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In any interconnection network, fault tolerance is the most desirable property to achieve reliability. Toeplitz networks are used as
interconnection networks due their smaller diameter, symmetry, simpler routing, high connectivity, and reliability. +e partition
dimension of a network is presented as an extension of metric dimension of networks. Its applications can be seen in several areas
including robot navigation, network designing, image processing, and chemistry. In this article, the fault tolerant partition
dimension, pd2(Tn〈1, t〉), of Toeplitz networks, is shown to be bounded below by 4 for t≥ 2, n≥ 4, whereas it is bounded above by
5 for t � 3, n≥ 14. Further, it is shown that the exact value of pd2(Tn〈1, t〉) equals 4 for t � 2, n≥ 4; t � 3, n ∈ 5, 6, . . . , 13{ };
and t≥ 4, n ∈ t + 2, t + 3, t + 4{ }.

1. Introduction

Computer networking gives a way of communication
among several processors of a computer and numerous
computers connected to a network. +e objective of the
interconnection networks is to reduce the time when it
becomes impossible to manage large amount of data by a
single processor, so the job is divided among the several
processors working at the same time. Effective intercon-
nection networks play vital rule in transferring data briskly
among the different components of parallel processing. It is
always preferable for a computer network to have smaller
diameter, lesser degree, alternate paths among the nodes,
higher level of symmetry, simpler routing, and high level of
connectivity. Fault tolerance of a network ensures that the
system will continue to work even if some of its compo-
nents fail to work. +is also guarantees the lower main-
tenance cost and longer durability of the network. Toeplitz
networks are used as interconnection networks due their
smaller diameter, symmetry, simpler routing, high con-
nectivity, and reliability [1]. In this article, we have com-
puted the fault tolerant partition dimension of some
particular classes of Toeplitz networks.

1.1. Background and Related Work. +e metric basis is a set
that contains least number of nodes of a network such that
all nodes are exclusively identified by the distances from
nodes in the basis. Motivated by the need of such a set of
nodes, Slater [2] and Harary and Melter [3] independently
introduced the concept of metric basis in 1975 and 1976.
Slater [2] used metric basis to locate the invader in the given
network. Khuller et al. [4] used it for robot navigation in
1996. In 2000, Chartrand et al. [5] used it to locate position
of functional groups in chemical compounds. In 2008,
Hernando et al. [6] presented the notion of fault tolerant
metric dimension of graphs. In 2015, Estrado-Moreno et al.
[7] presented the concept of κ−metric. For κ � 2, the
κ−metric dimension is known as fault tolerant metric di-
mension denoted by dim2(W). Further study on κ−metric
dimension can be seen in [8, 9].

An important variant of metric basis is the partition basis
which is the partition of the nodes of a network with
minimum size such that all nodes are exclusively identified
by the distances from sets in the partition.+eminimum size
of a resolving partition is called partition dimension of the
network. In 2000, Chartrand et al. [10] presented the concept
of partition dimension which is an extension of metric
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dimension. In 2009, Javaid et al. [11] introduced the concept
of fault tolerant partition dimension. In 2014, the partition
dimension of unicyclic graphs was discussed in [12]. +e
partition dimension of some families of trees was studied by
Fredlina and Baskaro [13] in 2015. In 2020, Estrado-Moreno
[14] presented the concept of κ−partition dimension of the
network. For κ � 2, the κ−partition dimension is known as
fault tolerant partition dimension denoted by pd2(W). +e
pd2(W) was computed for some important networks in
[15, 16].

Harary and Melter in [3] concluded that computation of
metric basis of a network is an NP-hard problem; it further
implies that computation of partition-related metric pa-
rameters for general graphs is also NP-hard. +is lead the
current research trends to focus on the computation of these
metric parameters for specific classes of graphs. Recently,
Liu et al. in [17] calculated the metric dimension of Toeplitz
networks. +e present research on Toeplitz networks and
their merits in the interconnection networks [1] motivated
us to study fault tolerant partition dimension of Toeplitz
networks.

