 influence on the velocity, which is
plotted in Figure 4. It is noted that velocity decreases for
higher values of λ, while an opposite trend is noted for λ1 in
Figure 4(a). With the increase of λ, permeability decreases
while porosity increases. So, the velocity profile decreases
with the increase of λ. Force of inertia is inversely related to
λ1 and direct influence is given for buoyancy force. As λ1 > 0,
heat transfers from plates to fluid. So, (θs1

− θ0) and (θs2
−

θ0) increase. Consequently, the increase in λ1 increases
buoyancy forces, (θs1

− θ0) and (θs2
− θ0). So, increase in

fluid velocity is noted in this case.
Similar behavior of nonlinear convection number

0.1≤ λ2 ≤ 6.5 is noted in Figure 4(b). When there is con-
vection, it is nonlinear in nature, so as noted, the same
results are observed for the convection parameter λ1. It is
noted that an increase in the Darcy resistance number,
0.1≤ ϵ≤ 6.5 reflects a decrease in velocity. *is is because an
increase in ϵ permeability decreases while porosity increases.
Hence, a decrease in velocity with an increase in Darcy
resistance number is noted.

Figure 5 is plotted to observe the temperature profile, for
several values of α. Temperature profile, increases as α in-
creases in Figure 5(a). Temperature profile behavior with the
increase of pedesis number 0.1≤Nb≤ 4, Schmidt parameter
0.1≤ Sc≤ 4 are observed via Figure 5(b). It is noted that
temperature increases. as Sc, Nb increase. Momentum
diffusivity enhances with the increase of Sc, which increases
friction between different layers of the flow domain. As a
result, an increase in temperature is seen with the increase of
Sc. A decrease of temperature with the decrease of base fluid
heat capacity is noted with an increase of Nb.

*e influence of 0.1≤Pr≤ 7, Prandtl number,
0.1≤Nt≤ 4 thermophoresis number, on temperature is
plotted in Figure 6. With the increase of Nt, the temperature
profile increases, while the opposite trend is observed in the
case of Pr in Figure 6(a). With the increase of Nt, the heat
capacity of the nanofluid decreases, as a result, the tem-
perature profile increases, for higher values of Nt. With the
increase of Pr, thermal diffusivity, decreases so temperature
decreases with the increase of Pr. Figure 6(b) is plotted to
show the influence of heat flux, 0.1≤ δ1 ≤ 0.8 and mass flux,
0.1≤ δ2 ≤ 0.8 numbers on temperature. It is noted
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Figure 1: Error estimates for temperature and velocity. (a) Velocity H1 and L2 error curves. (b) Temperature H1 and L2 error curves.
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Figure 2: Concentration H1 and L2 error curves.

Table 1: Error estimates for velocity and temperature.

n h
Error estimates of velocity Error estimates of temperature

‖u − uex‖L2(Ω) ‖u − uex‖H1(Ω) ‖θ − θex‖L2(Ω) ‖θ − θex‖H1(Ω)

7 0.3000 2.5816528 × 10− 5 1.2760729 × 10− 1 1.211254 × 10− 4 1.4354533 × 10− 1

10 0.2360 1.7530926 × 10− 5 1.0335894 × 10− 1 3.809745 × 10− 5 8.0745776 × 10− 2

13 0.1807 1.2588759 × 10− 5 8.5420742 × 10− 2 1.584725 × 10− 5 5.1678524 × 10− 2

16 0.1728 9.5167115 × 10− 6 7.1777154 × 10− 2 7.961548 × 10− 6 3.5888249 × 10− 2

19 0.1529 7.5460756 × 10− 6 6.1157856 × 10− 2 4.640422 × 10− 6 2.6367821 × 10− 2

22 0.1502 6.2508125 × 10− 6 5.2734257 × 10− 2 3.080778 × 10− 6 2.0187853 × 10− 2

25 0.1456 5.3821874 × 10− 6 4.5938245 × 10− 2 2.2959072 × 10− 6 1.5949251 × 10− 2

28 0.1378 4.7890743 × 10− 6 4.0375489 × 10− 2 1.8817548 × 10− 6 1.2918457 × 10− 2
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Table 2: Error estimates for concentration.

n h
Error estimates of concentration

‖u − uex‖L2(Ω) ‖u − uex‖H1(Ω)

