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In order to achievemore accurate estimates of the existing direction-�nding approaches under impulsive noise, a robust direction-
�nding algorithm using a coprime array is proposed in this work. In order to suppress the strong impulsive noise, we introduce an
in�nite norm normalization approach, and on this basis, a weighted signal subspace �tting equation using a coprime array is
derived. Furthermore, we propose a quantum-inspired moth-�ame algorithm to minimize the derived weighted signal subspace
�tting function. Simulation results represent that our direction-�nding method has the most excellent performance compared to
other conventional methods. Besides, our method can address coherent sources without any additional approach.

1. Introduction

Direction-�nding technology has made great progress in
array signal processing in recent decades, and many ex-
cellent direction-�nding algorithms have been proposed and
played important roles in various �elds [1–4]. In [5], a
conventional multiple signal classi�cation (MUSIC) method
was modi�ed to estimate multiple angles of the sources in
imperfectly calibrated scenario. In [6], an estimation of
signal parameters via the rotational invariance techniques
(ESPRIT) method was proposed, and the super-resolution
limit of whom was given in [7]. In [8], a successive prop-
agation method without the eigenvalue decomposition
operation was proposed to estimate the angles using a planar
array. In [9], some fast implementations of the stochastic
maximum likelihood method were proposed.�e resolution
probability of the maximum likelihood estimates was given
in [10]. In [11], a weighted subspace �tting method for
direction-�nding based on block sparse recovery was
proposed.

All of the above algorithms only perform well under
Gaussian noise, whereas in real world, there exist various
forms of impulsive noises, and their performance will be
degraded under impulsive noise. Typically, the impulsive

noise is modeled as a symmetric α-stable (SαS) distribution
[12, 13], which is a popular statistical model for heavy-tailed
phenomena encountered in communications, radar, bio-
medicine, and econometrics. To suppress the impulsive
noise e¢ectively, researchers have made great e¢ort for its
further development. In [14], the authors proposed a frac-
tional lower order moment (FLOM) approach to suppress
the e¢ect of impulsive noise. A robust covariance (ROC)
approach-combined MUSIC algorithm was proposed to
estimate the angles under the impulsive noise in [15]. In [16],
a cyclic correntropy spectrum was proposed to suppress the
impulsive noise. In [17], the authors proposed a kernel low-
order covariance to achieve the angular estimates under the
impulsive noise. In [18], an in�nite norm exponential kernel
covariance was proposed to restrain the impulsive noise.

Notably, these mentioned methods are achieved using
uniform arrays, which limit the application scenarios.
�erefore, some nonuniform arrays are proposed in recent
years to achieve better performance in various direction-
�nding scenarios. In [19], a L-shaped nested array was
proposed to achieve 2-D angular estimates. In [20], a novel
nested array utilizing array motion was proposed for real-
valued signals. In [21], the authors proposed a sparse nested
array for accurate estimates. In [22], the authors proposed a
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direction-finding method using the coprime array (CA),
which can efficiently solve the angular ambiguity. In [23], the
authors proposed a weaved CA for MIMO radar. In [24], the
authors proposed a complementary subarray to fill the holes
existing in the CA, which achieves more degrees of freedom.
In [25], the authors proposed a generalized sparse polari-
zation array using compressive sensing to achieve accurate
angle and polarization estimates.

However, the methods mentioned above are only im-
provements to one aspect of the direction-finding problem.
To achieve the more accurate estimates under the impulsive
noise, we perform an infinite norm (IN) normalization [26]
on the received data to suppress the impulsive noise, then, a
weighted signal subspace fitting (WSSF) equation using the
CA under the impulsive noise, with huge computational
cost, is derived. Fortunately, some algorithms, such as the
Harris hawks optimization [27] and chimp optimization
algorithm [28], may be an efficient implementation to
minimize this cost function, but these algorithms have the
disadvantage that they obtain local optimum easily. To
overcome this drawback, we design a quantum-inspired
moth-flame algorithm (QMFA), which is inspired by nav-
igating mechanism of moths [29] and quantum computation
[30]. (e proposed method is referred to as QMFA-IN-
WSSF-CA. (e superiority of our method has been verified
through simulations comparing to conventional algorithms
in various scenarios.

(e main contributions are as follows:

(1) A WSSF direction-finding equation employing IN,
using the CA, is derived to achieve more accurate
estimates under the impulsive noise

(2) A QMFA is designed to minimize the derived cost
function efficiently

(e following is the rest of this work. Section 2 shows the
considered model under the impulsive noise. Section 3
shows the direction-finding method using the QMFA.
Section 4 gives the simulation results and Section 5 con-
cludes this paper.