1.2. Preliminaries. Considering a connected network W, the
node and edge sets of W are denoted by V(W) and E(W),
respectively. +e length of the shortest path, connecting two
nodes and q, is known as the distance between p and q

denoted by d(p, q). +e distance of a node p from a subset A

of the node set is d(p, A) � min d(p, t)|t ∈ A , whereas the
set N(p) � q ∈ V(G)|pq ∈ E(G)  is called the neighbour-
hood of node p. LetΩ � x1, x2, . . . , xl  be an ordered set of
nodes, the representation of a node p with respect to Ω is a
vector r(p|Ω) such that r(p|Ω) � (d(p, x1),

d(p, x2), . . . , d(p, xl)). If the vectors r(p|Ω) are different,
for every node of the network, then Ω is termed as a re-
solving set of W. +e minimal cardinality of Ω is termed as
the metric dimension of W, represented by dim(W). If the
vectors r(p|Ω) are different in at least κ places for every node
of the graph, thenΩ is termed as a κ−metric generator for W.
κ−metric basis is a generator with least number of nodes.+e
minimal cardinality of Ω is termed as the κ−metric di-
mension of W, represented by dimκ(W).

Let Ψ � B1, B2, . . . , Bl  be an ordered l−partition of a
connected network W. +e partition representation of node
p with respect to Ψ is a vector r(p|Ψ) such that
r(p|Ψ) � (d(p, B1), d(p, B2), . . . , d(p, Bl)). If the vectors
r(p|Ψ) are different for every node of the graph, then
l−partition is termed as a resolving partition of W. +e
minimal cardinality of Ψ for which there is a resolving
l−partition is termed as the partition dimension of W,
represented by pd(W). If the vectors r(p|Ψ) are different in
at least κ places for every node of the network, then Ψ is
termed as a κ−partition generator ofW. κ−partition basis is a
generator with least number of sets. +e minimal cardinality
of Ψ is termed as a the κ−partition dimension of W, rep-
resented by pdκ(W).

1.3.MainResults. +e study conducted in this paper leads to
the following results.

Theorem 1. Let Tn〈1, t〉 be the Toeplitz network, then

(1) For n≥ 4, pd2(Tn〈1, t〉)≥ 4
(2) For n≥ 4, pd2(Tn〈1, 2〉) � 4
(3) For n ∈ 5, 6, . . . , 13{ }, pd2(Tn〈1, 3〉) � 4
(4) For n≥ 14, 4≤ pd2(Tn〈1, 3〉)≤ 5
(5) For t≥ 5 and n � t + 2, t + 3, t + 4, pd2(Tn〈1, t〉) � 4

In Section 2, Toeplitz networks are defined and the fault
tolerant partition dimension of Toeplitz networks, Tn〈1, t〉,
for different values of n and t have been computed. In Section
3, the results are summarized and two open problems are
proposed.

2. Fault Tolerant Partition Dimension of
Toeplitz Networks

For a sequence of positive integers, n, k1, k2, . . . , kn with
k1, k2, . . . , kn ≤ n − 1, the Toeplitz network Tn〈k1,

k2, . . . , kn〉 is a network on the vertex set x1, x2, . . . , xn 

with two vertices xi and xj which are adjacent if and only if
|i − j| ∈ k1, k2, . . . , kn . Figure 1 shows T14〈1, 3〉.

+e following lemma gives the lower bound on the fault
tolerant partition dimension of Toeplitz networks Tn〈1, t〉.

Lemma 1. Let Tn〈1, t〉 be the Toeplitz network with n≥ 4,
then pd2(Tn〈1, t〉)≥ 4.

Proof. Assume that pd2(Tn〈1, t〉) � 3 for n≥ 4. Let
Ψ � A1, A2, A3  be a fault tolerant partition basis of
V(Tn〈1, t〉). Clearly, one of the sets A1, A2, and A3 contains
at least two vertices. Suppose that |A1|≥ 2. Here, at least one
node of A1, say vk, has a coordinate of r(vk|Ψ)> 1. Oth-
erwise, each node in A1 will have the same representation.
So, without loss of generality, we can assume that the third
coordinate of r(vk|Ψ) is greater than 1. i.e., d(vk, A3)≥ 2. Let
vm be a node in A3 such that d(vk, vm) � d(vk, A3). Let
N(vk) be the neighbourhood of vk. So, N(vk)∩A3 � ∅ as
d(u, vk)<d(vk, vm) for all u ∈ N(vk). Since 2≤ |N(vk)|≤ 4
in the Tn〈1, t〉 Toeplitz network, so we have the following
three cases.

Case 1: when |N(vk)| � 4, let N(vk) � x1, x2, x3, x4 .