7 0.3000 3.6875492 × 10− 4 2.2760729 × 10− 2

10 0.2360 1.7254876 × 10− 4 1.0335894 × 10− 2

13 0.1807 1.4258149 × 10− 4 9.5124783 × 10− 3

16 0.1728 8.1568473 × 10− 5 8.2549678 × 10− 3

19 0.1529 6.4582167 × 10− 5 6.3548962 × 10− 3

22 0.1502 4.8723459 × 10− 5 5.7854216 × 10− 3

25 0.1456 3.1248753 × 10− 5 4.3698524 × 10− 3

28 0.1378 2.4529751 × 10− 5 3.9645871 × 10− 3
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Figure 3: Influence of noninteger number, Hartmann number, and viscoelastic number on velocity. (a) Change in velocity with α.
(b) Change in velocity with Ha and Υ.
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Figure 4: Influence of porosity, Darcy resistance, and convection numbers on velocity. (a) Change in velocity with λ and λ1. (b) Change in
velocity with λ2 and ε.
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temperature increases for higher values of δ1 while opposite
trends are seen for the case of δ2. With the increase of δ1,
thermal conductivity, the fluid decreases which decreases the
heat passage rate through the base fluid, so temperature
increases for higher values of δ1.

Figure 7 is outlined to observe concentration change for
various values of α. Concentration is at a higher level for
higher values of α in Figure 7(a). Effects of thermophoresis,
Nt, pedesis, Nb numbers on concentration are plotted in
Figure 7(b). Concentration increases, for higher values of
Nt, while the opposite behavior is noted for Nb. An increase
in concentration, is because of an increase in the coefficient
of thermophoretic diffusion.

*e influence of Prandtl Pr, and Schmidt Sc numbers on
concentration can be seen via Figure 8. Concentration in-
creases for higher values of Pr, while the opposite behavior is
noted in the case of Sc as shown in Figure 8(a). Momentum
diffusivity increases for higher values of Pr, as a result,
concentration is at a greater level for higher values of Pr. *e
viscosity of fluid increases, and the Brownian diffusion
coefficient decreases for higher values of Sc. So, the con-
centration remains at a lower level for higher values of Sc.
Figure 8(b) is outlined to observe the impact of heat flux δ1,
and mass flux δ2 numbers on concentration. Concentration
increases for higher values of δ1 and δ2. *e rate of transfer
of concentration decreases for higher values of δ2. So, the
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Figure 5: Influence of noninteger number, pedesis parameter, and Schmidt number on temperature. (a) Change in temperature with α.
(b) Change in temperature with Sc and Nb.
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Figure 6: Influence of Prandtl number, heat and mass fluxes, and thermophoresis numbers on temperature. (a) Change in temperature with
Pr and Nt. (b) Change in temperature with δ1 and δ2.
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concentration increases for higher values of δ2. At the end
Figures 9(a) and 9(b)–12(a) and 12(b) are plotted for time
dependent velocity, temperature, and concentration profiles.
*ese figures showed anomalous character of noninteger
nanofluid.

Variations of skin friction with pertinent fractional
model parameters are examined via Tables 3 and 4. Skin
friction magnitude increases with the increase of α, β, λ, δ2,
Pr, and Ha , while it decreases with the increase of c, λ1, λ2,
δ1, Sc, Nt, and Nb.
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Figure 7: Influence of fractional number, thermophoresis, and pedesis numbers on concentration. (a) Change in concentration with α.
(b) Change in concentration with Nt, and Nb.
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Figure 9: Unsteady velocity for various values of physical parameters over the interval [0, 2].
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Figure 11: Velocity profiles for various final times for Nt � 0.6, Sc � 0.5, Nb � 0.7, δ1 � 0.5, Pr � 0.8, δ2 � 0.3, δ3 � 0.1, and δ4 � 0.1.
(a) Variations of velocity profile when α� 0.5. (b) Variations of velocity profile when α� 0.1.
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Figure 12: Temperature and concentration profiles for various final times for Nt � 0.9, Sc � 0.3, Nb � 0.8, δ1 � 0.7, Pr � 1, δ2 � 0.8,
δ3 � 0.1 and δ4 � 0.1. (a) Variations of temperature profile when α� 0.7. (b) Variations of temperature profile when β� 0.7.

Table 3: Influence of fractional flow numbers on the coefficient of friction at (y, t) � (0, 0.1) for Sc � 0.5, Nt � 0.3, Pr � 0.4, Nb � 0.4,
δ1 � 0.4, δ2 � 0.6, δ3 � 0.01, δ4 � 0.01, α � 0.5, and β � 0.5.