2. The Direction-Finding Model under the
Impulsive Noise

Consider that an augmented coprime array consists of two
uniform subarrays of 2M and N antenna elements, re-
spectively, where, M and N are two coprime integers, the
positions of the two subarrays are
u1 � mNd0, m � 0, 1, . . . , 2M − 1  and
u2 � nMd0, n � 0, 1, . . . , N − 1 , respectively, where d0 is
the half wavelength of the received signals, thus the positions
of the coprime array are as follows:

u � u1 ∪u2 � u1, u2, . . . , uM  � d0 d1, d2, . . . , dM , (1)

where M � 2M + N − 1 denotes the number of antennas of
the coprime array; d1, d2, . . . , dM are integers.

Assume that there are P narrowband signals impinging
on a coprime array, the receiving signal vector is modeled as
follows:

x(t) � A(θ)s(t) + n(t), (2)

where s(t) is the signal vector, n(t) is the impulsive noise
vector, andA(θ) � [a(θ1), a(θ2), . . . , a(θP)] is the array
manifold with

a θp  � 1, e
− j2πu2 sin θp( /λ

, . . . , e
− j2πu

M
sin θp( /λ

 
T

, (3)

where p � 1, 2 . . . , P, θ � [θ1, θ2, . . . , θP], and λ denotes the
wavelength of the impinging signals.

(e impulsive noise is usually modeled as the SαS dis-
tribution, whose characteristic function is represented by

φ(w) � e−c|w|α
, (4)

where c and α represent the scale and the characteristic
exponent, respectively. A generalized signal-to-noise ratio
(GSNR) is usually used under the impulsive noise, defined as

GSNR � 10lg
E ‖s(t)‖

2
 

c
α

⎧⎨

⎩

⎫⎬

⎭, (5)

where ‖ · ‖ and E[·] denote the Euclidean norm and the
expectation.

In this paper, we define K as the number of snapshots,
and for the kth snapshot, we employ IN approach to sup-
press the impulsive noise; the specific formula is represented
as

x(k) � x1(k), x2(k), . . . , xM(k) 
T

�
x(k)

max
1≤m≤M

xm(k)


 
. (6)

(us, the resulting covariance is given by

R �
1
K



K

k�1
x(k)xH(k)

� R1,R2, . . .RM 

�

R
d1−d1( )

11 . . . R
d1−d

M( )
1M

⋮ ⋱ ⋮

R
d

M
−d1( )

M1
· · · R

d
M

−d
M( )

MM

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

where Rm � [R
(d1− dm)
1m , R

(d2− dm)
2m , . . . , R

(d
M

− dm)

Mm
]T,

k � 1, 2, . . . , K.
Next, we reconstruct the resulting covariance of the

coprime array into an extended covariance of a virtual
uniform linear array, and virtualize the array manifold into a
virtual array manifold. (e virtual uniform linear array has
M � MN + M antennas with inter-element spacing d0 , the
pth virtual steering vector is
b(θp) � [1, e− j2πd0 sin(θp)/λ, . . . , e− j2πd0 M sin(θp)/λ]T, and the
virtual array manifold B(θ) � [b(θ1), b(θ2), . . . , b(θP)], the
extended covariance is represented by

R � R1,
R2, . . . RM , (8)
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where Rc � [R1c,
R2c, . . . , RMc

]T, 1≤ c≤ M,
Rzz � E[R

(da−db)

ab ], z − z � ha − hb, 1≤ z, z≤ M, 1≤ a, b≤M.
Eigen decomposes the extended covariance and obtains

that

R � USΣSU
H
S + UNΣNU

H
N, (9)

where ΣS and ΣN denote the top P larger eigenvalues and
M − P the smaller eigenvalues, respectively, US and UN

denote the corresponding eigenvectors, respectively. (en
we fit B(θ) to USW1/2 in the least squares sense by finding a
matrix T, that is,

θ, T � arg min
θ,T

USW
1/2

− B(θ)T
����

����
2
F
, (10)

where ‖ · ‖F denotes the Frobenius norm. By fixing B(θ), the
least squares solution of T can be given by

T � BH
(θ)B(θ) 

−1
BH

(θ)USW
1/2

. (11)

Substituting (11) into (10), we can obtain that

θ � argmin
θ

USW
1/2

− B(θ) BH
(θ)B(θ) 

−1
BH

(θ)USW
1/2

�����

�����
2

F

� argmin
θ

trace P⊥B(θ)USWUH
S ,

(12)

where P⊥B(θ) � I − B(θ)(BH(θ)B(θ))−1BH(θ)A denotes the
orthogonal projection matrix of B(θ), W � (ΣS − σI)Σ−1S

denotes the optimal weight matrix with σ as the average
value of the M − P smaller eigenvalues, and trace(·) rep-
resents the trace of the matrix.