Case 1.1: suppose all the nodes of N(vk) are in the
same set A1 or A2. Assume that N(vk)⊆A1, then
r(vk|Ψ) � (0, a0, b0) and for x ∈ N(vk), r(xl|Ψ) �

(0, al, bl), for 1≤ l≤ 4. Hence, a0 − 1≤ a1, a2,

a3, a4 ≤ a0 + 1. Now, pigeonhole principle implies that
at least two of the nodes vk and xl will be equidistant
from A1 and A2, which is a contradiction, whereas
N(vk)⊆A2 generates a trivial case of contradiction.
Case 1.2: assume that A1 or A2 contains three vertices
from N(vk).
Let xp, xq, xr ∈ N(vk)∩A1, and xt ∈ N(vk)∩A2,
then r(vk|Ψ) � (0, 1, b0), r(xp|Ψ) � (0, a1, b1),

r(xq|Ψ) � (0, a2, b2), and r(xq|Ψ) � (0, a3, b3). In this
case, we have 1≤ a1, a2, a3 ≤ 2. Again, pigeonhole
principle implies that at least two of the nodes
vk, xp, xq, and xr will be equidistant from A1 and A2,
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leading to a contradiction, whereas three nodes of
N(vk) in A2 generate a trivial case of contradiction.
Case 1.3: assume that each of A1 and A2 contains two
nodes of N(vk). Let xp, xq ∈ N(vk)∩A1 and
xr, xt ∈ N(vk)∩A2, then r(vk|Ψ) � (0, 1, b0),

r(xp|Ψ) � (0, a1, b1) and r(xq|Ψ) � (0, a2, b2). In this
case, we have 1≤ a1, a2 ≤ 2. Again by pigeonhole
principle, at least two of the nodes vk, xp and xq will
have the same distances from A1 and A2. +is leads to
a contradiction. Now, if we consider nodes in A2, then
r(xr|Ψ) � (1, 0, b1) and r(xt|Ψ) � (1, 0, b2), which is
again a contradiction.

Case 2: when |N(vk)| � 3, let N(vk) � x1, x2, x3 . +e
subcases in this case are similar to Case 1.2 and Case
1.3.
Case 3: when |N(vk)| � 2, let N(vk) � x1, x2 .

Case 3.1: if both of the nodes of N(vk) are in the same
set A1 or A2, assume that N(vk)⊆A1, then r(vk|Ψ) �

(0, a0, b0), r(xp|Ψ) � (0, a1, b1) and
r(xq|Ψ) � (0, a2, b2). Hence, a0 − 1≤ a1, a2 ≤ a0 + 1.
Now, if any of a1 and a2 is equal to a0, then we have a
contradiction. Since in Toeplitz networks the only
nodes with two neighbours are v1 and vn, so in all
other cases, we will have 3≤ |N(vp)|≤ 4 and
3≤ |N(vq)|≤ 4 which are similar to Case 1 and Case 2,
whereas N(vk)⊆A2 generates a trivial case of
contradiction.
Case 3.2: assume that each of A1 and A2 contains a
node from the set N(vk). Let xp ∈ N(vk)∩A1 and
xq ∈ N(vk)∩A2, then we can consider the N(vp) and
N(vq) to get contradiction as in the previous cases.

Hence, pd2(Tn〈1, t〉)≥ 4 for n≥ 4.
In the following theorems, we calculate the fault tolerant

partition dimension of Toeplitz networks Tn〈1, t〉 for dif-
ferent values of t. □

Theorem 2. Let Tn〈1, 2〉 be the Toeplitz network with n≥ 4,
then pd2(Tn〈1, 2〉) � 4.

Proof. Let Ψ � A1, A2, A3, A4  be a partition of
V(Tn〈1, 2〉). +e proof is divided into three cases, and in
each case, we will show that Ψ is the fault tolerant partition
generator of Tn〈1, 2〉. Let κ � dn/2e.

Case 1: for κ � 3〉, let A1 � v2, v4, . . . , v2(bn/2c) ,

A2 � v1, v3, . . . , v2〉−1 , A3 � v2〉+1, v2〉+3, . . . , v4〉−1 ,
and A4 � v4〉+1, v4〉+3, . . . , v2κ−1 .
When κ � 3〉, the r(va|Ψ) are tabulated in Table 1.
Case 2: for κ � 3〉 +1, let A1 � v2, v4, . . . , v2(bn/2c) ,