ϵ c λ λ1 λ2 Ha ReCf/2

0.1 0.2 0.1 0.2 0.1 0.2 − 2.351733
0.2 − 2.430800
0.3 0.2 − 2.507821

0.3 − 2.305209
0.4 0.1 − 2.168051

0.2 − 2.177760
0.3 0.2 − 2.187445
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5. Conclusion

*e flow of a nanofluid with a fractional derivative of time
and nonlinear convection is studied in this communication.
*e fractional derivative of time is used to analyze the
memory characteristics. Applications of Darcy porous
medium can be encountered in numerous industries.
Brownian motion effects are also considered while formu-
lating the flow domain. A numerical algorithm is incor-
porated to estimate variations in the flow field. Flow is
carried out by variable acceleration of the lower boundary.
*e flow direction and the applied magnetic field are or-
thogonal. Conditions for heat and mass gradients are
considered at the bottom boundary, while quadratic vari-
ation is seen at the upper boundary. Enhancement in ve-
locity is noted, for higher values of α, λ1, c, andλ2, and
opposite behavior is seen in case of λ, Ha, and β. Also, the
enhancement of temperature profiles are observed for higher
values of Nt, Nb, Sc, α, and δ1, and opposite behavior is
noted in case of Pr and δ2. Concentration increases with the
increase of α, Nt, Pr, δ1, and δ2, and decreasing behavior is
observed for Nb and Sc. It is believed that fractional porous
medium flows of nanofluids can be tackled with the current
study. Flow, discussed in this communication, can be tackled
in the manufacture of fiber and in geology. Moreover, the
current study can be extended to Maxwell fluid flow. An
analysis can also be performed to tackle nonlinear radiation
effects in a fluid of differential type with fractional derivative.

Nomenclature

u: Velocity component
t: Time
ϕ: Fluid concentration
ϕ0: Initial concentration
cp: Nanoparticles specific heat
hp: Nanoparticles enthalpy
α, β: Fractional derivatives
α3: *ermal diffusivity
g: Gravitational acceleration
τ: Heat capacities ratio
σ: Electrical conductivity
ψ: Porosity
α1: Second-grade fluid material parameter
k: *ermal conductivity
qθ: Heat flux
ϵ: Darcy resistance parameter
λ: Porosity parameter
λ1, λ2: Convection parameters
Nt: *ermophoresis parameter
δ1: Heat flux parameter
δ3, δ4: Relaxation time parameters
Pr: Prandtl parameter
y: Space coordinate
θ: Fluid temperature
θ0: Initial temperature
cf: Specific heat

Table 3: Continued.

ϵ c λ λ1 λ2 Ha ReCf/2

0.3 − 2.133404
0.4 0.1 − 2.079362

0.2 − 2.078998
0.3 0.2 − 2.078633

0.3 − 2.088548
0.4 − 2.098437

Table 4: Influence of fractional flow numbers on the coefficient of friction at (y, t) � (0, 0.1) for ϵ � 0.3, β � 0.3, c � 0.4, λ � 0.1, Ha � 0.5,
δ3 � 0.01, δ4 � 0.01, λ1 � 0.5, and λ2 � 0.7.

α δ1 δ2 Pr Sc Nt Nb ReCf/2

0.1 0.5 0.4 0.6 0.5 0.4 0.5 − 0.314325
0.2 − 0.567381
0.3 0.5 − 0.936514

0.6 − 0.890553
0.7 0.4 − 0.844409

0.5 − 0.844564
0.6 0.6 − 0.844719

0.7 − 0.870374
0.8 0.5 − 0.892903

0.6 − 0.892822
0.7 0.4 − 0.892728

0.5 − 0.892449
0.6 0.5 − 0.892164

0.6 − 0.891937
0.7 − 0.891685
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ρf: Fluid density
ρp: Nanoparticles density
τ1, τ2: Relaxation times
DB: Diffusion coefficient
Dθ: *ermophoretic coefficient
β1, β2: *ermal expansion coefficients
K: Permeability
B0: Applied magnetic field
A: Dimensional constant
]: Kinematic viscosity
qϕ: Concentration flux
c: Viscoelastic parameter
λ: Magnetic parameter
Nb: Pedesis parameter
Nb: Pedesis parameter
δ2: Mass flux parameter
Sc: Schmidt parameter
Re: Reynold parameter.
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