3. The Direction-Finding Method Using
a QMFA

3.1. e Quantum-Inspired Moth-Flame Algorithm. (e
QMFA is inspired by the navigating mechanism of moths in
nature and the quantum computation theory. Consider that
there are Q quantum moths and the maximum number of
iterations is V. At the v th iteration, the quantum position of
the qth quantum moth is

yv
q � y

v
q,1, y

v
q,2, . . . , y

v
q,D , (13)

where 0≤yv
q,d ≤ 1, q � 1, 2, . . . , Q, d � 1, 2, . . . , D, D repre-

sents the number of variables of the optimization problem,
and the position yg

q � [y
g
q,1, y

g
q,2, . . . , y

g

q,B] is mapped by

y
v
q,d � y

v
q,d y

Upper
d − y

Lower
d  + y

Lower
d , (14)

where yv
q,d ∈ [yLower

d , y
Upper
d ], y

Upper
d and yLower

d represent the
dth dimensional upper and lower bound, respectively, F(yv

q)

denotes the fitness of yv
q, and Fv

M � [F(yv
1), F(yv

q), . . . ,

F(yv
Q)] denotes the set of fitness of the quantum moths.
(ere are also Qv quantum flames at the v th iteration,

where

Q
v

� round Q − v ×
Q − 1

V
 , (15)

where round(·) is a rounding operation. (e quantum
position of the qth quantum flame is

zv
q � z

v
q,1, z

v
q,2, . . . , z

v
q,D , (16)

where q � 1, 2, . . . , Qv. Fv
F � [F(zv

1), F(zv
2), . . . , F(zv

Qv )] de-
notes the set of fitness of the quantum flames, where zv

q

represents the position of the qth quantum flame with the
same mapping equation as the quantum moth. At the
vth(except 1) iteration, the quantum positions of
the quantum flames are the top Qv quantum positions of the
quantum moths in ascending fitness order at the vth and
the (v − 1)th iterations. Notably, at the first iteration, the
quantum positions of the quantum flames are the corre-
sponding quantum positions of the initial quantummoths in
an ascending fitness order.

In update stage, at (v + 1)th iteration, the dth dimension
quantum rotational angle of the qth quantum moth is de-
scribed as

ηv+1
q,d � μv

q,de
ρτ cos(2πτ), (17)

where ρ denotes a spiral constant, and τ is a uniformly
random number in [r, 1] with r � −1 − v/V and μv

q,d is
represented as

μv
q,d �

z
v
q,d − y

v
q,d



, q≤Q
v
,

z
v
Qv,d − y

v
q,d



, q>Q
v
,

⎧⎪⎨

⎪⎩
(18)

where | · | denotes the absolute value. (en, update equation
of the quantum positions is represented as

y
v+1
q,d �

z
v
q,d cos ηv+1

q,d  +

���������

1 − z
v
q,d 

2


sin ηv+1
q,d 




, q≤Q

v
,

z
v
Qv,d cos ηv+1

q,d  +

����������

1 − z
v
Qv,d 

2


sin ηv+1
q,d 




, q>Q

v
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

3.2.eProposedDirection-FindingMethod. In a QMFA, the
quantum positions of the initial population are uniformly
random numbers in the range of [0, 1], and the fitness
function, considering the proposed direction-finding
method, is defined as

F y
v
q  � trace P⊥

B y
v
q 
USWUH

S , (20)

where the yv
q � [yv

q,1, yv
q,2, . . . , yv

q,D] is the estimated angles of
the sources, thus D� P. (e steps of the proposed direction-
finding method are as follows:

Step 1: obtain the snapshots sampling data received in
the CA, construct WSSF direction-finding equation
using the CA
Step 2: initialize the search space and parameters of the
QMFA, such as population size, the spiral constant, and
the maximum number of iterations
Step 3: for initial quantum moths, initialize the
quantum positions and calculate the fitness. Initialize
the quantum positions of the initial quantum flames
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Step 4: in update stage, update the quantum positions of
the quantum moths through (17) and (19), and cal-
culate the fitness of the quantum moths
Step 5: update the quantum flames and store the
quantum position of the quantum flame with the best
fitness so far
Step 6: determine whether termination criteria are met,
if not, let v � v + 1, go back to step 4; otherwise, ter-
minate the algorithm, output the position of the
quantum flame with the best fitness so far according to
the mapping equation as the estimated angles of the
sources

4. Simulation Results

We utilize two criteria to assess the performance of our
method and other conventional methods. (e first criterion
is the root mean square error (RMSE), which is represented
as

RMSE �

����������������



P

i�1


Er

n�1

θi −
i

θ
(n) 

2

PEr




,
(21)

where θi denotes the ith true angle, θi(n) denotes the ith
estimated angle in the n run, and Er denotes the number of
simulation runs.