A2 � v1, v3, . . . , v2bκ/3c+1 , A3 � v2bκ/3c+3, v2bκ/3c+5, . . . ,

v4bκ/3c+1}
, and A4 � v4bκ/3c+3, v4bκ/3c+5, . . . , v2κ−1 

When κ � 3〉 + 1, the r(va|Ψ) are tabulated in Table 2.
Case 3: for κ � 3ϱ +2, let A1 � v2, v4, . . . , v2(bn/2c) ,

A2 � v1, v3, . . . , v2dκ/3e−1 , A3 � v2dκ/3e+1, v2dκ/3e+3,

. . . , v4dκ/3e−1}, and A4 � v4dκ/3e+1, v4dκ/3e+3, . . . , v2κ−1 .
When κ � 3〉 + 2, the r(va|Ψ) are tabulated in Table 3.

Tables 1–3 clearly show thatΨ is a 2−resolving generator
of Tn〈1, 2〉 for n≥ 4, therefore pd2(Tn〈1, 2〉)≤ 4 for n≥ 4.
Lemma 1 implies that pd2(Tn〈1, 2〉)≥ 4 for n≥ 4. +is es-
tablishes our claim. □

Theorem 3. Let Tn〈1, 3〉 be the Toeplitz network, then
pd2(Tn〈1, 3〉) � 4 when n ∈ 5, 6, . . . , 13{ } and
4≤ pd2(Tn〈1, 3〉)≤ 5 for n≥ 14.

Proof. +e proof is divided into two parts.

Case 1: the partition Ψ for 5≤ n≤ 13 is tabulated in
Table 4 which clearly shows that Ψ is the fault tolerant
partition generator; therefore, pd2(Tn〈1, 3〉)≤ 4 for
5≤ n≤ 13. Lemma 1implies that pd2(Tn〈1, 3〉)≥ 4 for
5≤ n≤ 13. +is establishes our claim.
Case 2: suppose Ψ � A1, A2, A3, A4, A5  be a partition
of V(Tn〈1, 3〉) for n≥ 14. Let A1 � v1, v2, . . . , vn−6 ,

A2 � vn−5, vn−4 , A3 � vn−3, vn−2 , A4 � vn−1 , and
A5 � vn . For n � 3〉, 3〉 + 1, 3〉 + 2, the r(va|Ψ) are
tabulated in Tables 5–7, respectively.

Tables 5–7 clearly show thatΨ is a 2−resolving generator
of Tn〈1, 3〉 for n≥ 14, so pd2(Tn〈1, 3〉)≤ 5 for n≥ 14.
Lemma 1 implies that pd2(Tn〈1, 3〉)≥ 4 for n≥ 14. +is
establishes that 4≤ pd2(Tn〈1, 3〉)≤ 5. □

Theorem 4. Let Tn〈1, t〉 be the Toeplitz network with odd
t≥ 5 and n � t + 2, t + 3, t + 4, then pd2(Tn〈1, t〉) � 4.

Proof. Let Ψ � A1, A2, A3, A4  be a partition of
V(Tn〈1, t〉). +e proof consists of three parts.

x1
x2

x3
x4

x5
x6

x7
x8

x9
x10

x11
x12

x13
x14

Figure 1: Toeplitz network T14〈1, 3〉.
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Table 4: Partitions for n � 5, 6, . . . , 13.

n A1 A2 A3 A4

5 v1, v2 v3 v4 v5
6 v1, v2 v3, v4 v5 v6
7 v1, v2 v3 v4, v7 v5, v6
8 v1, v2, v5 v3, v4, v7 v6 v8
9 v1, v2, v5 v3, v4, v7 v5, v8, v9 v6
10 v1, v2, v3 v4, v8 v5, v6, v7 v9, v10
11 v1, v2, v3 v4, v8 v5, v6, v7 v9, v10, v11
12 v1, v2, v3 v4, v8, v12 v5, v6, v7 v9, v10, v11
13 v1, v2, v12, v13 v3, v7, v11 v4, v5, v6 v8, v9, v10

Table 5: r(va|Ψ) for Tn〈1, 3〉 when n � 3〉.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4) d(va, A5)

v3a+1(0≤ a≤ 〉 − 3) 0 〉 − a − 2 〉 − a − 1 〉 − a 〉 − a + 1
v3a−1(1≤ a≤ 〉 − 2) 0 〉 − a − 1 〉 − a 〉 − a 〉 − a + 1
v3a(1≤ a≤ 〉 − 2) 0 〉 − a − 1 〉 − a − 1 〉 − a + 1 〉 − a

va(a � n − 5) 1 0 1 2 3
va(a � n − 4) 1 0 1 1 2
va(a � n − 3) 1 1 0 2 1
va(a � n − 2) 2 1 0 1 2
va(a � n − 1) 2 1 1 0 1
va(a � n) 2 2 1 1 0

Table 1: r(va|Ψ) for Tn〈1, 2〉 when κ � 3〉.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

v2a(1≤ a≤ 〉) 0 1 〉 − a + 1 2〉 − a + 1
v2a(〉 + 1≤ a≤ 2〉) 0 a − 〉 + 1 1 2〉 − a + 1
v2a(2〉 + 1≤ a≤ bn/2c) 0 a − 〉 + 1 a − 2〉 + 1 1
v2a+1(0≤ a≤ 〉 − 1) 1 0 〉 − a 2〉 − a

v2a+1(〉 ≤ a≤ 2〉 − 1) 1 a − 〉 + 1 0 2〉 − a

v2a+1(2〉 ≤ a≤ κ − 1) 1 a − 〉 + 1 a − 2〉 + 1 0

Table 2: r(va|Ψ) for Tn〈1, 2〉 when κ � 3〉 + 1.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

v2a(1≤ a≤ 〉 + 1) 0 1 〉 − a + 2 2〉 − a + 2
v2a(〉 + 2≤ a≤ 2〉 + 1) 0 a − 〉 1 2〉 − a + 2
v2a(2〉 + 2≤ a≤ bn/2c) 0 a − 〉 a − 2〉 1
v2a+1(0≤ a≤ 〉) 1 0 〉 − a + 1 2〉 − a + 1
v2a+1(〉 + 1≤ a≤ 2〉) 1 a − 〉 0 2〉 − a + 1
v2a+1(2〉 + 1≤ a≤ κ − 1) 1 a − 〉 a − 2〉 0

Table 3: r(va|Ψ) for Tn〈1, 2〉 when κ � 3〉 + 2.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

v2a(1≤ a≤ 〉 + 1) 0 1 〉 − a + 2 2〉 − a + 3
v2a(〉 + 2≤ a≤ 2〉 + 2) 0 a − 〉 1 2〉 − a + 3
v2a(2〉 + 3≤ a≤ bn/2c) 0 a − 〉 a − 2〉 − 1 1
v2a+1(0≤ a≤ 〉) 1 0 〉 − a + 1 2〉 − a + 2
v2a+1(〉 + 1≤ a≤ 2〉 + 1) 1 a − 〉 0 2〉 − a + 2
v2a+1(2〉 + 2≤ a≤ κ − 1) 1 a − 〉 a − 2〉-1 0
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Table 6: r(va|Ψ) for Tn〈1, 3〉 when n � 3〉 + 1.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4) d(va, A5)

v3a+1(0≤ a≤ 〉 − 2) 0 〉 − a − 1 〉 − a 〉 − a 〉 − a + 1
v3a−1(1≤ a≤ 〉 − 2) 0 〉 − a − 1 〉 − a 〉 − a + 1 〉 − a + 2
v3a(1≤ a≤ 〉 − 2) 0 〉 − a − 1 〉 − a 〉 − a 〉 − a + 1
va(a � n − 5) 1 0 1 2 3
va(a � n − 4) 1 0 1 1 2
va(a � n − 3) 1 1 0 2 1
va(a � n − 2) 2 1 0 1 2
va(a � n − 1) 2 1 1 0 1
va(a � n) 2 2 1 1 0

Table 7: r(va|Ψ) for Tn〈1, 3〉 when n � 3〉 + 2.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4) d(va, A5)

v3a+1(0≤ a≤ 〉 − 2) 0 〉 − a − 1 〉 − a 〉 − a 〉 − a + 1
v3a−1(1≤ a≤ 〉 − 1) 0 〉 − a 〉 − a 〉 − a + 2 〉 − a + 1
v3a(1≤ a≤ 〉 − 2) 0 〉 − a − 1 〉 − a 〉 − a + 1 〉 − a + 2
va(a � n − 5) 1 0 1 2 3
va(a � n − 4) 1 0 1 1 2
va(a � n − 3) 1 1 0 2 1
va(a � n − 2) 2 1 0 1 2
va(a � n − 1) 2 1 1 0 1
va(a � n) 2 2 1 1 0