(e second criterion is the estimated probability of
success (EPOS), which is the ratio of the number of suc-
cessful estimates and the number of total estimates, and we
define a successful estimate when the absolute value of the
real angles and the estimates is less than 2°.

Parameter settings: M � 3, N � 5, Q � 30, V � 100, and
ρ � 1. Each experiment is the result of a statistical average of
300 simulation runs, and the FLOM [14] and ROC [15] are
combined with the conventional MUSIC [5] and ESPRIT [6]
algorithms, termed as FLOM-MUSIC, ROC-MUSIC,
FLOM-ESPRIT, and ROC-ESPRITas a comparison. Besides,
we also introduce the coprime array into the FLOM-MUSIC
and the FLOM-ESPRIT method, termed as the FLOM-
MUSIC-CA and FLOM-ESPRIT-CA as a comparison.

4.1. e First Experiment. Consider that two independent
sources with θ � [θ1, θ2] � [−44.246°, 40.565°] impinge on
the CA. To assess the performance in small number of
snapshots scenario, Figures 1 and 2 plot the RMSE and the
EPOS curves when GSNR� 0 dB and α� 1.5, respectively.
From this experiment, we can obtain that the performance of
the typical methods is relatively poor in small number of
snapshot scenario, whereas the proposed method has lower
RMSE compared with conventional approaches in small
number of snapshot scenario, and the EPOS of the proposed
method is up to 100% when K> 25. In other words, the
proposed method has preferable performance to conven-
tional approaches in small number of snapshot scenario.

4.2. e Second Experiment. Consider that the same two
sources as the first experiment. Figures 3 and 4 plot the
RMSE and the EPOS curves in different GSNRs scenario
when K� 35 and α� 1.5, respectively. Figure 5 shows the
EPOS curves in different characteristic exponents scenario
when K� 35 and GSNR� 0 dB. From Figure 3, we can obtain
that our method has higher accuracy as compared to con-
ventional methods in small number of snapshot and low
GSNR scenario. From Figures 4 and 5, the EPOS of the
proposed method outperforms other alternative approaches
in terms of GSNR and characteristic exponent.
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Figure 1: RMSE curves when GSNR� 0 dB and α� 1.5.
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Figure 2: EPOS curves when GSNR� 0 dB and α� 1.5.
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4.3. e ird Experiment. Consider the two coherent
sources with identical angles to the first experiment. To
assess the performance in coherent sources scenario, we
apply spatial smoothing (SS) [31] technology in conven-
tional algorithms, termed as SSMUSIC and SSESPRIT.
Figures 6 and 7 plot the RMSE and the EPOS curves in
different GSNRs scenario when K� 35 and α� 1.5, respec-
tively. Figure 8 plots the EPOS curves in different charac-
teristic exponents scenario when K� 35 and GSNR� 0 dB.
From the figures, the alternative approaches require extra
operation such as SS to achieve accurate estimates. Whereas
our derived WSSF equation can address coherent sources
without any additional approach comparing to other

conventional algorithms. In addition, the proposed method
outperforms other methods in terms of RMSE and EPOS in
coherent sources scenario.

4.4. e Fourth Experiment. (e above experiments are
considering two sources, in order to assess the performance
of when more sources impinging on the CA, we consider
the three independent sources in this experiment. Figures 9
and 10 plot the RMSE and the EPOS curves in different
GSNRs scenario when K � 35 and α� 1.5, respectively.
Figure 11 plots the EPOS curves in different characteristic
exponents scenario when K � 35 and GSNR � 0 dB. From
Figure 9, we can obtain that our method has higher
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Figure 3: RMSE curves when K� 35 and α� 1.5.
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Figure 4: EPOS curves when K� 35 and α� 1.5.
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Figure 5: EPOS curves when K� 35 and GSNR� 0 dB.
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accuracy as compared to conventional methods, and from
Figures 10 and 11, the EPOS of the proposed method
outperforms other alternative approaches in terms of
GSNR and characteristic exponent when addressing three

sources compared to conventional algorithms. In other
words, our direction-finding method also has the best
performance when addressing three sources compared to
alternative approaches.
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Figure 7: EPOS curves when K� 35 and α� 1.5.
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Figure 8: EPOS curves when K� 35 and GSNR� 0 dB.
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Figure 9: RMSE curves when K� 35 and α� 1.5.
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Figure 10: EPOS curves when K� 35 and α� 1.5.
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5. Conclusions

A direction-finding method using the coprime array under
the impulsive noise is proposed in this work. A quantum-
inspired moth-flame algorithm is designed to minimize the
derived weighted signal subspace fitting equation. Simula-
tion results illustrate that our method offers excellent per-
formance in low GSNR, small number of snapshots, and a
strong impulsive noise scenario. Besides, our method has the
advantage to address coherent sources without additional
operations. In the future research, we will explore a dynamic
source tracking algorithm.
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