Table 8: r(va|Ψ) for Tn〈1, t〉 when n � t + 2 with odd t≥ 5.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

va(a � 1) 0 2 1 2
va(a � 2) 0 2 2 1
va(a � 3) 0 1 3 2
va(4≤ a≤ n + 1/2 − 1) a − 3 0 g a − 1
va(a � n + 1/2) n + 1/2 − 3 0 n + 1/2 − 2 n + 1/2 − 1
va(n + 1/2 + 1≤ a≤ n − 2) n − a 0 n − a − 1 n − a

va(a � n − 1) 1 1 0 1
va(a � n) 1 2 1 0

Table 9: r(va|Ψ) for Tn〈1, t〉 when n � t + 3 with odd t≥ 5.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

va(a � 1) 0 1 2 3
va(a � 2) 0 2 1 2
va(a � 3) 0 2 2 1
va(a � 4) 0 1 3 2
va(5≤ a≤ n/2) a − 4 0 a − 1 a − 2
va(a � n/2 + 1) n/2 − 3 0 n/2 − 2 n/2 − 1
va(n/2 + 2≤ a≤ n − 2) n − a − 1 0 n − a − 1 n − a

va(a � n − 1) 1 1 0 1
va(a � n) 1 2 1 0

Table 10: r(va|Ψ) for Tn〈1, t〉 when n � t + 4 with odd t≥ 5.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

va(a � 1) 0 1 2 4
va(a � 2) 0 2 1 3
va(a � 3) 0 1 1 2
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Table 10: Continued.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

va(4≤ a≤ n + 1/2 − 1) a − 3 0 a − 2 a − 3
va(a � n + 1/2) n + 1/2 − 3 0 n + 1/2 − 3 n + 1/2 − 3
va(n + 1/2 + 1≤ a≤ n − 3) n − a − 2 0 n − a − 2 n − a

va(a � n − 2) 1 1 0 2
va(a � n − 1) 1 2 0 1
va(a � n) 2 1 1 0

Table 11: r(va|Ψ) for Tn〈1, t〉 when n � t + 2 with even t≥ 4.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

va(a � 1) 0 2 1 2
va(a � t/2) 0 t/2 t/2 t/2 − 1
va(a � t/2 + 1) 0 t/2 − 1 t/2 t/2
va(t/2 + 2≤ a≤ t − 1) 0 t − a t − a + 1 t − a + 2
va(a � t) 1 0 1 2
va(a � t + 1) 1 1 0 1
va(a � t + 2) 1 2 1 0

Table 12: r(va|Ψ) for Tn〈1, t〉 when n � t + 3 with even t≥ 4.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

va(a � 1) 0 τ t/2 − 2 1
va(a � 2) 0 τ − 1 t/2 − 1 1
va(3≤ a≤ τ) 0 τ − a + 1 t/2 − a + 3 a − 2
va(a � τ + 1) 1 0 a − 2 a − 2
va(τ + 2≤ a≤ t/2 + 2) a − τ 0 t/2 − a + 3 t/2 − a + 5
va(a � t/2 + 3) τ 1 0 2
va(a � n/2 + 4) τ + 1 2 0 1
va(t/2 + 5≤ a≤ t/2 + 8) a − τ a − t/2 − 2 a − t/2 − 4 0
va(t/2 + 9≤ a≤ n − 7) t − a + 2 a − t/2 − 2 a − t/2 − 4 0
va(n − 6≤ a≤ n − 2) t − a + 2 t − a + τ + 2 a − t/2 − 4 0
va(a � n − 1) 1 τ t/2 − 2 0
va(a � n) 1 τ − 1 t/2 − 1 0

Table 13: r(va|Ψ) for Tn〈1, t〉 when n � t + 3 with even t≥ 4.

Nodes d(va, A1) d(va, A2) d(va, A3) d(va, A4)

va(a � 1) 0 τ τ − 2 1
va(a � 2) 0 τ − 1 τ − 1 1
va(3≤ a≤ τ − 5) 0 τ − a + 1 a + τ − 3 a − 2
va(τ − 4≤ a≤ τ) 0 τ − a + 1 t/2 − a + 3 a − 2
va(τ + 1≤ a≤ t/2 − 4) a − τ 0 t/2 − a + 3 a − 2
va(t/2 − 3≤ a≤ t/2 + 2) a − τ 0 t/2 − a + 3 a − τ + 1
va(t/2 + 3≤ a≤ t/2 + 8) a − τ a − t/2 − 2 0 a − τ − 1
va(t/2 + 9≤ a≤ 3τ) t − a + 2 a − t/2 − 2 0 3τ − a + 1
va(3τ + 1≤ a≤ t − 4) t − a + 2 a − t/2 − 2 a − 3τ 0
va(t − 3≤ a≤ n − 2) t − a + 2 3τ + t/2 − a a − 3τ 0
va(a � n − 1) 1 τ τ − 2 0
va(a � n) 1 τ − 1 τ − 1 0
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Case 1: for n � t + 2, let A1 � v1, v2, v3 ,

A2 � v4, v5, . . . , vn−2 , A3 � vn−1 , and A4 � vn .
When n � t + 2, the r(va|Ψ) are tabulated in Table 8.
Case 2: for n � t + 3, let A1 � v1, v2, v3, v4 ,

A2 � v5, v6, . . . , vn−2 , A3 � vn−1 , and A4 � vn .
When n � t + 3, the r(va|Ψ) are tabulated in Table 9.
Case 3: for n � t + 4, let A1 � v1, v2, v3 , A2 � v4,

v5, . . . , vn−3}, A3 � vn−2, vn−1 , and A4 � vn . When
n � t + 4, the r(va|Ψ) are tabulated in Table 10.

Tables 8–10 clearly show that Ψ is a 2−resolving gen-
erator of Tn〈1, t〉 for n � t + 2, t + 3, t + 4, therefore
pd2(Tn〈1, t〉)≤ 4 for n � t + 2, t + 3, t + 4. Lemma 1 implies
that pd2(Tn〈1, t〉)≥ 4 for n � t + 2, t + 3, t + 4. +is estab-
lishes our claim. □

Theorem 5. Consider Tn〈1, t〉 with even t≥ 4, then
pd2(Tn〈1, t〉) � 4, for n � t + 2, t + 3, t + 4.

Proof. Let Ψ � A1, A2, A3, A4  be a partition of
V(Tn〈1, t〉). +e proof consists of three parts.

Case 1: for n � t + 2, let A1 � v1, v2, . . . , vn−3 ,

A2 � vn−2 , A3 � vn−1 , and A4 � vn . When
n � t + 2, the r(va|Ψ) are tabulated in Table 11.
Case 2: for n � t + 3, let τ � dn/4e.

Case 2a: when n ≡ 1 (mod 4), let A1 � va|1≤ a≤ τ ,

A2 � va|τ + 1≤ a≤ 2τ − 1 , A3 � va|2τ ≤ a≤ 2τ + 1 ,
and A4 � va|2τ + 2≤ a≤ n .
When n � t + 3, the r(va|Ψ) are tabulated in Table 12.
Case 2b: when n ≡ 3 (mod 4), let A1 � va|1≤ a≤ τ ,

A2 � va|τ + 1≤ a≤ 2τ , A3 � va|2τ + 1≤ a≤ 3τ ,
and A4 � va|3τ + 1≤ a≤ n .
When n � t + 3, the r(va|Ψ) are tabulated in Table 13.

Case 3: for n � t + 4, let A1 � v1, v2, v3 , A2 � v4,

v5, . . . , vn−3}, A3 � vn−2, vn−1 , and A4 � vn . When
n � t + 4, the r(va|Ψ) are tabulated in Table 14.

It is clear from Tables 11–14 that Ψ is a 2−resolving
generator of Tn〈1, t〉 for n � t + 2, t + 3, t + 4, therefore
pd2(Tn〈1, t〉)≤ 4 for n � t + 2, t + 3, t + 4. Lemma 1 implies
that pd2(Tn〈1, t〉)≥ 4 for n � t + 2, t + 3, t + 4. +is estab-
lishes our claim. □

3. Conclusion

In this research article, we conclude that the fault tolerant
partition dimension of Tn〈1, t〉 is 4 when t � 2 and n≥ 4.
When t � 3 and n ∈ 5, 6, . . . , 13{ }, the pd2 is 4 and its value is
less than or equal to 5 for n≥ 14. It is also inferred that the
fault partition dimension of Toeplitz networks Tn〈1, t〉 is 4
when n � t + 2, t + 3, t + 4 for even t≥ 4 and odd t≥ 5 [18].

Open Problem 1. Calculate the pd2(Tn〈1, t〉) for odd t≥ 5
and n≥ t + 5.

Open Problem 2. Calculate the pd2(Tn〈1, 2, t〉) for t≥ 3.
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